

Development and Evaluation of a Model to Assist Individual Cattle Management

Luis O. Tedeschi* and Dan G. Fox#

* Texas A&M University # Cornell University

Mathematical Models

- Cornell Net Carbohydrate and Protein System - CNCPS
 - Nutritional model that simulates ruminal fermentation and animal requirement
- Cornell/Cattle Value Discovery System -CVDS
 - Growing and finishing cattle
 - Beef cow and calf systems

Introduction

- Individual management and marketing
 - Predict the rate and cost of gain to market individual animals at their most profitable endpoint
 - Determine days on feed based on animal characteristics and diet information
 - Reduce variability within a pen
- Genetic selection for feed efficiency

Growth Models

- Different objectives of growth models:
 - Predict retained energy and growth rate
 - Use growth rates and animal characteristics
 - Use DNA accretion curves and protein to DNA ratio to compute potential growth
 - Compute growth and body composition using simple biochemistry pathways and physiological mechanisms

Objectives of the CVDS

- Development and evaluation of a dynamic iterative mechanistic (DIM) growth model
- Based on known relationship of energy for growth, body and gain compositions, and feed intake
- Dynamic model (day step)

CVDS for

Feedlot Operations

The DIM Model Options

- Projection
 - Predicts DMI and/or ADG
 - Different end points (Select, low Choice) Requires animal, diet, and environment information
- Feed required

 - Predicts dry matter required (DMR) for a known gain Requires animal, diet, and environment information
 - Four different methods of calculation
 - Mean body weight
 - Dynamic growth with and without adjustment for composition of gain (decay and mechanistic)

Flowchart of the DIM model

Equivalent Body Weight

- EqBW = (FBW/SRW)×SBW
- FBW is BW @ target composition (e.g. 28% EBF)
- Estimating FBW:
 - During growth: frame size, ultrasound, or visual appraisal
 - □ After harvest: HCW, BF, REA, and QG (Guiroy et al. 2001)

Relationship EBF x QG

Ν	QG	EBF, %	Score	%UAtbl
45	Std	21.1ª	5.3	40
470	Select	26.2 ^b	5.6	13
461	-Choice	28.6 ^c	5.8	8
206	Choice	29.9 ^d	6.2	0
90	+Choice	31.0 ^{de}		
51	-Prime	31.9 ^e		
32	Prime	32.5 ^e		

Guiroy et al. (2001)

Predicting Gain

- Garrett (1980)
 - $k_q = (0.0122 \times ME^3 0.174 \times ME^2 + 1.42 \times ME 0.174 \times ME^2 + 1.42 \times ME 0.174 \times ME^2 + 0.174 \times ME^2 \times ME^2 + 0.174 \times ME^2 \times ME^2$ 1.65)/ME
- Does not account for effect of gain composition on partial efficiency for gain...

Predicting Gain

- ME for fat deposition has a higher efficiency than for protein
- Using a mean value for k_a:
 - □ ↑ proportion of protein in the gain → overestimates energy in the gain
- Therefore, the effect of gain composition on k_a has to be accounted for

Adjusting k_g for gain composition

- Retained energy partitioning:
 - $\Box ME = RE_{Fat}/k_{Fat} + RE_{Prot}/k_{Prot} = RE/k_{g}$
 - $\square REp = RE_{Prot}/RE$
 - □ RE_{Fat} = (1 − REp)×RE
- Solving these equations:
 - $\Box \ k_{g} = (k_{Fat} \times k_{Prot})/(k_{Prot} + REp \times (k_{Fat} k_{Prot}))$
- Assuming k_{Fat} is 75% and k_{Prot} is 20%:
 k_g = 3/(4 + 11×REp)

How REp is computed?

- Two options:
 - A decay equation:
 - REp = 0.0554 + 1.6939×e^(-0.5573×RE/EWG)
 - A mechanistic approach:
 - Compute PIG from RE and EWG (NRC, 2000)
 - Then compute the REp

Decay Equation

Summary of Inputs

<u>GROUP</u>

- Pen DMI
- Ration formulaIngredient analysis
- DM, NDF, CP, Lignin...
- Pen size
- Pen environment

INDIVIDUAL

- Breed, sex, implants...
- Initial and final SBW
- Days on feed
- ADG
- Carcass traits
 - B HCW, BF, REA, QG

Model Application

Predicting Empty Body Fat

Guiroy et al. (2001)

Model Evaluation

Dynamic Model Steps

- 1. Predict daily DMI (based on current SBW, diet energy, environmental conditions, and 28% EBF BW)
- 2. Predict feed required for maintenance (FFM)
- FFM = NEm required / diet NEm
- Predict NE available for gain (NEFG)
 NEFG = (DMI FFM) × diet NEg
- Predict Shrunk Weight Gain (SWG) from NEFG
- 5. Compute the new SBW (initial SBW + SWG)
- Repeat above steps for each additional day to 28% EBF
- BW 7. Adjust predicted DMI until actual and predicted ADG match

Evaluation Database

- Four studies
- 362 steers
 - 240 steers in individual stalls
 - 122 steers in Calan Broadbrent pen
- Four levels of dietary ME
- Two housing types
- Nine groups were created based on housing, dietary ME, and study

Predicting ADG with kg adjustment 3.0 $r^2 = 0.89$ Y=X bias = -2.6%2.5 Observed ADG, kg/d 2.0 1.5 1.0 0.5 0.5 1.0 1.5 2.0 2.5 3.0 Predicted ADG, kg/d

4

Summary

- Use post-weaning growth model to compute
 - ADG and SBW when DMI is known
 - DMR and EBF when ADG is known
- Applications of the model
 - □ From a group-fed animals, we can estimate their probable individual intake to:
 - Genetically select animals for high feed efficiency
 - Feed allocation when mixed ownership .
 - Predict days on feed required to maximize the profit

Next Generation of Models

- Improving individual DMI predictions Combination of various predictions

Tedeschi et al. (unpublished)

Summary

- Use post-weaning growth model to compute ADG and SBW when DMI is known
 - DMR and EBF when ADG is known
- Applications of the model
 - □ From a group-fed animals, we can estimate their probable individual intake to:
 - Genetically select animals for high feed efficiency .
 - . Feed allocation when mixed ownership

CVDS for

Cow/Calf Operations

Model application

- Identify the best combination of beef cow mature size and milk potential for given resource
- Strategic supplementation to enhance profitability (e.g. weaning weight)
- Provide inputs for genetic selection for cow efficiency

Current situation of US?

- Beef cow production is still perceived as an inefficient process...
 - About 50% of the total energy in beef production is used by the cow
 - It is related to the energy expenditure for maintenance of the cow

Improving the situation?

- Reproduction indexes
 - Calving frequency, age at 1st calving, calving interval
- Applying nutrition concepts
 Strategic supplementation, forage mgt
- Genetic selection
 Bull selection, crossbreeding

Selecting efficient animals

- Ideally, efficient beef cows use less resource to obtain the same outcome in a sustainable environment
- Indexes are based on retaining beef cows that routinely produce a weaned calf with fewer inputs
- Evaluation of biological efficiency must be expressed relative to some measure of input (e.g. energy/output) (Jenkins and Ferrell, 2002)

Model description

- Model computes energy requirements for maintenance, pregnancy, lactation, and tissue mobilization
- Computes an energy efficiency index (EEI) as the ratio of required ME to calf weaning weight → energy/output
- Provides information to rank efficient cows

Flowchart of the Model

Model Evaluation

Energy efficiency at 6 peak milk levels for 2 cow sizes

How can we apply this model to identify efficient cows?

Identification approaches

- Iterate peak milk
 - Calf weaning weight
 - Cow body weight
 - □ Forage quality (ME)
- Risk analysis
 - Mean, variance, and distribution of
 - Cow body weight
 - Peak milk
 - Forage quality (ME)

Iterative Approach

Beef Cow Efficiency In A Semi-Arid Environment

Bell Ranch summary

- There was a small correlation between frame size and/or age with EEI
- Model correctly identified cows that were judged to be efficient by the management team
- Model was able to accurately identify the cows that had been deemed inefficient and culled

Risk Analysis Approach

Forage Energy Content

Energy Balance

Summary

- Optimization of herd production
 - Simulation of energy balance and nadir
 - Supplementation strategies
- Based on specific farm variations
- Selection of cows based on energy efficiency, e.g. Mcal ME/WW, that are most efficient on specific farms