
Chapter 9

Identifiability and Accuracy: Two 
critical problems associated with the 
application of models in nutrition 
and the health sciences
Ray C. Boston1, Pam Wilkins1, and Luis O. Tedeschi2

This presentation will review two fairly recent contributions to the area of the application 
of mathematical models in the nutrition and health sciences: identifiability and accuracy. 
Identifiability in model advancement helps us with the question ‘will a proposed experiment 
on a system enable us to determine values for the parameters of a model of that system?’ 
The model is assumed to be known and to reflect the response of the system to the 
experiment. Identifiability is not concerned with the precision with which the parameters 
can be estimated.  The adequacy of an approach to characterize an aspect of a system 
is the relative agreement between the results based on the approach compared with the 
results based on a “gold” standard method; accuracy and precision are key components 
of the adequacy of a model. Or, we could say that two approaches to characterizing 
an aspect of a system agree if the results from the two approaches concord. In fact, 
concordance is a much more profound issue than merely correlation or regression. For 
example concordance needs to embrace the observation range over which the two series 
of measurements exist, it needs to penalize a quantification of agreement for not predicting 
the origin as a critical point, and also for not engaging a line of perfect agreement (slope 
unity) into its consideration. Recently an index of concordance correlation coefficient 
(CCC) with all the properties needed to effectively quantify agreement was developed. 
Unfortunately though, this index did not account for tail weighting in deriving the measure. 
This index has been shown to be biased under certain important observation settings. We 
reviewed several recent works regarding the computation of CCC and demonstrate its 
application with  cardiac output measurements.
1 Clinical Studies, NBC, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA
2 Department of Animal Science, Texas A&M University, College Station, TX 77843
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Introduction
 This chapter deals with two disparate issues that surface in mathematical 
modeling: identifiability and accuracy. Each has emerged of importance within the last 
20 or so years as a result of, on the one hand, the philosophical principles underpinning 
modeling having been found wanting in each of these domains and, on the other hand, 
tools and techniques for investigating these issues having been refined.
 Identifiability is the body of science and mathematics that enables us to ask, 
‘if we perform a proposed experiment on a (known) system will we obtain enough 
information to enable us to determine all the (unknown) parameters of the system’. 
Identifiability is concerned neither with data nor the error of data, and it is not concerned 
with uncertainties linked to the model used to portray the system … error per se in data 
simply adds to the complexity of model estimation but, as we shall see, not in a way 
that directly impacts identifiability … the model of the system is presumed known, and 
‘correct’, so issues of either the model’s topological basis or its underlining mechanisms 
do not arise in the investigation of identifiability.
 It was discovered as far back as 1956 or so (Berman and Schoenfeld (3)) that 
while kinetic data such as from radio iodine turnover in thyroid studies provides a 
perfect basis for fitting exponential models there was actually a limit to the extent and 
structure of kinetic models that could be derived, or mapped, from those exponentials. 
Indeed, it seemed that if two exponentials existed in the response it was not possible 
to derive kinetic models with more than three parameters. Thus while the observation 
of two exponentials implies an iodine system with two exchanging pools only one of 
the pools could have irreversible loss.  This is a serious problem because we naturally 
imagine two paths by which iodine is irreversibly lost, one coinciding with binding, 
and the other coinciding with elimination.  In answer to the question above then, 
what can go wrong from here is that failure to acknowledge the limitations of our 
‘experiment’ on a system to expose enough information to determine all the parameters 
of a model of the system will lead to a failure to resolve any of the parameters of the 
system … at worst we may mischaracterize the system state, healthy versus un-healthy 
and at best we could draw no inferences at all about the system state.
 Whereas identifiability analysis, or identifiability, may tell us in quite precise 
terms that a proposed experiment on a system will not yield enough information about 
a system to permit the determination of all the model parameters it can also help us, 
as we shall see, design an experiment on the system that will indeed yield the level of 
information that we seek to determine all the parameters.
 Naturally then we need to inquire ‘if identifiability is so powerful why is it only 
occasionally used, and only for models of modest size and complexity?’ To answer 
this question fully here would disserve our account of the details of identifiability 
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below but, suffice it to say, identifiability analysis is very complex and this situation 
has not been improved by the array of definitions and demonstrations that appear in the 
literature. For example Godfrey (4) whose account of identifiability is by far the clearest, 
and uncompromising has the following to say … ‘a number of definitions of terms 
associated with identifiability have appeared over the years, but these have led to some 
criticism. … Cobelli and DiStefano (5) have proposed some rather formal definitions 
but several aspects of their definitions have been criticized (LeCourtier and Walter 
(6)). There seems to be a need to keep terms and definitions as simple as possible and 
Godfrey (4) certainly does an excellent job in this regard. Jacquez (7) who in chapter 
15 of his book takes several ‘passes’ to convey the meaning of identifiability says ‘If 
one can check global identifiability, that is the way to go. But at times that process can 
be very difficult to carry out’. He then goes on to say that ‘in many applications in the 
biological sciences there are prior estimates of parameters or information to constrain 
the parameters … In such cases much can be learned by checking the ... identifiability 
… by numerical methods’. In our section on identifiability we will draw heavily on 
Godfrey’s work as we demonstrate how this type of analysis is advanced and how the 
results can be used.
 Adequacy is the ability of a mathematical model to correctly predict (real) 
values. Determination of model adequacy is extremely important in building confidence 
and acceptance of the predictions of a model with broad applicability. For instance, 
it is essential to reliably predict possible outcomes without having to conduct field 
experimentation and data collection of novel chemicals or products that are hard to 
measure (e.g. medication) or have hazardous outcome (e.g. environmental pollution). 
 Precision and accuracy are two key components in assessing the adequacy of 
mathematical models (11). Precision is related to the ability of a mathematical model 
to predict similar values consistently whereas accuracy is the ability to predict the real 
values. Several techniques have been devised to assess the correctness of predictions 
of models (11-13). In our section on accuracy we will discuss the application and 
usefulness of a subset of evaluation techniques referred as concordance correlation 
coefficients (CCC) to assess model accuracy.

Identifiability
Preliminary Definitions. Figure 9.1 portrays an experiment on a system, in the terms of 
identifiability analysis. The system is ‘represented’ as a two-compartment model with 
exchange between the two compartments and irreversible loss from the first compartment 
(number 1). The experiment comprises a pulse input to the first compartment and 
subsequent sampling of that compartment, capturing the response of the system to the 
pulse.
 The equations to the response, presuming linear kinetics (we shall presume 
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Figure 9.1. Experiment on a two compartmental system. A bolus injection (u1=d1) into compartment 1 
and sampling C1 also from compartment 1. Note the three linear exchanges with basic parameters k21, k12, 
and k01. The responses of compartments 1 and 2 are respectively x1 and x2.

linear kinetics throughout our discussion) are as follows:
    x = A x + Bu

•
     (1)

and the observations are given by:

    y C x=       (2)

Where u = system challenges (δ or ki, for example), B = input (or application) matrix, 
C = observation (or output) matrix, x = predicted response, and y = observed response, 
and A = condensed, or well-formed matrix representation of kij, viz:
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Taking Laplace transform of (1) and (2), we obtain:
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    Y C X C sI A BU= =. .( - ) .-1

or, solving for Y  we have

    
Y g s g sn n d d

= ( , ) / ( , )φ φ

Where kij = basic or model parameters, φi = observational parameters, Vj = volume 
of distribution (compartment j), basic parameter, and gn/d = numerator or denominator 
polynomial in s.
 Using the Laplace transform approach (and there are several other approaches 
available, see below) identifiability ensues when the number of basic parameters is less 
than or equal to the number of observational parameters.

Example 1. Figure 9.2 below shows a two-compartment model, portraying a system 
which is perturbed, or pulsed, in the first compartment, and also sampled in the first 
compartment, thus exposing the pattern of damping of the pulse, and propagation of the 
residue of the pulse throughout the system. We then have:

    

U t

C

= = 
= [ ]

+0 0

1 0

, ,

,

δ

which represent the input (compartment 1 pulse,  δ) and output (compartment 1 sampled) 
situations we proposed. The condensed form of the model parameters is again:
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a a
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and we now have with the added basic parameter (k02)
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a k k a k
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The state equations for this system are:

    

x a x a x u

x a x a x u

•

•

= + + =
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Taking the Laplace transform of the state equations (we remind the reader that an 
uppercase X or Y represents the Laplace transform of the lowercase response functions 
x or y) we have:
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X a X s a
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+ + =
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Solving this for X1 yields:
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Thus, if u1=δ=1

  
X
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s s a a a a a a

s
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22
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1
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2 3

= +
+ + +

= +
+ +( ) -

φ
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We observe three parameters, φ1, φ2, and φ3 but we need four parameters so this system 
is unidentifiable based on the current, ‘proposed’, experiment.

Inputs and Outputs. Inputs are the assaults, or challenges to the system which expose 
its pattern of distribution of challenge ‘composition’ as the challenge subsides. 
Linear systems respond linearly to the challenge regardless of its magnitude. Sites or 
compartments must be accessible to accept inputs of an experimental nature. Most 
experiments only involve a single input though, when such experiments fail to identify 
systems, multiple inputs, of possibly different forms, may be necessary.
 Outputs, in the experimental sense, are the observations of the response of 
a system to a specific input, or series of inputs. Just as inputs need to be accessible 
to expose the input points, outputs need to be accessible to expose the observation 
sites. Usually single input, single output (SISO) type experiments are presumed to be 
comprehensive enough to determine all we need about the system but this is not always 
so.

Global Identifiability. Jacquez (7) writes that ‘if a parameter is locally identifiable but 
the observation function determines exactly one solution in the entire parameter space, 
that parameter is globally identifiable for the experiment’.

Example 2. Consider the model of a system as captured in Figure 9.1, and let’s inject a 
pulse into compartment 1 and sample compartment 1, only, with a view to determining 
the basic parameters.
The state equations are as shown:
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The output, y, is

    
y

x

C
= 1

And, also as above, the Laplace transform of the system is:
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 and, since C=V1
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hence the system is globally identifiable … the number of observational parameters is 
just equal to the number of basic parameters.
 In the above analysis we have admitted the apparent volume of distribution as 
a (basic) parameter to be resolved. This was done for two reasons: 1) to show how V1 
enters into the identifiability considerations, and 2) to show that, based on the proposed 
experiment it is indeed identifiable.
 It seems that the idea of treating V1 as a ‘common’ basic parameter needing to 
be identified from our experiment is original with Cobelli and DiStefano (5). Godfrey 
(4) suggests that we advance cautiously here saying that there are so few situations 
where the volumes of distribution are identified that we may miss more than we gain in 
trying to extend our experiments to resolve these features. Indeed, Godfrey (4) shows 
that a relatively easily derived measure of drug distribution is the steady state volume 
of distribution V2(∞). For an exchanging two-compartment system:
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 It is instructive to show the differences between the effect of the roots of the 
transfer function and the coefficients of the transfer function on the observational form 
of the response. We found for our two-compartment, identified system above, that:
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Using partial fractions we obtain:

    Y e et t= +α βθ θ. .- -1 2
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Thus the factor in the observational function that scales the results appears as a scale 
factor in the analytic observational form. Only the roots of the observational function 
denominator appear in the analytic form of the observational function as exponents.

Figure 9.2. As for Figure 9.1 except that here we have four linear exchanges with basic parameters k21, 
k12, k01, and k02.
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The steps of Identifiability Analysis. The approach employed in each identifiability 
analysis conducted above is routinely advanced as follows:
1. Make a note of basic parameters (e.g. k

ij
) to be determined

2. Write down the state equations (x`) including inputs
3. Write down observable equations (y=f(x,q))
4. Transform the state equations
5. Solve the transformed equations for X = L (x)
6. Solve for the observable transforms Y=f(X)
7. Express the solution to Y as: Y=gn(s,φn)/gd(s,φd)
8. Check that the number of φ

j (observational parameters) is at least equal to the number 
of k

ij
 (basic parameters) to be determined

Ranges (or Interval Identifiability). Although experiments on systems may result in 
unidentifiable parameters this may not be the end of the story. Three options exists at 
the point where we conclude the parameter determination phase, and we stress that, as a 
matter of course, identifiability takes place ordinarily before we conduct the experiment, 
and they are: 1) to constrain our model so that the number of observational and basic 
parameters now match, 2) to alter our experiment in such a fashion that it yields more 
information about our system, enabling all parameters of the system to be determined, 
and 3) to locate value ranges as opposed to single values for our parameters. We address 
the third option here.
 Berman and Schoenfeld (3) showed that by invoking the principle of physical 
realizability (positive valued-ness) of parameters it is possible to determine ranges 
of parameter values consistent with our observational parameters in situations where 
one or more of the basic parameters are unidentifiable. If it turns out that the ranges 
are narrow we may not be overly compromised. In our standardized notation physical 
realizability implies:

    a kij ij= ≥ 0      (3)

   

a k kii i ji
j
j i

p

= − − ≤
=
≠

∑0
1

0

    (4)
Consider an unidentifiable two-compartment model, then as above:

    

x k x k x

x k x k x

•

•

= − +

= −

1 11 1 12 2

2 21 1 22 2

It is not too hard to show that, quite generally:
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    C D= −
Here E is the problem boundary condition matrix, or eigenvector matrix, and e is the 
eigenvalue matrix.
 Godfrey (4) has shown using Equations (3) and (4) in conjunction with the 
eigenvectors and eigenvalues that the physical bounds for the basic parameters are as 
follows:
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Note that if one of the parameters is determined to be at one of its bounds then others 
will also be at their bounds. In Table 9.1 we demonstrate how various combinations of 
A, B, α, and β affect the range of the basic parameters of the unidentifiable model. In 
Figure 9.3 we present plots of the basic parameter ranges against A for combinations 
of a and b.

Changing the Design of an Experiment to make a Model Identifiable. When an 
experiment on a system can be shown to render a model unidentifiable, and when the 
boundaries of parameter values afforded from such an experiment are excessively wide 
then we can modify our experiment in such a way that will expose enough information 
about the system as to allow all the model parameters to be identifiable. Godfrey (4) 
demonstrates this point with clarity and simplicity in Example 1 above. Here we found 
that the experiment, as designed, provided three unique pieces of information 
about the model but, for identifiability purposes, the model called for four pieces of 
information.

Example 3. A suggested extension to the experiment is to admit a step infusion into 
compartment two thus we examine the output from compartment one using a DISO 
(Double Input; bolus to compartment one, infusion to compartment two, Single 
Output; sample only compartment one) design. Figure 9.4 captures unique features of 



Table 9.1. For the experiment foreshadowed in Figure 2 we present intervals for the basic parameters 
(k12, k21, k01, and k02) which satisfy the requirement of physiological realizability for various combi-
nations of the observational parameters (A, B, a, and b).

A B a b k21_l k21_h k12_l k12_h k01_h k02_h dk21 dk12
0.9 0.1 1 0.1 0.38 0.91 0.08 0.19 0.53 0.11 0.53 0.11
0.8 0.2 1 0.1 0.46 0.82 0.16 0.28  0.36 0.12 0.36 0.12
0.7 0.3 1 0.1 0.46 0.73 0.23 0.37 0.27 0.14 0.27 0.14
0.6 0.4 1 0.1 0.42 0.64 0.3 0.46 0.22 0.16 0.22 0.16
0.5 0.5 1 0.1 0.37 0.55 0.37 0.55 0.18 0.18 0.18 0.18
0.4 0.6 1 0.1 0.3 0.46 0.42 0.64 0.16 0.22 0.16 0.22
0.3 0.7 1 0.1 0.23 0.37 0.46 0.73 0.14 0.27 0.14 0.27
0.9 0.1 3 0.3 1.15 2.73 0.24 0.57 1.58 0.33 1.58 0.33
0.2 0.8 1 0.1 0.16 0.28 0.446 0.82 0.12 0.36 0.12 0.36
0.8 0.2 3 0.3 1.39 2.46 0.47 0.84 1.07 0.37 1.07 0.37
0.7 0.3 3 0.3 1.38 2.19 0.7 1.11 0.81 0.41 0.81 0.41
0.6 0.4 3 0.3 1.27 1.92 0.91 1.38 0.65 0.47 0.65 0.47
0.1 0.9 1 0.1 0.08 0.19 0.38 0.91 0.11 0.53 0.11 0.53
0.5 0.5 3 0.3 1.1 1.65 1.1 1.65 0.55 0.55 0.55 0.55
0.9 0.1 5 0.5 1.92 4.55 0.4 0.95 2.63 0.55 2.63 0.55
0.8 0.2 5 0.5 2.31 4.1 0.79 1.4 1.79 0.61 1.79 0.61
0.4 0.6 3 0.3 0.91 1.38 1.27 1.92 0.47 0.65 0.47 0.65
0.7 0.3 5 0.5 2.3 3.65 1.17 1.85 1.35 0.68 1.35 0.68
0.9 0.1 7 0.7 2.69 6.37 0.56 1.33 3.68 0.77 3.68 0.77
0.6 0.4 5 0.5 2.11 3.2 1.52 2.3 1.09 0.78 1.09 0.78
0.3 0.7 3 0.3 0.7 1.11 1.38 2.19 0.41 0.81 0.41 0.81
0.8 0.2 7 0.7 3.24 5.74 1.11 1.96 2.5 0.85 2.5 0.85
0.5 0.5 5 0.5 1.84 2.75 1.84 2.75 0.91 0.91 0.91 0.91
0.7 0.3 7 0.7 3.22 5.11 1.63 2.59 1.89 0.96 1.89 0.96
0.2 0.8 3 0.3 0.47 0.84 1.39 2.46 0.37 1.07 0.37 1.07
0.4 0.6 5 0.5 1.52 2.3 2.11 3.2 0.78 1.09 0.78 1.09
0.6 0.4 7 0.7 2.96 4.48 2.13 3.22 1.52 1.09 1.52 1.09
0.5 0.5 7 0.7 2.58 3.85 2.58 3.85 1.27 1.27 1.27 1.27
0.3 0.7 5 0.5 1.17 1.85 2.3 3.65 0.68 1.35 0.68 1.35
0.4 0.6 7 0.7 2.13 3.22 2.96 4.48 1.09 1.52 1.09 1.52
0.1 0.9 3 0.3 0.24 0.57 1.15 2.73 0.33 1.58 0.33 1.58
0.2 0.8 5 0.5 0.79 1.4 2.31 4.1 0.61 1.79 0.61 1.79
0.3 0.7 7 0.7 1.63 2.59 3.22 5.11 0.96 1.89 0.96 1.89
0.2 0.8 7 0.7 1.11 1.96 3.24 5.74 0.85 2.5 0.85 2.5
0.1 0.9 5 0.5 0.4 0.95 1.92 4.55 0.55 2.63 0.55 2.63
0.1 0.9 7 0.7 0.56 1.33 2.69 6.37 0.77 3.68 0.77 3.68
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this situation. Using our standard notation the state equations giving the anticipated 
response of the system are as follows:

   

x a x a x t d

x a x a x k i

•
+

•

= − + + =( )
= − +

1 11 1 12 2

2 21 1 22 2

0δ ,

   

Figure 9.3. Plots of the range of physiologically realizable ranges for the basic parameter k21 for the 
experiment on the system portrayed in Figure 9.2. The response is A×exp(-a×t) + B×exp(-b×t), where 
0.1 < A < 0.9, a=1,3, and 7, B=1-A, and b=a/10.

Taking Laplace transforms we obtain:

   

X s a X a

X a X s a k si

1 11 2 12

1 21 2 22

( )

( ) /

+ − =
− + + =

δ

and our output, y, is given by:

     
y

x

C
= 1

Solving we obtain:
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X

d s d a s k a

s s s
i

1

2
22 12

2
1 2

= + +
+ +

( . . . . )

( )β β

 We now see that we have gone from three to four, or five, observational 
parameters whereas before we reported just three observational parameters yielded from 
the experiment. Whether we need four or five parameters depends on our observation 
units. If we measure concentrations then, as Godfrey points out, the determination of 
the volume of distribution (C, above) when the same site is ‘pulsed’ and ‘observed’ is 
trivial but nevertheless consumes ‘one of our observational parameters’. Thus whereas 
in Example 1 we ignored the distribution volume we can here say that the residual 
four observational parameters provide enough information to determine the four basic 
parameters. 
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Figure 9.4. A modification to the experiment on the two compartment system of Figure 9.2 reflecting an 
infusion into compartment 2. The new experiment can be shown using identifiability analysis to yield 
enough additional information to render the system identifiable.

 Because of the way matrix manipulation is managed in WinSAAM (14), it is 
one of few computer packages that allows the accurate demonstration of the principle 
of identifiability. For the model of example one we use the input specification shown 
in Figure 9.5 where the ‘qo(1)’ construct allows us to define the observed response, or, 
in identifiability terms, the output from the experiment. We then iteratively adjust the 
basic parameters and finally obtain the parameter estimates and their uncertainties as 
shown. That the errors of the parameters are so large, almost to five thousand percent 
tells us that we can have no confidence in our capacity to exclude other values for the 
parameters, and the model itself is thus not identifiable. 
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 A SAAM31 
H PAR    
C    
C Demonstration of the capacity of a SISO experiment to  
C not expose the parameters of a 4 basic parameter model 
C    
   L(2,1)    8.000000E+00  0.000000E+00   1.000000E+02   
   L(1,2)    1.000000E+00  0.000000E+00   1.000000E+02   
   L(0,1)    2.000000E+00  0.000000E+00   1.000000E+02   
   L(0,2)    1.000000E-01  0.000000E+00   1.000000E+02   
ic(1)=1 
H DAT    
x qo(1)=0.78*exp(-10*t)+.2*exp(-t)   
101 qo(1)                   fsd=.1  
            0    
            .01  
            .02  
            .05  
            .08  
            .1   
            .2   
            .5   
            .8   
            1    
            2    
            3    
            4    
            6    
            8    
            10   
            13   
            16   

  > fsd(i) 
* VALUES MAY NOT RELATE TO CURRENT PARAMETERS 
* L ( 2, 1)    6.615E+00     FSD( 1)   1.105E+01 
* L ( 1, 2)    2.009E+00     FSD( 2)   1.115E+01 
* L ( 0, 1)    1.540E+00     FSD( 3)   4.748E+01 
* L ( 0, 2)    8.622E-01     FSD( 4)   2.574E+01 

0.00000001

0.000001

0.0001

0.01

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 9.5. A WinSAAM model reflecting the consequences of an attempt to estimate the basic 
parameters of the model of Figure 9.2 based on the experiment on the system shown in Figure 9.2.

 Next we change a) the observations ‘qo(1)’, and b) the experiment (we added 
the infusion into compartment two `uf(2)’, in addition to the pulse, or bolus, into 
compartment one), see Figure 9.6.
 We again iteratively adjust the parameters and see that they converge a) to 
the correct values, and b) to well-resolved estimates, thus supporting that the new 
experiment leads to identifiability of all model parameters, and thus the model is itself 
identifiable based on this new experiment.
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 We caution readers from applying this assessment procedure with kinetic 
modeling software other than WinSAAM (14). If a model is not identifiable from a 
proposed experiment then proceeding to explore this from a numerical perspective is 
fraught with problems. Three outcomes are possible here: 1) the program may simply 
fail ingloriously (because the covariance matrix has lower rank than required for 
inversion), or 2) the program may not fail but provide ‘identifiable results’ whose values 
actually depend on ‘precautionary code’ (see Jacquez’s (15) cautionary note here), or 
3) the program may be equipped with the computational machinery to appropriately 
handle this situation (potentially inversion of a singular matrix) and provide information 
for you such as the above enabling appropriate decisions to be made. WinSAAM is in 
the latter class.

 A SAAM31 
H PAR    
C    
C Demonstration of the capacity of a DISO experiment to  
C expose the parameters of a 4 basic parameter model 
C    
   L(2,1)    8.000000E+00  0.000000E+00   1.000000E+02   
   L(1,2)    1.000000E+00  0.000000E+00   1.000000E+02   
   L(0,1)    2.000000E+00  0.000000E+00   1.000000E+02   
   L(0,2)    1.000000E-01  0.000000E+00   1.000000E+02   
 ic(1)=1 
   uf(2)    .1   
H DAT    
x qo(1)=0.78*exp(-10*t)+.2*exp(-t)+0.02  
101 qo(1)                        fsd=.1  
            0    
            .01  
            .02  
            .05  
            .08  
            .1   
            .2   
            .5   
            .8   
            1    
            2    
            3    
            4    
            6    
            8    
            10   
            13   
            16   

  > fsd(i) 
* VALUES MAY NOT RELATE TO CURRENT PARAMETERS 
* L ( 2, 1)    7.005E+00     FSD( 1)   1.437E-04 
* L ( 1, 2)    1.999E+00     FSD( 2)   1.865E-04 
* L ( 0, 1)    9.949E-01     FSD( 3)   1.020E-03 
* L ( 0, 2)    1.000E+00     FSD( 4)   2.220E-04 

0.01

0.1

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 9.6. A WinSAAM model reflecting the consequences of an attempt to estimate the basic parameters 
of the model of Figure 9.2 based on the experiment on the system shown in Figure 9.4.
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Statistical Constraints. In Example 2 above we found that by eliminating one basic 
(model) parameter from the model of example one we moved from a situation where 
the model was unidentifiable to a situation with the model was globally identifiable. 
This is actually a case of conditional identifiability. That is, the model of experiment 
one has been rendered identifiable conditional on removing one of the irreversible 
eliminations (basic parameters).
 Of course sacrificing reality in the interest of generating an identifiable model 
is quite unreasonable, and we have already highlighted circumstances justifying a 
two-compartment model with bi-directional exchange and irreversible losses from 
each compartment. On the other hand, there are virtually no situations now where 
investigations are advanced against the background where nothing is known. Either 
similar studies have already been undertaken, perhaps with different constraints or 
on different subjects, or in vitro investigations (versus in vivo) have yielded allied 
information to the study at hand. The point is that we don’t exist, or study, in a vacuum 
and the scope for introducing established, allied, statistical information into our modeling 
venture lurks at every corner. In the identifiability sense, admitting information, 
‘statistically speaking’, is akin to widening our experiment base, and admitting that 
any experiment we foreshadow for a system exposes only additional features to those 
already available.
 This type of modeling or statistical analysis is referred to as Bayesian Analysis 
and we advance our modeling objective by admitting key pertinent statistical knowledge 
available from prior related research. In the biological sciences allometric information 
is a rich source of Bayesian statistics.

Example 5. In Example 5 (Figure 9.7) we demonstrate, using WinSAAM (14), how a 
statistical constraint on one of our losses of our two-compartment model (Example 1) 
is introduced and facilitates the identifiability of the model.

Local Identifiability
Example 6. In Example 6 we propose an experiment on the model captured in Figure 9.1 
in which compartment one is pulsed (input) and compartment two is sampled (output). 
The state equations are as usual:

   

x a x a x t

x a x a x

•
+

•

= − + + =( )
= −

1 11 1 12 2

2 21 1 22 2

0 1δ ,

and our output is:
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 A SAAM31 
2       10   
H PAR    
c    
c Kinetics of Amrinone   
c Each subject received 75 mg as an IV bolus 
c IV drug levels with time are shown 
   L(2,1)    3.833943E+00  0              10   
   L(1,2)    1.614766E+00  0              10   
   L(0,2)   .05                           1   
   L(0,1)    1.732317E-01  0              1   
   ic(1)    75   
   K(1)      3.015881E-02  0              1   
H DAT    
110  
   L(0,1)                 .04            .01 
101                                      fsd=.4  
C           [hr]          [mg/l] 
            0    
            .16           1.30   
            .25           1.03   
            .33           0.89   
            .5            0.72   
            .67           0.64   
            1             0.59   
            2             0.52   
            3             0.47   
            4             0.42   
            8             0.27   
            12            0.17   
            15            0.12   

 
PARAMETER    VALUE      ERROR       FSD 
L ( 2, 1)  3.971E+00  1.243E-01  3.129E-02 
L ( 1, 2)  1.560E+00  1.960E-02  1.257E-02 
L ( 0, 2)  1.408E-01  1.039E-03  7.382E-03 
L ( 0, 1)  3.999E-02  1.825E-04  4.564E-03 
K ( 1, 0)  3.018E-02  6.500E-04  2.154E-02 
CORRELATION MATRIX 
 COLUMN   1     2     3     4     5 
ROW 1  1.00  0.48 -0.45  0.00  0.96 
ROW 2  0.48  1.00  0.37  0.00  0.26 
ROW 3 -0.45  0.37  1.00 -0.07 -0.55 
ROW 4  0.00  0.00 -0.07  1.00  0.00 
ROW 5  0.96  0.26 -0.55  0.00  1.00 

0.1

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 9.7. A WinSAAM model reflecting the consequences of an attempt to estimate the basic 
parameters of the model of Figure 9.2 based on a) the experiment on the system shown in Figure 9.2, and 
b) additional information available regarding one of the basic parameters, k01, of the system. Note that in 
the syntax of WinSAAM kij =L(I,J).
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Applying the Laplace transform in customary fashion leads to: 
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Replacing X2 with our observation variable Y as defined above we have:
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Now, if V2 is unknown (which according to Godfrey (4) may often be the case) the 
model is unidentifiable. If V2 is known then we have three observational parameters 
and three basic parameters needing to be determined and hence the model is globally 
identified. But in solving for k01 and k12 we encounter a quadratic equation possibly 
yielding two feasible solutions for the parameters … feasible in the sense that both 
solutions produce positive (i.e. physically realizable) values for k12 and k01 (k21 = φ1V2). 
Under such circumstances we say that the model is locally identifiable.
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Accuracy
Concordance Correlation Coefficient. Evaluation between two or more identities 
(i.e. raters, graders, observers, methods, or observed versus model-predicted values) 
to quantify agreement of responses is important in research. When measurements 
are categorical variables, Cohen’s (16, 17) kappa statistic is a well-known approach 
to appropriately assess their agreement. However, this technique is not adequate for 
continuous variables.
 Krippendorff (18) has initially introduced the idea of agreement of continuous 
variables obtained by two methods and had proposed an equation similar to that one 
shown in Equation 7. Later, Lin (4) expanded Krippendorff’s (18) accomplishment and 
developed an index that assesses the correlation between two variables assuming that 
their linear relationship would have a slope of unity (45o line) and would pass through 
the origin (concordance line). This index is commonly known as the concordance 
correlation coefficient (CCC) and it is based on precision and accuracy measurements. 
Similarly, the classical Pearson’s correlation coefficient measures the correlation 
between two variables, but fails to detect any departure from the 45o line.
 Equation 5 shows the overall format to compute the estimate of the CCC (ρc). 
The numerator is the expected squared perpendicular deviation from the concordance 
line whereas the denominator is the expected squared perpendicular deviation from the 
concordance line when Y and X are uncorrelated, which means the correlation between 
Y and X is zero (4).

   
ρ

σ σ µ µ
c

Y X Y X

Y X
= −

−( )





+ + −( )
1

2

2 2 2

Ε

   (5)
 The expected squared perpendicular deviation from the concordance line is 
shown in Equation 6. Therefore, if σYX = 0 (no correlation between Y and X), the 
second term of Equation 5 becomes 1, hence the ρc = 0 (no concordance).

  
Ε Y X Y X Y X YX−( )



 = −( ) + + −( )2 2 2 2 2µ µ σ σ σ

  (6)
Substituting Equation 6 into Equation 5 yields Equation 7.
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c
YX
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2
2 2 2

    (7)
 Furthermore, the ρc can be easily computed using the moment statistics (standard 
deviation and means) of Y and X (4) as shown in Equation 8. The Cb estimate (0 < Cb 
≤ 1) is a bias correction factor that measures how far the best-fit line deviates from 
the concordance line (accuracy). Therefore, if Cb = 1, “perfect” accuracy, no deviation 
from the concordance line occurs; however, variation around the line is still possible 
and the Person’s correlation coefficient will be lower than 1.
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Where ρc is the concordance correlation coefficient estimate, ρ is the Person’s correlation 
coefficient (precision estimate), Cb is the accuracy estimate, σY and σX are the standard 
deviation of Y and X variables, and µY and µX are the means of Y and X variables.
 The “perfect” accuracy is only possible when some assumptions are met and 
the characteristics of the CCC as described by Lin (4) are observed.

i. –1 ≤ –| ρ | ≤ ρc ≤ | ρ | ≤ 1
ii. ρc = 0 if and only if ρ = 0
iii. ρc = ρ if and only if σY = σX and µY = µX

iv. ρc = ±1 if and only if
a. (µY – µX)2 + (σY – σX)2 + 2σYσX(1 ± ρ) = 0, or
b. ρ= ±1, σY = σX, and µY = µX, or
c. each pair of data is in perfect or reversed agreement.

 Lin (4, 19) suggested the inverse hyperbolic tangent transformation would 
improve the normal approximation of the distribution of the CCC. The author was 
able to show that transformed CCC is robust for uniform (short-tailed symmetric) and 
Poisson (long-tail, asymmetric to the right) distributions even when sample size was 
10.

Limitations of the Concordance Correlation Coefficient. Several critical limitations to 
the CCC technique have been discussed (20). Deyo et al. (21) have shown than if 
the variance of the difference between X and Y is zero or a large number of samples 
are used, the CCC is similar to an intraclass correlation coefficient (ICC), suggesting 
that for large sample size no difference would be detected between ICC and CCC. 
Müller and Buttner (22) and Atkinson and Nevill (23) indicated that CCC and ICC 
behave quite similarly, but CCC does not fulfill the definition of ICC. These authors 
discouraged the use of CCC because it has the same problems as previous correlation 
methods, which are highly sensitive to sample heterogeneity. Nickerson (24) stated that 
Lin’s (4) CCC might have no clear advantages over the existing ICC as a way to assess 
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the reproducibility of measurements, suggesting that CCC is a special case of the ICC 
defined as a two-way analysis of variance.
 Further analysis of Carrasco and Jover (25) demonstrated that at the parameter 
level, the CCC is equal to the ICC when observers (i.e. Y and X) are considered fixed 
effects (Equation 9). However, at the estimator level, σε

2 n  should be added to the σ β
2  

calculation (25). As sample size increases and/or the magnitude of the error variance 
(σε

2 ) decreases, this adjustment is negligible. These authors recommended that 
mixed models using variance components can be used successfully to compute CCC. 
Additionally, they suggested that more than two observers can be added to the model in 
contrast to using Lin’s (4) moment-statistics approach.
 Liao and Lewis (20) expanded the discussions about the limitations of the Lin’s 
(4) CCC calculation. Based on the characteristics of the CCC (4), when E(x) = E(y) and 
Var(x) = Var(y), Cb will always be one. Therefore, because Lin’s (4) CCC calculation 
does not include the coefficient of correlation in the calculation of accuracy, the accuracy 
will always be the same no matter how the two measurements are correlated, so long as 
they have the same mean and variance.
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 Based on this limitation, Liao (26) proposed a modification to the original 
CCC calculation in which instead of using the squared perpendicular distance between 
any paired observations, the expected square value for an area formed by two paired 
observations is used. Thus, two points (i.e. two paired observations) are used to 
determine both the regression line and the distance to the line of identity (26). Liao’s 
(26) CCC is more conservative than Lin’s (4) CCC. This disagreement is more likely 
when variances are not similar.
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A Generalized Concordance Correlation Coefficient. Similar to Liao’s (26) discussions, 
King and Chinchilli (27) identified situations in which the CCC is not adequate. These 
authors indicated that when the data contains outliers or it is a heavy-tailed distribution, 
the Lin’s (4) CCC may not give accurate assessment of agreement that may exist in 
the majority of the data. Therefore, a generalized concordance correlation coefficient 
(GCCC) was proposed to offset this limitation. King and Chinchilli (27) proposed 
alternative distance functions to the original squared distance in order to construct 
robust versions of the CCC.
 King and Chinchilli (27) assumed a g(·) distance function defined on the real 
line which would satisfy the following properties: (i) g(0) = 0, (ii) g(z) is an even 
function, i.e. g(-z) = g(z) for all z, and (iii) g(z) is a non-decreasing function of z for all 
z ≥ 0. Four distance functions were proposed (27): (i) squared difference, (ii) absolute 
difference, (iii) winsorized squared difference, and (iv) Huber’s difference (Equation 
10).
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Comparison of Coefficients of Agreement. Several simulations were conducted using 
the Monte Carlo technique to compare important correlation coefficients.

First Evaluation. In the first evaluation, 1,000 simulations were conducted assuming 
normal distribution for Y and X, three theoretical correlations (r = 0.50, 0.70, and 0.90) 
between Y and X, two sample sizes (n = 50 and 100), and means and variances of X 
and Y varied as shown in Table 9.2.
 In general, the absolute difference (Equation 10.ii) (27) was smaller than any other 
agreement coefficient (Table 9.2) regardless the Pearson’s correlation coefficient and 
sample size. The Lin’s (4), Liao’s (26), and squared difference of King and Chinchilli’s 
(27) CCC were nearly identical regardless the Pearson’s correlation coefficient and 
sample size; however, they increased as Pearson’s correlation coefficient increased.
 As discussed by King and Chinchilli (27), as sample size increases there is 
a tendency to increase the mean of the CCC estimates and to decrease the standard 



Table 9.2. Empirical simulations of 1,000 runs to compare several coefficients of agreement (mean ± SD) 
between Y and X assuming linearity, normal distribution, three levels of correlation (0.50, 0.70, and 0.90), and 
two sample sizes (50, 100, and 200), varying the mean (100 and 105) and variance (100 and 130) of the Y data.

Ref.1 r = 0.50 r = 0.70 r = 0.90
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Case 1. mean of X=100, mean of Y=100, variance of X=100, variance of Y=100
1 0.49 0.49 0.49 0.68 0.69 0.70 0.89 0.90 0.90
2 0.49 0.49 0.49 0.68 0.69 0.70 0.89 0.90 0.90
3 0.49 0.49 0.49 0.68 0.69 0.70 0.89 0.90 0.90
4 0.49 0.29 0.29 0.44 0.45 0.45 0.67 0.68 0.68
5 0.49 0.49 0.50 0.69 0.70 0.70 0.90 0.90 0.90
6 0.33 0.33 0.33 0.48 0.49 0.49 0.71 0.71 0.71
7 0.49 0.49 0.50 0.68 0.70 0.70 0.89 0.90 0.90

Case 2. mean of X=100, mean of Y=100, variance of X=100, variance of Y=130
1 0.47 0.49 0.49 0.68 0.68 0.69 0.88 0.89 0.89
2 0.47 0.48 0.49 0.67 0.68 0.69 0.88 0.88 0.88
3 0.47 0.49 0.49 0.68 0.68 0.69 0.88 0.89 0.89
4 0.27 0.28 0.29 0.43 0.44 0.44 0.66 0.67 0.67
5 0.49 0.49 0.50 0.69 0.69 0.70 0.90 0.90 0.90
6 0.33 0.33 0.33 0.49 0.49 0.49 0.71 0.71 0.71
7 0.48 0.49 0.50 0.68 0.69 0.70 0.89 0.89 0.89

Case 3. mean of X=100, mean of Y=105, variance of X=100, variance of Y=100
1 0.43 0.44 0.44 0.61 0.61 0.62 0.79 0.80 0.80
2 0.44 0.46 0.46 0.62 0.63 0.64 0.80 0.80 0.81
3 0.43 0.44 0.44 0.61 0.61 0.62 0.79 0.79 0.80
4 0.24 0.25 0.25 0.37 0.37 0.38 0.52 0.53 0.53
5 0.49 0.50 0.50 0.69 0.69 0.70 0.89 0.90 0.90
6 0.33 0.33 0.33 0.49 0.49 0.49 0.71 0.71 0.71
7 0.43 0.45 0.44 0.61 0.62 0.62 0.79 0.80 0.80

Case 4. mean of X=100, mean of Y=100, variance of X=100, variance of Y=130
1 0.43 0.44 0.44 0.62 0.62 0.62 0.79 0.80 0.80
2 0.44 0.46 0.46 0.62 0.63 0.63 0.80 0.80 0.80
3 0.43 0.44 0.44 0.61 0.62 0.62 0.79 0.80 0.80
4 0.24 0.25 0.25 0.38 0.38 0.38 0.53 0.54 0.54
5 0.49 0.50 0.50 0.69 0.70 0.70 0.90 0.90 0.90
6 0.33 0.33 0.33 0.49 0.49 0.49 0.71 0.71 0.71
7 0.44 0.45 0.45 0.62 0.63 0.63 0.80 0.81 0.81

1 1 = Lin (4), 2 = Liao (26), 3 = King and Chinchilli (27) squared difference, 4 = King and Chinchilli 
(27) absolute difference, 5 = Pearson’s correlation coefficient, 6 = Kendal’s τ (36), 7 = King and 
Chinchilli (27) Huber’s function.
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deviation. Most of the coefficients of agreement decreased as the variance of Y increased 
(Case 1 x Case 2, Table 9.2).

Second Evaluation. In the second evaluation we tested the effect of non-constant patterns 
for the variances of the Y data. The variances were exponentially or quadratically 
related to the X variable as shown in Equation 11. Additionally, three scenarios were 
evaluated: 1,000 YX points and 10 simulations, 500 XY points and 20 simulations, and 
100 XY points and 100 simulations.
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Table 9.3. Empirical simulations (1,000, 500, and 100) assuming different sample sizes (Trials: 10, 20, 
and 100, respectively) to compare several coefficients of agreement (mean ± 100×SE) between Y and 
X assuming two relationships between Y and X (exponential and quadratic).

Ref.1 Number simulations, trials and relationships2

S=100, T=100 S=500, T=20 S=1000, T=10
Exp Quad Exp Quad Exp Quad

1 0.257 0.364 0.256 0.378 0.262 0.369
2 0.229 0.336 0.231 0.349 0.236 0.344
3 0.257 0.364 0.256 0.378 0.262 0.369
4 0.164 0.223 0.166 0.234 0.164 0.225
5 0.370 0.449 0.366 0.470 0.373 0.453
6 0.262 0.319 0.264 0.336 0.259 0.322
7 0.271 0.377 0.269 0.391 0.276 0.383
8 0.103 0.192 0.10 0.197 0.103 0.196
9 0.371 0.434 0.374 0.459 0.369 0.442

1 1 = Lin (4), 2 = Liao (26), 3 = King and Chinchilli (27) squared difference, 4 = King and Chinchilli (27) absolute 
difference, 5 = Pearson’s correlation coefficient, 6 = Kendal’s τ (36), 7 = King and Chinchilli (27) Huber’s 
function, 8 = King and Chinchilli (27) winsorized, and 9 = Spearman’s correlation coefficient.

2 S = simulations, T = trials, Exp = exponential, and Quad = quadratic.
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 Table 9.3 has the results of the simulations. The concordance values were different 
depending on the technique used. In general, the King and Chinchilli’s (5) winsorized 
and absolute methods had the lowest values regardless the relationship between Y and 
X (exponential or quadratic). In general, the simulations with the relationship between 
Y and X had greater concordance values than the exponential one. The CCC values for 
exponential and quadratic relationships between Y and X were 0.257 and 0.364 (Table 
9.3), respectively. Assuming ε2 ~ N (0, 1), the Lin’s (4) CCC value would be around 
0.90.
 These simulations indicated that changing the relationship between Y and X 
affected all these methods to compute concordance among two raters (Y and X). The 
King and Chinchilli’s (5) winsorized values were almost three times lower than the 
Lin’s (4) CCC.

Third Evaluation. In the third evaluation we generated 1,000 XY points using Equation 
11 and assuming ε2 ~ N (0, 1). Then, we step-wisely removed XY points surrounding 
the mean of X using regressions perpendicular to the Y and X linear regression. We 
used the following intervals ±5, ±10, ±15, ±20, ±25, ±30, and ±35% around the mean 
of X for the evaluation. Results of some correlation coefficients are shown in Figure 
9.8.
 Our simulations indicated that as the depletion of XY points increased, 
Spearman’s and Kendall’s τ coefficients decreased. However, all other CCC indicators 
increased likely because the Person’s correlation coefficient increased consistently, 
suggesting that clusters of points may not yield the correct concordance if data is 
missing. Conversely, the accuracy as measured by the Cb estimates (4) was similar, 
corroborating with the change in CCC due to the changes in the Peason’s correlation 
coefficient.
 In summary, the agreement coefficients evaluated performed well under the 
normal distribution assumption. Departures from the normal distribution will likely 
decrease the estimates of the concordance between Y and X. In contrary, missing of 
data is likely to increase the concordance between Y and X and it is dependent upon 
the extension of the depletion of points. This is likely because high leverage points or 
clouds of points increase in the Pearson correlation coefficient; therefore, increasing 
the CCC so long the accuracy (Cb) does not change. When using the CCC technique 
for evaluation, it is necessary to ensure the data does not departure from the normal 
distribution or the data fit in one of the special cases as discussed by Lin (4) and 
others.

Example of Application. The data from Wilkins et al. (28) was used to compare the 
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coefficients of agreement discussed above. Figure 9.9 depicts the relationship between 
carotid versus pulmonary artery impedance-based (Figure 9.9A) and temperature-based 
(Figure 9.9B) cardiac output; the distribution of the carotid and the pulmonary output 
is log-logistic.
 The concordance analysis of Wilkins et al. (28) database (Table 9.4) indicated 
a greater concordance between carotid and pulmonary artery using the same method 
(either impedance or temperature) to assess cardiac output. However, the relationship 
between the same site (either carotid or pulmonary) using different methods (impedance 
versus temperature) resulted in a lower concordance coefficient, suggesting different 
methods are not likely to measure the same quantity. These findings were confirmed by 
the accuracy measurement proposed by Lin (4), which measures the perfect agreement 
(ranges from 0 to 1).

Figure 9.8. Relationship between correlation coefficients and percentage of depletion of point from the 
mean of X, using a synthetic database with 1,000 XY data points.
 

 Carrasco and Jover (25) suggested that CCC can be estimated by variance 
components through a mixed effects model assuming a fixed effects for observers 
(i.e. Y and X). Interestingly, more than two observers (variables) can be analyzed 
simultaneously.
 The CCC values using variance components and a mixed model were 0.85 ± 
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0.0259 (CAI x PAI), 0.846 ± 0.0266 (CAT x PAT), 0.824 ± 0.0304 (PAI x PAT), and 
0.679 ± 0.05 (CAI x CAT). In general, these values were greater than those shown 
in Table 9.4, but tended to assess the correlation similarly. That means, CAI x PAI 
and CAT x PAT had higher concordance than PAI x PAT and CAI x CAT. The CCC 
technique may not be suitable for repeated measures of different subjects because it 
does not consider variation amongst subjects.
 The overall CCC value for all variables (CAI, PAI, CAT, and PAT) using 
Carrasco and Jover (25) technique indicated a relatively good concordance amongst 
these variables to measure cardiac output (0.779 ± 0.0286).

Table 9.4. Concordance correlation coefficients of four methods of measurement of cardiac output: 
carotid artery impedance-based (CAI), pulmonary artery impedance-based (PAI), carotid artery tem-
perature-based (CAT), and pulmonary artery temperature-based (PAT)

Ref.1 CAI x PAT CAT x PAT PAI x PAT CAI x CAT
N 95 99 91 102
1 0.85 ± 0.028 0.78 ± 0.035 0.70 ± 0.040 0.47 ± 0.050
2 0.85 ± 0.123 0.77 ± 0.081 0.69 ± 0.055 0.48 ± 0.051
3 0.85 ± 0.029 0.78 ± 0.029 0.71 ± 0.028 0.47 ± 0.036
4 0.78 ± 0.049 0.62 ± 0.050 0.64 ± 0.048 0.40 ± 0.043
5 0.87 ± 0.029 0.80 ± 0.029 0.74 ± 0.028 0.51 ± 0.036
6 0.99 0.90 0.81 0.64

1 1 = Lin (1), 2 = Liao (26), 3 = King and Chinchilli (27) squared difference, 4 = King and 
Chinchilli (27) winsorized square difference, 5 = King and Chinchilli (27) Huber’s function, 
and 6 = Lin’s (1) accuracy measurement (Cb).

Conclusion
In the identifiability section of our chapter we have introduced some of the key terms 
and methodologies surrounding the application of the Laplace Transform method 
for identifiability analysis. By applying this method to an array of modest size 
problems we hope the reader has gained a feeling for the concepts of identifiability 
and unidentifiable models per se. We have presented examples specifically illustrating 
aspects of global identifiability, the impact of the experiment on system identifiability, 
interval identifiability (or parameter range identifiability), local identifiability, and how 
statistical constraints and, say, allometric information can help with identifiability.
 The Laplace Transform method for identifiability analysis is not the only 
approach available, though, it is, by all accounts the most straight-forward. Two other 
methods are the Taylor Series (29) approach and the method of Normal Modes (30). 
Neither of these is more direct than the Laplace Transform method but the former 
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Figure 9.9. Relationship between carotid versus pulmonary artery impedance-based (A) and temperature-
based (B) cardiac output. Symbols are subjects in the study. Data from Wilkins et al. (28).
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does indeed offer an approach to establishing identifiability of nonlinear systems (31). 
Unfortunately space limitations preclude expansion of this material into nonlinear 
systems.
 It is interesting to note that the strongest proponents of identifiability are 
engineers, or mathematicians … indeed, there seem to be neither statisticians, nor 
biologists amongst the foundation group who developed and promoted identifiability 
analysis. When we reflect on the terms and tools of identifiability analysis this situation 
makes sense. It is somewhat predictable too, because whereas biological modeling from 
the scientific perspective is steeped in the notions of scientific hypotheses and statistical 
uncertainty, from the engineering and physical perspectives systems theory, and the 
concepts of controllability and reachability (32) are pervasive. Indeed engineering-
orientated investigators will more than likely follow the paths of Kalman (32) and 
Bellman (33), than those of Zilversmit et al. (34). We insist that the reader, regardless 
of his/her background be aware of all styles of contributions to biological modeling 
… each offers help in regard to a pursuit in the undeniable background of traps and 
turns.
 So with all its complexity (15) does identifiability analysis fall within the province 
of the ‘routine investigator. Does it offer tools and techniques to facilitate the modeling 
process and protect us from the difficulties and false inferences a wrong turn can lead 
us. On balance, there is a lot to be learned from this area, not the least of which is to 
allow the fabrication of a dialog medium between classes of investigators (biologists, 
biomathematicians, bioengineers, biophysicists, biostatisticians, and biochemists). It is 
clear that Cobelli (35) himself must have grappled with these issues as he dedicated so 
much time and effort towards the refinement of highly complex, though user-friendly 
computer software for the automated identifiability of systems.
 The last point is that to simply summarize the connection between the 
experimental model and the biological model with its basic parameters in a fashion 
where a kinetic study yielding n experimental ‘slopes’ describes a model with n 
exchanging pools or compartments and 2×n-1 rate parameters does the subtlety of 
kinetic investigation a disservice. What you get depends on what you do and how hard 
you look.
 In the accuracy section of our chapter we presented several techniques currently 
being used to assess concordance between two or more variables or instruments using 
continuous data. The accuracy of an approach to characterize an aspect of a system is 
the relative agreement between the results based on the approach compared with the 
results based on a “gold” standard method. Concordance is a much more profound issue 
than merely correlation or regression because it needs to embrace the observation range 
over which the two series of measurements exist, it needs to penalize a quantification 
of agreement for not predicting the origin as a critical point, and also for not engaging 
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a line of perfect agreement (slope unity) into its consideration. We compared several 
methods used to compute the concordance correlation coefficient. Unfortunately, these 
coefficients had different behaviors under different structures of error variance (non-
normal distribution), depletion of data points, and sample size. The use of CCC has to 
be performed after meticulous analysis of the assumptions underlying the technique, 
including normality, relationship between means and variances of Y and X variates, 
and range of the data. The generalized CCC technique using different methods to assess 
the distance between Y and X might be less prone to non-normality departures. We 
suggest the use of at least three techniques to calculate CCC when comparing different 
models or assessing calibration of equipments.
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