The following updates were made to *Nutrient Requirements of Beef Cattle: Eighth Revised Edition*.

Page 60, Eq. 3-11, +0.174ME² was changed to −0.174ME² to read:

\[
\text{NE}_g = 1.42\text{ME} - 0.174\text{ME}^2 \\
+ 0.0122\text{ME}^3 - 1.65 \\
\text{(Eq. 3-11)}
\]

Page 77, Eq. 4-2, −0.00963 was changed to +0.00963 to read:

\[
\text{Mean ruminal pH} = 5.724 + 0.00963 \times \text{forage (% of dietary DM)}; r^2 = 0.76; n = 97 \\
\text{(Eq. 4-2)}
\]

Page 221, Eq. 13-37, 0.0013 was changed to 0.13 to read:

\[
\text{ME}_y = \text{NE}_y/0.13 \\
\text{(Eq. 13-37)}
\]

Page 275, Eq. 16-9, DMI³ was changed to DMI² to read:

\[
\text{CH}_4, \text{g/d} = -10.1 \pm 0.62 + 0.21 \pm 0.001 \times \text{BW} \\
+ 0.36 \pm 0.003 \times \text{DMI}^2 - 69.2 \pm 1.65 \times \text{Fat}^3 \\
+ 13.0 \pm 0.45 \times \text{(CP/NDF)} - 4.9 \pm 0.07 \times \text{(Starch/NDF)} \\
\times \text{(Starch/NDF)} \\
\text{At the bottom of Table 16-2, this footnote was added:}

GEI = gross energy intake (Mcal/d)

Page 277 (Table 16-2), Eq. 16-9 (Escobar-Bahamondes and Beauchemin), 10.1 was changed to −10.1; Fat was changed to Fat³, to read:

\[
\text{CH}_4, \text{g/d} = -10.1 \pm 0.62 + 0.21 \pm 0.001 \times \text{BW}, \text{kg} \\
+ 0.36 \pm 0.003 \times \text{DMI}^2, \text{kg/d} - 69.2 \pm 1.65 \times \text{Fat}^3, \text{kg/d} \\
+ 13.0 \pm 0.45 \times \text{(CP/NDF)} - 4.9 \pm 0.07 \times \text{(Starch/NDF)} \\
\text{At the bottom of Table 16-2, this footnote was added:}

GEI = gross energy intake (Mcal/d)

Page 357, Eq. 19-36, Prot was inserted in the equation to read:

\[
\text{TotalMPi} = \text{TotalYP} / 0.65 \\
\text{(Eq. 19-36)}
\]

Page 367, Eq. 19-128, NDF was changed to NDFI to read:

\[
\text{CH}_4 = (-1.01 + 2.76 \times \text{NDFI} + 0.722 \times \text{CB1I}) \\
\times 1,000/55.65 \\
\text{At the bottom of Table 16-2, this footnote was added:}

GEI = gross energy intake (Mcal/d)
Page 367, Eq. 19-131, 0.32 was changed to 0.032 to read:

\[
CH_4 (\text{Animal Level}) = \left(\frac{-0.221 + 0.048}{1,000/55.65}\times GEI \times 4.184 + 0.006 \times BW\right) + \left(\frac{-1.487 + 0.046}{1,000/55.65}\times GEI \times 4.184 + 0.032 \times NDF\right)
\]

(Eq. 19-131)

Page 367, Eq. 19-135, Forage was changed to Forage\text{g} to read:

\[
CH_4 = (0.357 + 0.0591 \times MEI \times 4.184 + 0.05 \times \text{Forage}\text{g}) \times 1,000/55.65
\]

(Eq. 19-135)

Page 368, Eq. 19-136, Forage was changed to Forage\text{g} to read:

\[
CH_4 = (-1.02 + 0.681 \times DMI + 0.0481 \times \text{Forage}\text{g}) \times 1,000/55.65
\]

(Eq. 19-136)

Page 368, Eq. 19-137, NDF was changed to NDFI to read:

\[
CH_4 = (-1.01 + 2.76 \times \text{NDFI} + 0.722 \times \text{CBII}) \times 1,000/55.65
\]

(Eq. 19-137)

Page 368, the sentence “Note, however, that the coefficient of 3% (Eq. 19-142 and 19-143)” was changed to “Note, however, that the coefficient of 3% (Eq. 19-139 and Eq. 19-142)”

Page 371, an asterisk (*) was added to kd\text{CB3,j} in Eq. 19-176 to read:

\[
Y_{\text{CB3,j}} = 1/(KM2/kd_{\text{CB3,j}} + 1/YG2)
\]

(Eq. 19-176)

Page 372, Eq. 19-180 left hand side, very top line – 0.00963 was changed to + 0.00963 to read:

\[
\begin{cases}
5.724 + 0.00963 \times \text{Forage}_p \\
6.2, \text{Forage}_p \geq 50\%, \text{peNDF} = 0
\end{cases}
\]

\[
\begin{cases}
5.46 + 0.038 \times \text{peNDF}, \text{peNDF} < 26.3%, \text{peNDF} > 0 \\
6.46, \text{peNDF} \geq 26.3%, \text{peNDF} > 0
\end{cases}
\]

(Eq. 19-180)

Page 372, an asterisk (*) was deleted from Y_{\text{CB3,j}} in Eq. 19-188 to read:

\[
\text{BACT}_{j} = \text{RDCA}_{j} \times Y_{\text{CA,j}} + \text{RDCB}_{1,j} \times Y_{\text{CB1,j}} + \text{RDCB}_{2,j} \times Y_{\text{CB2,j}} + \text{RDCB}_{3} \times Y_{\text{CB3,j}}
\]

(Eq. 19-188)

Page 378, Eq. 19-260, 64 was changed to 74 to read:

\[
Y_{\text{CH}_{12FracP}^{CA,CB1,CB2,CB3}} = \left(1 - \frac{3}{4}\right) \times \frac{16}{74}
\]

(Eq. 19-260)

Page 378, Eq. 19-261, divisors were added to Propionate\text{CA,CB1,CB2,CB3}, Acetate\text{CA,CB1,CB2,CB3}, and Butyrate\text{CA,CB1,CB2,CB3} to read:

\[
\text{FracP}_{j}^{\text{CA,CB1,CB2,CB3}} = \frac{\text{Propionate}_{j}^{\text{CA,CB1,CB2,CB3}}}{74} + \frac{\text{Acetate}_{j}^{\text{CA,CB1,CB2,CB3}}}{60} + \frac{\text{Propionate}_{j}^{\text{CA,CB1,CB2,CB3}}}{74} + \frac{\text{Butyrate}_{j}^{\text{CA,CB1,CB2,CB3}}}{88}
\]

(Eq. 19-261)