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Preface

These notes provide a quick introduction to system dynamics methods using
business examples. The methods of system dynamics are general, but their im-
plementation requires that you use speci® c computer software. A number of
di氀 erent software packages are available to implement system dynamics, and
the Vensim modeling package is used in these notes. This package was selected
because i) it supports a compact, but informative, graphical notation, ii) the
Vensim equation notation is compact and complete, iii) Vensim provides power-
ful tools for quickly constructing and analyzing process models, and iv) a version
is available free for instructional use over the World Wide Web at Uniform Re-
source Locator http://world.std.com/ၰvensim. A quick reference and tutorial
for Vensim can be downloaded from my system dynamics home page at Uniform
Resource Locator http://www.public.asu.edu/ၰkirkwood/sysdyn/SDRes.htm.

If you obtained this document in electronic form and wish to print it, please
note that it is formatted for two-sided printing. The blank pages at the end
of some chapters are intentional so that new chapters will start on right-hand
pages.

Special thanks to Robert Eberlein for many helpful comments on drafts of
these notes.

Please write, phone, or e-mail me if you have questions or corrections.

Craig W. Kirkwood (602-965-6354; e-mail craig.kirkwood@asu.edu)
Department of Management
Arizona State University
Tempe, AZ 85287-4006
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SystemBehaviorand
CausalLoopDiagrams

Human beings are quick problem solvers. From an evolutionary standpoint,
this makes sense|if a sabertooth tiger is bounding toward you, you need to
quickly decide on a course of action, or you won't be around for long. Thus,
quick problem solvers were the ones who survived. We quickly determine a cause
for any event that we think is a problem. Usually we conclude that the cause is
another event. For example, if sales are poor (the event that is a problem), then
we may conclude that this is because the sales force is insu¯ ciently motivated
(the event that is the cause of the problem).

This approach works well for simple problems, but it works less well as the
problems get more complex, for example in addressing management problems
which are cross-functional or strategic. General Motors illustrates the issue. For
over half a century, GM dominated the automotive industry. GM's di¯ culties
did not come from a lightning attack by Japanese auto manufacturers. GM had
a couple of decades to adapt, but today it is still attempting to ® nd a way to
its former dominance, more than three decades after the start of Japanese auto-
mobile importation. During this period, many of GM's employees and managers
have turned over, but the company still has di¯ culty adjusting. There seems to
be something about the way that GM is put together that makes its behavior
hard to change.

1.1 Systems Thinking

The methods of systems thinking provide us with tools for better understand-
ing these di¯ cult management problems. The methods have been used for over
thirty years (Forrester 1961) and are now well established. However, these ap-
proaches require a shift in the way we think about the performance of an orga-
nization. In particular, they require that we move away from looking at isolated
events and their causes (usually assumed to be some other events), and start to
look at the organization as a system made up of interacting parts.
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Figure 1.1 Looking for high leverage

We use the term system to mean an interdependent group of items forming
a uni® ed pattern. Since our interest here is in business processes, we will focus
on systems of people and technology intended to design, market, produce, and
distribute products or services. Almost everything that goes on in business is
part of one or more systems. As noted above, when we face a management
problem we tend to assume that some external event caused it. With a systems
approach, we take an alternative viewpoint|namely that the internal structure
of the system is often more important than external events in generating the
problem.

This is illustrated by the diagram in Figure 1.1.1 Many people try to explain
business performance by showing how one set of events causes another or, when
they study a problem in depth, by showing how a particular set of events is
part of a longer term pattern of behavior. The di¯ culty with this \events causes
events" orientation is that it doesn't lead to very powerful ways to alter the
undesirable performance. This is because you can always ® nd yet another event
that caused the one that you thought was the cause. For example, if a new
product is not selling (the event that is a problem), then you may conclude that
this if because the sales force is not pushing it (the event that is the cause of
the problem). However, you can then ask why the sales force is not pushing
it (another problem!). You might then conclude that this is because they are
overworked (the cause of your new problem). But you can then look for the
cause of this condition. You can continue this process almost forever, and thus
it is di¯ cult to determine what to do to improve performance.

1 Figure 1.1 and this discussion of it are based on class notes by John Sterman of the MIT Sloan
School of Management.
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If you shift from this event orientation to focusing on the internal system
structure, you improve your possibility of improving business performance. This
is because system structure is often the underlying source of the di¯ culty. Un-
less you correct system structure de® ciencies, it is likely that the problem will
resurface, or be replaced by an even more di¯ cult problem.

1.2 Patterns of Behavior

To start to consider system structure, you ® rst generalize from the speci® c events
associated with your problem to considering patterns of behavior that character-
ize the situation. Usually this requires that you investigate how one or more
variables of interest change over time. (In a business setting, variables of in-
terest might be such things as cost, sales, revenue, pro® t, market share, and so
forth.) That is, what patterns of behavior do these variables display. The systems
approach gains much of its power as a problem solving method from the fact that
similar patterns of behavior show up in a variety of di°erent situations, and the
underlying system structures that cause these characteristic patterns are known.
Thus, once you have identi® ed a pattern of behavior that is a problem, you can
look for the system structure that is know to cause that pattern. By ® nding
and modifying this system structure, you have the possibility of permanently
eliminating the problem pattern of behavior.

The four patterns of behavior shown in Figure 1.2 often show up, either in-
dividually or in combinations, in systems. In this ® gure, \Performance" refers
to some variable of interest. This is often a measure of ® nancial or operational
e°ectiveness or e¯ ciency. In this section, we summarize the characteristics of
these patterns. In later sections, we examine the types of system structures
which generate these patterns.1

With exponential growth (Figure 1.2a), an initial quantity of something
starts to grow, and the rate of growth increases. The term \exponential growth"
comes from a mathematical model for this increasing growth process where the
growth follows a particular functional form called the exponential. In business
processes, the growth may not follow this form exactly, but the basic idea of
accelerating growth holds. This behavior is what we would like to see for sales
of a new product, although more often sales follow the s-shaped curve discussed
below.

With goal-seeking behavior (Figure 1.2b), the quantity of interest starts
either above or below a goal level and over time moves toward the goal. Figure
1.2b shows two possible cases, one where the initial value of the quantity is above
the goal, and one where the initial value is below the goal.

With s-shaped growth (Figure 1.2c), initial exponential growth is followed
by goal-seeking behavior which results in the variable leveling o°.

1 The following discussion draws on Senge (1990), Senge et al (1994), and notes from
David Kreutzer and John Sterman.
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With oscillation (Figure 1.2d), the quantity of interest �uctuates around
some level. Note that oscillation initially appears to be exponential growth, and
then it appears to be s-shaped growth before reversing direction.

Common combinations of these four patterns include

¡ Exponential growth combined with oscillation. With this pattern, the general
trend is upward, but there can be declining portions, also. If the magnitude
of the oscillations is relatively small, then growth may plateau, rather than
actually decline, before it continues upward.

¡ Goal-seeking behavior combined with an oscillation whose amplitude grad-
ually declines over time. With this behavior, the quantity of interest will
overshoot the goal on ® rst one side and then the other. The amplitude of
these overshoots declines until the quantity ® nally stabilizes at the goal.

¡ S-shaped growth combined with an oscillation whose amplitude gradually de-
clines over time.

1.3 Feedback and Causal Loop Diagrams

To better understand the system structures which cause the patterns of behavior
discussed in the preceding section, we introduce a notation for representing sys-
tem structures. The usefulness of a graphical notation for representing system
structure is illustrated by the diagram in Figure 1.3 which is adapted from a
® gure in Richardson and Pugh (1981). This shows the relationships among the
elements of a production sector within a company. In this diagram, the short
descriptive phrases represent the elements which make up the sector, and the
arrows represent the causal in�uences between these elements. For example, ex-
amining the left hand side of the diagram, we see that \Production" is directly
in�uenced by \Workforce (production capacity)" and \Productivity." In turn,
\Production" in�uences \Receipt into inventory."

This diagram presents relationships that are di¯ cult to verbally describe be-
cause normal language presents interrelations in linear cause-and-e°ect chains,
while the diagram shows that in the actual system there are circular chains of
cause-and-e°ect. Consider, for example, the \Inventory" element in the upper
left-hand corner of the diagram. We see from the diagram that \Inventory" in-
�uences \Availability of inventory," which in turn in�uences \Shipments." To
this point in the analysis, there has been a linear chain of cause and e°ect, but
continuing in the diagram, we see that \Shipments" in�uence \Inventory." That
is, the chain of causes and e°ects forms a closed loop, with \Inventory" in�uenc-
ing itself indirectly through the other elements in the loop. The diagram shows
this more easily than a verbal description.

When an element of a system indirectly in�uences itself in the way discussed
for Inventory in the preceding paragraph, the portion of the system involved is
called a feedback loop or a causal loop. [Feedback is de® ned as the transmis-
sion and return of information (Richardson and Pugh 1981).] More formally, a
feedback loop is a closed sequence of causes and e� ects, that is, a closed path of
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action and information (Richardson and Pugh 1981). The reason for emphasiz-
ing feedback is that it is often necessary to consider feedback within management
systems to understand what is causing the patterns of behavior discussed in the
preceding section and shown in Figure 1.2. That is, the causes of an observed
pattern of behavior are often found within the feedback structures for a man-
agement system.

To complete our presentation of terminology for describing system structure,
note that a linear chain of causes and e°ects which does not close back on itself
is called an open loop. An analysis of causes and e°ects which does not take into
account feedback loops is sometimes called open loop thinking, and this term
usually has a pejorative connotation|it indicates thinking that is not taking
the full range of impacts of a proposed action into account.

A map of the feedback structure of a management system, such as that shown
in Figure 1.3, is a starting point for analyzing what is causing a particular pattern
of behavior. However, additional information aids with a more complete analysis.
Figure 1.4 de® nes notation for this additional information. This ® gure is an
annotated causal loop diagram for a simple process, ® lling a glass of water. This
diagram includes elements and arrows (which are called causal links) linking
these elements together in the same manner as shown in Figure 1.3, but it also
includes a sign (either + or ⨂) on each link. These signs have the following
meanings:

1 A causal link from one element A to another element B is positive (that is,
+) if either (a) A adds to B or (b) a change in A produces a change in B in
the same direction.

2 A causal link from one element A to another element B is negative (that is,
⨂) if either (a) A subtracts from B or (b) a change in A produces a change
in B in the opposite direction.

This notation is illustrated by the causal loop diagram in Figure 1.4. Start
from the element \Faucet Position" at the top of the diagram. If the faucet
position is increased (that is, the faucet is opened further) then the \Water Flow"
increases. Therefore, the sign on the link from \Faucet Position" to \Water
Flow" is positive. Similarly, if the \Water Flow" increases, then the \Water
Level" in the glass will increase. Therefore, the sign on the link between these
two elements is positive.

The next element along the chain of causal in�uences is the \Gap," which
is the di°erence between the \Desired Water Level" and the (actual) \Water
Level." (That is, Gap = Desired Water Level ⨂Water Level.) From this de® ni-
tion, it follows that an increase in \Water Level" decreases \Gap," and therefore
the sign on the link between these two elements is negative. Finally, to close
the causal loop back to \Faucet Position," a greater value for \Gap" presumably
leads to an increase in \Faucet Position" (as you attempt to ® ll the glass) and
therefore the sign on the link between these two elements is positive. There is
one additional link in this diagram, from \Desired Water Level" to \Gap." From
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the de® nition of \Gap" given above, the in�uence is in the same direction along
this link, and therefore the sign on the link is positive.

In addition to the signs on each link, a complete loop also is given a sign. The
sign for a particular loop is determined by counting the number of minus (⨂)
signs on all the links that make up the loop. Speci® cally,

1 A feedback loop is called positive, indicated by a + sign in parentheses, if it
contains an even number of negative causal links.

2 A feedback loop is called negative, indicated by a ⨂ sign in parentheses, if it
contains an odd number of negative causal links.

Thus, the sign of a loop is the algebraic product of the signs of its links. Often
a small looping arrow is drawn around the feedback loop sign to more clearly
indicate that the sign refers to the loop, as is done in Figure 1.4. Note that
in this diagram there is a single feedback (causal) loop, and that this loop has
one negative sign on its links. Since one is an odd number, the entire loop is
negative.



1.4 SYSTEM STRUCTURE AND PATTERNS OF BEHAVIOR 9

Time

Pattern of Behavior

Bank
Balance

System Structure

Interest
Earned

(+)

B
an

k 
B

al
an

ce

+

+

Figure 1.5 Positive (reinforcing) feedback loop: Growth of bank balance

An alternative notation is used in some presentations of causal loop diagrams.
With this alternate notation, a lower case s is used instead of a + on a link, and
a lower case o is used instead of a ⨂. The s stands for \same," and the o
stands for \opposite," indicating that the variables at the two ends of the link
move in either the same direction (s) or opposite directions (o). For the loops, a
capital R is used instead of (+), and a capital B is used instead of (⨂). The R
stands of \reinforcing," and the B stands for \balancing." The reason for using
these speci® c terms will become clearer as we discuss the patterns of behavior
associated with di°erent system structures in the next section.

1.4 System Structure and Patterns of Behavior

This section presents simple structures which lead to the typical patterns of be-
havior shown earlier in Figure 1.2. While the structures of most management
systems are more complicated than those shown here, these structures are build-
ing blocks from which more complex models can be constructed.

Positive (Reinforcing) Feedback Loop

A positive, or reinforcing, feedback loop reinforces change with even more
change. This can lead to rapid growth at an ever-increasing rate. This type
of growth pattern is often referred to as exponential growth. Note that in the
early stages of the growth, it seems to be slow, but then it speeds up. Thus, the
nature of the growth in a management system that has a positive feedback loop
can be deceptive. If you are in the early stages of an exponential growth process,
something that is going to be a major problem can seem minor because it is
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Figure 1.6 Negative (balancing) feedback loop: Regulating an elective blanket

growing slowly. By the time the growth speeds up, it may be too late to solve
whatever problem this growth is creating. Examples that some people believe
® t this category include pollution and population growth. Figure 1.5 shows a
well know example of a positive feedback loop: Growth of a bank balance when
interest is left to accumulate.

Sometimes positive feedback loops are called vicious or virtuous cycles, de-
pending on the nature of the change that is occurring. Other terms used to
describe this type of behavior include bandwagon e°ects or snowballing.

Negative (Balancing) Feedback Loop

A negative, or balancing, feedback loop seeks a goal. If the current level of the
variable of interest is above the goal, then the loop structure pushes its value
down, while if the current level is below the goal, the loop structure pushes its
value up. Many management processes contain negative feedback loops which
provide useful stability, but which can also resist needed changes. In the face of
an external environment which dictates that an organization needs to change, it
continues on with similar behavior. These types of feedback loops are so powerful
in some organizations that the organizations will go out of business rather than
change. Figure 1.6 shows a negative feedback loop diagram for the regulation of
an electric blanket temperature.
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Figure 1.7 Negative feedback loop with delay: Service quality

Negative Feedback Loop with Delay

A negative feedback loop with a substantial delay can lead to oscillation. The
speci® c behavior depends on the characteristics of the particular loop. In some
cases, the value of a variable continues to oscillate inde® nitely, as shown above.
In other cases, the amplitude of the oscillations will gradually decrease, and
the variable of interest will settle toward a goal. Figure 1.7 illustrates negative
feedback with a delay in the context of service quality. (This example assumes
that there are ® xed resources assigned to service.)

Multi-level production and distribution systems can display this type of be-
havior because of delays in conveying information about the actual customer
demand for a product to the manufacturing facility. Because of these delays,
production continues long after enough product has been manufactured to meet
demand. Then production is cut back far below what is needed to replace items
that are sold while the excess inventory in the system is worked o° . This cycle
can continue inde® nitely, which places signi® cant strains on the management of
the process. For example, there may be a pattern of periodic hiring and layo°s.
There is some evidence that what are viewed as seasonal variations in customer
demand in some industries are actually oscillations caused by delays in negative
feedback loops within the production-distribution system.
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Combination of Positive and Negative Loops

When positive and negative loops are combined, a variety of patterns are possi-
ble. The example above shows a situation where a positive feedback loop leads
to early exponential growth, but then, after a delay, a negative feedback loop
comes to dominate the behavior of the system. This combination results in an
s-shaped pattern because the positive feedback loop leads to initial exponential
growth, and then when the negative feedback loop takes over it leads to goal
seeking behavior. Figure 1.8 illustrates a combination of positive and negative
loops in the context of sales for a new product.
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Most growth processes have limits on their growth. At some point, some
resource limit will stop the growth. As Figure 1.8 illustrates, growth of sales for
a new product will ultimately be slowed by some factor. In this example, the
limiting factor is the lack of additional customers who could use the product.

1.5 Creating Causal Loop Diagrams

To start drawing a causal loop diagram, decide which events are of interest in
developing a better understanding of system structure. For example, perhaps
sales of some key product were lower than expected last month. From these
events, move to showing (perhaps only qualitatively) the pattern of behavior
over time for the quantities of interest. For the sales example, what has been
the pattern of sales over the time frame of interest? Have sales been growing?
Oscillating? S-shaped? Finally, once the pattern of behavior is determined,
use the concepts of positive and negative feedback loops, with their associated
generic patterns of behavior, to begin constructing a causal loop diagram which
will explain the observed pattern of behavior.

The following hints for drawing causal loop diagrams are based on guidelines
by Richardson and Pugh (1981) and Kim (1992):

1 Think of the elements in a causal loop diagram as variables which can go up
or down, but don't worry if you cannot readily think of existing measuring
scales for these variables.

¡ Use nouns or noun phrases to represent the elements, rather than verbs.
That is, the actions in a causal loop diagram are represented by the
links (arrows), and not by the elements. For example, use \cost" and
not \increasing cost" as an element.

¡ Be sure that the de® nition of an element makes it clear which direction
is \up" for the variable. For example, use \tolerance for crime" rather
than \attitude toward crime."

¡ Generally it is clearer if you use an element name for which the positive
sense is preferable. For example, use \Growth" rather than \Contrac-
tion."

¡ Causal links should imply a direction of causation, and not simply a
time sequence. That is, a positive link from element A to element B
does not mean \® rst A occurs and then B occurs." Rather it means,
\when A increases then B increases."

2 As you construct links in your diagram, think about possible unexpected side
e°ects which might occur in addition to the in�uences you are drawing. As
you identify these, decide whether links should be added to represent these
side e°ects.

3 For negative feedback loops, there is a goal. It is usually clearer if this goal
is explicitly shown along with the \gap" that is driving the loop toward the
goal. This is illustrated by the examples in the preceding section on regulating
electric blanket temperature and service quality.
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4 A di°erence between actual and perceived states of a process can often be
important in explaining patterns of behavior. Thus, it may be important to
include causal loop elements for both the actual value of a variable and the
perceived value. In many cases, there is a lag (delay) before the actual state
is perceived. For example, when there is a change in actual product quality,
it usually takes a while before customers perceive this change.

5 There are often di°erences between short term and long term consequences
of actions, and these may need to be distinguished with di°erent loops. For
example, the short term result of taking a mood altering drug may be to feel
better, but the long run result may be addiction and deterioration in health.

6 If a link between two elements needs a lot of explaining, you probably need to
add intermediate elements between the two existing elements that will more
clearly specify what is happening.

7 Keep the diagram as simple as possible, subject to the earlier points. The
purpose of the diagram is not to describe every detail of the management
process, but to show those aspects of the feedback structure which lead to the
observed pattern of behavior.

1.6 References

J. W. Forrester, Industrial Dynamics, The MIT Press, Cambridge, Mas-
sachusetts, 1961.

D. H. Kim, \Toolbox: Guidelines for Drawing Causal Loop Diagrams," The Sys-
tems Thinker, Vol. 3, No. 1, pp. 5{6 (February 1992).

G. P. Richardson and A. L. Pugh III, Introduction to System Dynamics Modeling
with DYNAMO, Productivity Press, Cambridge, Massachusetts, 1981.

P. M. Senge, The Fifth Discipline: The Art and Practice of the Learning Orga-
nization, Doubleday Currency, New York, 1990.

P. M. Senge, C. Roberts, R. B. Ross, B. J. Smith, and A. Kleiner, The Fifth Dis-
cipline Fieldbook: Strategies and Tools for Building a Learning Organization,
Doubleday Currency, New York, 1994.



C H A P T E R 2

AModelingApproach

The issues we will address to improve our understanding of how business pro-
cesses work are illustrated by the causal loop diagram in Figure 2.1a. This
models a simple advertising situation for a durable good. There is a pool of
Potential Customers who are turned into Actual Customers by sales. Potential
Customers and sales are connected in a negative feedback loop with the goal of
driving Potential Customers to zero. If we visualize a typical mass advertising
situation, we would expect that the greater the number of Potential Customers,
the greater the sales, and this is shown in Figure 2.1a by the positive arrow
between Potential Customers and sales. Similarly, greater sales lead to fewer
Potential Customers (since the Potential Customers are converted into Actual
Customers by sales), and hence there is a negative arrow from sales to Potential
Customers. Since there are a odd number of negative links in the feedback loop
between Potential Customers and sales, this is a negative feedback loop.

We obtain from this diagram the (not very profound) insight that eventually
sales must go to zero when the number of Potential Customers reaches zero.
However, this insight by itself is not particularly useful for business manage-
ment purposes because there is no information about the rate at which Potential
Customers will go to zero. It can make a big di± erence for managing the pro-
duction and sales of this product if it will sell well for ten months or ten years
before we run out of Potential Customers! For a simple situation like this, we
could use a spreadsheet to develop a quantitative model to investigate the rate
at which Potential Customers will go to zero, but as the complexity of the sit-
uation increases, this becomes more di° cult. In the remainder of this chapter,
we develop a systematic approach to investigating questions of this type which
can be applied to both simple and complex business processes.
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b. Stock and ¯ow diagram

Figure 2.1 Advertising example

2.1 Stock and Flow Diagrams

Figure 2.1b illustrates a graphical notation that provides some structure for
thinking about the rate at which Potential Customers goes to zero. This notation
consists of three di± erent types of elements: stocks, ¯ows, and information.
As we will see below, it is a remarkable fact that the three elements in this
diagram provide a general way of graphically representing any business process.
Furthermore, this graphical notation can be used as a basis for developing a
quantitative model which can be used to study the characteristics of the process.

This type of diagram is called a stock and � ow diagram. As with a causal
loop diagram, the stock and ¯ow diagram shows relationships among variables
which have the potential to change over time. In the Figure 2.1b stock and ¯ow
diagram, the variables are Potential Customers, sales, and Actual Customers.
Unlike a causal loop diagram, a stock and ¯ow diagram distinguishes between
di± erent types of variables. Figure 2.1b shows two di± erent types of variables,
which are distinguished by di± erent graphical symbols. The variables Potential
Customers and Actual Customers are shown inside rectangles, and this type of
variable is called a stock, level, or accumulation. The variable \sales" is shown
next to a \bow tie" or \butter¯y valve" symbol, and this type of variable is
called a � ow, or rate.

To understand and construct stock and ¯ow diagrams, it is necessary to un-
derstand the di± erence between stocks and ¯ows. However, before considering
this in more detail, it is useful to discuss what we are attempting to do with this
approach to modeling business processes.
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2.2 Generality of the Approach

I noted above that the stock and ¯ow notation illustrated in Figure 2.1b pro-
vides a general way to graphically characterize any business process. This may
seem ambitious: any process! In particular, if you have previously worked with
computer simulation packages for, to take a speci�c example, manufacturing pro-
cesses, you know that they generally contain many more elements than the two
shown here. For example, a manufacturing simulation package might contain
speci�c symbols and characterizations for a variety of di± erent milling machines
or other manufacturing equipment.

This type of detailed information is important for studying the speci�c de-
tailed operation of a particular manufacturing process. We will not be providing
such details here because they are speci�c to particular equipment (which will
probably soon be obsolete). Instead, we are considering the characteristics that
are generally shared by all business processes and the components which make
up these processes. It is a remarkable fact that all such processes can be char-
acterized in terms of variables of two types, stocks (levels, accumulations) and
¯ows (rates).

The conclusion in the previous paragraph is supported by over a century of
theoretical and practical work. Forrester (1961) �rst systematically applied these
ideas to business process analysis almost forty years ago, and extensive practical
applications have shown that this way of considering business processes provides
signi�cant insights based on solid theory. As the old saying goes, \there is
nothing more practical than a good theory," and the theory presented here can
be turned in practice, yielding competitive advantage.

2.3 Stocks and Flows

The graphical notation in Figure 2.1b hints at the di± erences between stocks
and ¯ows. The rectangular boxes around the variables Potential Customers and
Actual Customers look like containers of some sort, or perhaps even bathtubs.
The double-line arrow pointing from Potential Customers toward Actual Cus-
tomers looks like a pipe, and the butter¯y valve in the middle of this pipe looks
like a valve controlling the ¯ow through the pipe. Thus, the graphical notation
hints at the idea that there is a ¯ow from Potential Customers toward Actual
Customers, with the rate of the ¯ow controlled by the \sales" valve. And, in
fact, this is the key idea behind the di± erence between a stock and a ¯ow: A
stock is an accumulation of something, and a ¯ow is the movement or ¯ow of
the \something" from one stock to another.

A primary interest of business managers is changes in variables like Actual
Customers over time. If nothing changes, then anybody can manage|just do
what has always been done. Some of the greatest management challenges come
from change. If sales start to decline, or even increase, you should investigate
why this change has occurred and how to address it. One of the key di± erences
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between managers who are successful and those who are not is their ability to
address changes before it is too late.

We will focus on investigating these changes, and in particular learning how
the elements and structure of a business process can bring about such changes.
Because of this focus on the elements which make up a process (which are often
referred to as the components of a system) and how the performance of the
process changes over time, the ideas we are studying are often referred to as
system dynamics.

Distinguishing between stocks and ¯ows is sometimes di° cult, and we will
provide numerous examples below. As a starting point, you can think of stocks as
representing physical entities which can accumulate and move around. However,
in this age of computers, what used to be concrete physical entities have often
become abstract. For example, money is often an important stock in many
business processes. However, money is more often than not entries in a computer
system, rather than physical dollar bills. In the pre-computer days, refunds in
a department store might require the transfer of currency through a pneumatic
tube; now they probably mean a computer credit to a MasterCard account.
Nonetheless, the money is still a stock, and the transfer operation for the money
is a ¯ow.

Another way to distinguish stocks and ¯ows is to ask what would happen if
we could freeze time and observe the process. If we would still see a nonzero
value for a quantity, then that quantity is a stock, but if the quantity could not
be measured, then it is a ¯ow. (That is, ¯ows only occur over a period of time,
and, at any particular instant, nothing moves.) For readers with an engineering
systems analysis background, we use the term stock for what is called a state
variable is engineering systems analysis.

Types of Stocks and Flows

Most business activities include one or more of the following �ve types of stocks:
materials, personnel, capital equipment, orders, and money. The most visible
signs of the operation of a process are often movements of these �ve types of
stocks, and these are de�ned as follows:

Materials. This includes all stocks and ¯ows of physical goods which are
part of a production and distribution process, whether raw materials, in-process
inventories, or �nished products.

Personnel. This generally refers to actual people, as opposed, for example,
to hours of labor.

Capital equipment. This includes such things as factory space, tools, and
other equipment necessary for the production of goods and provision of services.

Orders. This includes such things as orders for goods, requisitions for new
employees, and contracts for new space or capital equipment. Orders are typi-
cally the result of some management decision which has been made, but not yet
converted into the desired result.

Money. This is used in the cash sense. That is, a ¯ow of money is the actual
transmittal of payments between di± erent stocks of money.
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The �rst three items above (materials, personnel, and capital equipment)
are conceptually relatively straightforward because there is usually a physical
entity corresponding to these. The last two items above (orders and money) are
somewhat more subtle in this age of computers. Whether something is really
money or just information about a monetary entry somewhere in a computer
database may not be immediately obvious.

2.4 Information

The last element in the Figure 2.1b stock and ¯ow diagram is the information link
shown by the curved arrow from Potential Customers to sales. This arrow means
that in some way information about the value of Potential Customers in¯uences
the value of sales. Furthermore, and equally important, the fact that there is
no information arrow from Actual Customers to sales means that information
about the value of Actual Customers does not in¯uence the value of sales.

The creation, control, and distribution of information is a central activity of
business management. The heart of the ongoing changes in business manage-
ment is in changing the way that information is used. Perhaps nowhere is the
impact of the computer on management potentially more signi�cant. In a tra-
ditional hierarchical business organization, it can be argued that the primary
role of much of middle management is to pass information up the hierarchy and
orders down. This structure was required in pre-computer days by the magni-
tude of the communications problem in a large organization. With the current
widespread availability of inexpensive computer-based analysis and communica-
tions systems, this large, expensive, and slow system for transmitting information
is no longer adequate to retain competitive advantage. Business organizations
are substantially changing the way they handle information, and thus the set of
information links is a central component in most models of business processes
oriented toward improving these processes.

The information links in a business process can be di° cult to adequately
model because of the abstract nature of these links. Materials, personnel, capital
equipment, orders, and money usually have a physical representation. Further-
more, these quantities are conserved, and thus they can only ¯ow to one place at
a time. Information, on the other hand, can simultaneously ¯ow to many places,
and, particularly in computer-intensive environments, it can do this rapidly and
with considerable distortion.

Practical experience is showing that modifying the information links in a
business process can have profound impacts on the performance of the process.
Furthermore, these impacts are often non-intuitive and can be dangerous. Some
companies have discovered, for example, that computer-based information sys-
tems have not only not improved their performance, but in fact have degraded
it. Doing large-scale experimentation by making ad hoc changes to a crucial
aspect of an organization like the information links can be dangerous. The tools
we discuss below provide a way to investigate the implications of such changes
before they are implemented.
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No one today would construct and ¯y an airplane without �rst carefully an-
alyzing its potential performance with computer-based models. However, we
routinely make major changes to our business organizations without such prior
modeling. We seem to think that we can intuitively predict the performance
of a changed organization, even though this organization is likely to be much
more complex than an airplane. No one would take a ride on an airplane whose
characteristics under all sorts of extreme conditions had not previously been an-
alyzed carefully. Yet we routinely make signi�cant changes to the structure of
a business process and then \take a ride" in the resulting organization without
this testing. The methods presented below aid in doing some testing before
implementing changes to business processes.

2.5 Reference

J. W. Forrester, Industrial Dynamics, The MIT Press, Cambridge, Mas-
sachusetts, 1961.
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SimulationofBusiness
Processes

The stock and ¯ ow diagram which have been reviewed in the preceding two
chapters show more about the process structure than the causal loop diagrams
studied in Chapter 1. However, stock and ¯ ow diagrams still don't answer some
important questions for the performance of the processes. For example, the
stock and ¯ ow diagram in Figure 2.1b shows more about the process structure
than the causal loop diagram in Figure 2.1a, but it still doesn't answer some
important questions. For example, how will the number of Potential Customers
vary with time? To answer questions of this type, we must move beyond a
graphical representation to consider the quantitative features of the process. In
this example, these features include such things as the initial number of Potential
and Actual Customers, and the speci® c way in which the sales ¯ ow depends on
Potential Customers.

When deciding how to quantitatively model a business process, it is necessary
to consider a variety of issues. Two key issues are how much detail to include,
and how to handle uncertainties. Our orientation in these notes is to provide
tools that you can use to develop better insight about key business processes.
We are particularly focusing on the intermediate level of management decision
making in an organization: Not so low that we must worry about things like
speci® c placement of equipment in an manufacturing facility, and not so high
that we need to consider decisions that individually put the company at risk.

This intermediate level of decision is where much of management's e±orts are
focused, and improvements at this level can signi® cantly impact a company's rel-
ative competitive position. Increasingly, these decisions require a cross-functional
perspective. Examples include such things as the impact on sales for a new
product of capacity expansion decisions, relationships between ® nancing and
production capacity decisions, and the relationship between personnel policies
and quality of service. Quantitatively considering this type of management de-
cision may not require an extremely detailed model for business processes. For
example, if you are considering the relationship between personnel policies and
quality of service, it is probably not necessary to consider individual workers
with their pay rates and vacation schedules. A more aggregated approach will
usually be su�cient.
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Furthermore, our primary interest is improving existing processes which are
typically being managed intuitively, and to make these improvements in a rea-
sonable amount of time with realistic data requirements. There is a long history
of e±orts to build highly detailed models, only to ® nd that either the data re-
quired are not available, or the problem addressed has long since been \solved"
by other means before the model was completed. Thus, we seek a relatively
simple, straightforward quantitative modeling approach which can yield useful
results in a timely manner.

The approach we take, which is generally associated with the ® eld of system
dynamics (Morecroft and Sterman 1994), makes two simplifying assumptions:
1) ¯ ows within processes are continuous, and 2) ¯ ows do not have a random
component. By continuous ¯ ows, we mean that the quantity which is ¯ owing can
be in® nitely ® nely divided, both with respect to the quantity of material ¯ owing
and the time period over which it ¯ ows. By not having a random component,
we mean that a ¯ ow will be exactly speci® ed if the values of the variables at the
other end of information arrows into the ¯ ow are known. (A variable that does
not have a random component is referred to as a deterministic variable.)

Clearly, the continuous ¯ ow assumption is not exactly correct for many busi-
ness processes: You can't divide workers into parts, and you also can't divide
new machines into parts. However, if we are dealing with a process involving
a signi® cant number of either workers or machines, this assumption will yield
fairly accurate results and it substantially simpli® es the model development and
solution. Furthermore, experience shows that even when quantities being con-
sidered are small, treating them as continuous is often adequate for practical
analysis.

The assumptions of no random component for ¯ ows is perhaps even less true
in many realistic business settings. But, paradoxically, this is the reason that it
can often be made in an analysis of business processes. Because uncertainty is so
widely present in business processes, many realistic processes have evolved to be
relatively insensitive to the uncertainties. Because of this, the uncertainty can
have a relatively limited impact on the process. Furthermore, we will want any
modi® cations we make to a process to leave us with something that continues
to be relatively immune to randomness. Hence, it makes sense in many analyses
to assume there is no uncertainty, and then test the consequences of possible
uncertainties.

Practical experience indicates that with these two assumptions, we can sub-
stantially increase the speed with which models of business processes can be built,
while still constructing models which are useful for business decision making.

3.1 Equations for Stocks

With the continuous and deterministic ¯ ow assumptions, a business process is
basically modeled as a \plumbing" system. You can think of the stocks as tanks
full of a liquid, and the ¯ ows as valves, or, perhaps more accurately, as pumps
that control the rate of ¯ ow between the tanks. Then, to completely specify the
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equations for a process model you need to give 1) the initial values of each stock,
and 2) the equations for each ¯ ow.

We will now apply this approach to the advertising stock and ¯ ow diagram in
Figure 2.1b. To do this, we will use some elementary calculus notation. However,
fear not! You do not have to be able to carry out calculus operations to use this
approach. Computer methods are available to do the required operations, as is
discussed below, and the calculus discussion is presented for those who wish to
gain a better understanding of the theory behind the computer methods.

The number of Potential Customers at any time t is equal to the number of
Potential Customers at the starting time minus the number that have \¯ owed"
out due to sales. If sales is measured in customers per unit time, and there were
initially 1,000,000 Potential Customers, then

Potential Customers(t) = 1; 000; 000 £
Z t

0

sales(; ) d; ; (3:1)

where we assume that the initial time is t = 0, and ; is the dummy variable
of integration. Similarly, if we assume that there were initially zero Actual
Customers, then

Actual Customers =

Z t

0

sales(; ) d; : (3:2)

The process illustrated by these two equations generalizes to any stock: The
stock at time t is equal to the initial value of the stock at time t = 0 plus the
integral of the ¯ ows into the stock minus the ¯ ows out of the stock. Notice that
once we have drawn a stock and ¯ ow diagram like the one shown in Figure 2.1b,
then a clever computer program could enter the equation for the value of any
stock at any time without you having to give any additional information except
the initial value for the stock. In fact, system dynamics simulation packages
automatically enter these equations.

3.2 Equations for Flows

However, you must enter the equation for the ¯ ows yourself. There are many
possible ¯ ow equations which are consistent with the stock and ¯ ow diagram
in Figure 2.1b. For example, the sales might be equal to 25,000 customers per
month until the number of Potential Customers drops to zero. In symbols,

sales(t) =

䄀
25; 000; Potential Customers(t) > 0
0; otherwise

(3:3)

A more realistic model might say that if we sell a product by advertising to
Potential Customers, then it seems likely that some speci® ed percentage of Po-
tential Customers will buy the product during each time unit. If 2.5 percent of
the Potential Customers make a purchase during each month, then the equation
for sales is

sales(t) = 0:025ȴPotential Customers(t): (3:4)

(Notice that with this equation the initial value for sales will be equal to 25,000
customers per month.)
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3.3 Solving the Equations

If you are familiar with solving di±erential equations, then you can solve equa-
tions 3.1 and 3.2 in combination with either equation 3.3 or equation 3.4 to
obtain a graph of Potential Customers over time. However, it quickly becomes
infeasible to solve such equations by hand as the number of stocks and ¯ ows
increases, or if the equations for the stocks are more complex than those shown
in equation 3.3 and 3.4. Thus, computer solution methods are almost always
used.

We will illustrate how this is done using the Vensim simulation package. With
this package, as with most PC-based system dynamics simulation systems, you
typically start by entering a stock and ¯ ow diagram for the model. In fact, the
stock and ¯ ow diagram shown in Figure 2.1b was created using Vensim. You
then enter the initial values for the various stocks into the model, and also the
equations for the ¯ ows. Once this is done, you then tell the system to solve the
set of equations. This solution process is referred to as simulation, and the result
is a time-history for each of the variables in the model. The time history for any
particular variable can be displayed in either graphical or tabular form.

Figure 3.1 shows the Vensim equations for the model using equations 3.1 and
3.2 for the two stocks, and either equation 3.3 (in Figure 3.1a) or equation 3.4
(in Figure 3.1b) for the ¯ ow sales. These equations are numbered and listed in
alphabetical order.

Note that equation 1 in either Figure 3.1a or b corresponds to equation 3.2
above, and equation 4 is either Figure 3.1a or b corresponds to equation 3.1
above. These are the equations for the two stock variables in the model. The
notation for these is straightforward. The function name INTEG stands for \in-
tegration," and it has two arguments. The ® rst argument includes the ¯ ows into
the stock, where ¯ ows out are entered with a minus sign. The second argument
gives the initial value of the stock.

Equation 5 in Figure 3.1a corresponds to equation 3.3 above, and equation
5 in Figure 3.1b corresponds to equation 3.4 above. These equations are for
the ¯ ow variable in the model, and each is a straightforward translation of the
corresponding mathematical equation.

Equation 3 in either Figure 3.1a or b sets the lower limit for the integrals.
Thus, the equation INITIAL TIME = 0 corresponds to the lower limits of t = 0
in equations 3.1 and 3.2 above. Equation 2 in either Figure 3.1a or b sets the last
time for which the simulation is to be run. Thus, with FINAL TIME = 100, the
values of the various variables will be calculated from the INITIAL TIME (which
is zero) until a time of 100 (that is, t = 100).

Equations 6 and 7 in either Figure 3.1a or b set characteristics of the simula-
tion process.
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(1) Actual Customers = INTEG( sales , 0)

(2) FINAL TIME = 100

(3) INITIAL TIME = 0

(4) Potential Customers = INTEG( - sales , 1e+006)

(5) sales = IF THEN ELSE ( Potential Customers > 0, 25000, 0)

(6) SAVEPER = TIME STEP

(7) TIME STEP = 1

a. Equations with constant sales

(1) Actual Customers = INTEG( sales , 0)

(2) FINAL TIME = 100

(3) INITIAL TIME = 0

(4) Potential Customers = INTEG( - sales , 1e+006)

(5) sales = 0.025 * Potential Customers

(6) SAVEPER = TIME STEP

(7) TIME STEP = 1

b. Equations with proportional sales

Figure 3.1 Vensim equations for advertising model

3.4 Solving the Model

The time histories for the sales and Potential Customers variables are shown
in Figure 3.2. The graphs in Figure 3.2a were produced using the equations in
Figure 3.1a, and the graphs in Figure 3.2b were produced using the equations
in Figure 3.1b. We see from Figure 3.2a that sales stay at 25,000 customers per
month until all the Potential Customers run out at time t = 40. Then sales
drop to zero. Potential Customers decreases linearly from the initial one million
level to zero at time t = 40. Although not shown in this ® gure, it is easy to see
that Actual Customers must increase linearly from zero initially to one million
at time t = 40.

In Figure 3.2b, sales decreases in what appears to be an exponential manner
from an initial value of 25,000, and similarly Potential Customers also decreases
in an exponential manner. (In fact, it can be shown that these two curves are
exactly exponentials.)

3.5 Some Additional Comments on Notation

In the Figure 2.1b stock and ¯ ow diagram, the two stock variables Potential
Customers and Actual Customers are written with initial capital letters on each
word. This is recommended practice, and it will be followed below. Similarly,
the ¯ ow \sales" is written in all lower case, and this is recommended practice.
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CURRENT
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0
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a. Constant sales

CURRENT
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2 M
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1 M
500,000

0
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20,000
10,000

0
0 50 100

Time (Month)
b. Proportional sales

Figure 3.2 Time histories of sales and Potential Customers

While stock and ¯ ow variables are all that are needed in concept to create
any stock and ¯ ow diagram, it is often useful to introduce additional variables
to clarify the process model. For example, in a stock and ¯ ow diagram for the
Figure 3.1b model, it might make sense to introduce a separate variable name for
the sales fraction (which was given as 0.025 in equation 3.4. This could clarify
the structure of the model, and also expedites sensitivity analysis in most of the
system dynamics simulation packages.

Such additional variables are called auxiliary variables, and examples will be
shown below. It is recommended that an auxiliary variable be entered in ALL
CAPITAL LETTERS if it is a constant. Otherwise, it should be entered in all
lower case letters just like a ¯ ow variable, except in one special case. This is the
case where the variable is not a constant but is a prespeci® ed function of time
(for example, a sine function). In this case, the variable name should be entered
with the FIRst three letters capitalized, and the remaining letters in lower case.

This notation allows you to quickly determine important characteristics of
variable in a stock and ¯ ow diagram from the diagram without having to look
at the equations that go with the diagram.
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3.6 Reference

J. D. W. Morecroft and J. D. Sterman, editors, Modeling for Learning Organi-
zations, Productivity Press, Portland, OR, 1994.
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BasicFeedback
Structures

This chapter reviews some common patterns of behavior for business processes,
and presents process structures which can generate these patterns of behavior.
Many interesting patterns of behavior are caused, at least in part, by feedback,
which is the phenomenon where changes in the value of a variable indirectly
in® uence future values of that same variable. Causal loop diagrams (Richardson
and Pugh 1981, Senge 1990) are a way of graphically representing feedback struc-
tures in a business process with which some readers may be familiar. However,
causal loop diagrams only suggest the possible modes of behavior for a process.
By developing a stock and ® ow diagram and corresponding model equations, it
is possible to estimate the actual behavior for the process.

Figure 4.1 illustrates four patterns of behavior for process variables. These
are often seen individually or in combination in a process, and therefore it is
useful to understand the types of process structures that typically lead to each
pattern.

4.1 Exponential Growth

Exponential growth, as illustrated in Figure 4.1a, is a common pattern of be-
havior where some quantity \feeds on itself" to generate ever increasing growth.
Figure 4.2 shows a typical example of this|the growth of savings with com-
pounding interest. In this case, increasing interest earnings lead to an increase
in Savings, which in turn leads to greater interest because interest earnings are
proportional to the level of Savings, as shown in equation 3 of Figure 4.2b. Fig-
ure 4.2c shows the characteristic upward-curving graph that is associated with
this process structure. This is referred to as an \exponential" curve because it
can be demonstrated that it follows the equation of the exponential function.
(Remember that the \cloud" at the left side of Figure 4.2a means that we are
not explicitly modeling the source of the interest.)

While it is possible to use standard calculus methods to solve for the variables
in this model, we will not do this because this structure is typically only one
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Figure 4.1 Characteristic patterns of system behavior
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INTEREST RATE

interest

Savings

a. Stock and ® ow diagram

(1) FINAL TIME = 40

(2) INITIAL TIME = 0

(3) interest = INTEREST RATE*Savings

(4) INTEREST RATE = 0.05

(5) SAVEPER = TIME STEP

(6) Savings = INTEG(interest,100)

(7) TIME STEP = 0.0625

b. Vensim equations
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0
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0
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Time (YEAR)

d. Two hundred year horizon

Figure 4.2 Exponential growth feedback process



32 CHAPTER 4 BASIC FEEDBACK STRUCTURES

component of a more complex process in realistic settings. The models of those
more complex processes usually cannot be solved in closed form, and therefore
we have shown the Vensim simulation equations used to simulate this model in
Figure 4.2b.

Figure 4.2d shows another characteristic of exponential growth processes. In
this diagram, the time period considered has been extended to 200 years. When
this is done, we see that exponential growth over an extended period of time
displays a phenomenon where there appears to be almost no growth for a period,
and then the growth explodes. This happens because with exponential growth
the period which it takes to double the value of the growing variable (called the
\doubling time") is a constant regardless of the current level of the variable.
Thus, it will take just as long for the variable to double from 1 to 2 as it does
to double from 1,000 to 2,000, or from 1,000,000 to 2,000,000. Hence, while
the variables in Figure 4.2d are growing at a steady exponential rate during the
entire 200 year period, because of the large vertical scale necessary for the graph
in order to show the values at the end of the period, it is not possible to see the
growth during the early part of the period.

4.2 Goal Seeking

Figure 4.1b displays goal seeking behavior in which a process variable is driven to
a particular value. Figure 4.3 presents a process which displays this behavior. As
\CURrent sales" change, the level of Average Sales moves to become the same as
CURrent sales. However, it moves smoothly from its old value to the CURrent
sales value, and this is the origin of the name Average Sales for this variable. (In
fact, this structure can be used to implement the SMOOTH function which we
have previously seen.)

Figure 4.3c and Figure 4.3d show what happens when CURrent sales takes a
step up (in Figure 4.3c) or a step down (in Figure 4.3d). While it is somewhat
hard to see in these graphs, CURrent sales is plotted with a solid line which jumps
at time 10. Until that time, Average Sales have been the same as CURrent sales,
then they diverge since it takes a while for Average Sales to smoothly move to
again become the same as CURrent sales.

Equation 3 in Figure 4.3b shows the process which drives Average Sales toward
the value of CURrent sales. If Average Sales are below CURrent sales, then there
is ® ow into the Average Sales stock, while if Average Sales are above CURrent
sales, then there is ® ow out of the Average Sales stock. In either case, the ® ow
continues as long as Average Sales di¯ ers from CURrent sales.

The rate at which the ® ow occurs depends on the constant AVERAGING
TIME. The larger the value of this constant, the slower the ® ow into or out of
Average Sales, and hence the longer it takes to bring the value of Average Sales
to that of CURrent sales.

It is possible to solve the equations for a goal seeking process to show that
the equation for the curve of the variable moving toward a goal (Average Sales
in Figure 4.3) has an exponential shape. However, as with exponential growth,
a goal seeking process is often only a part of a larger process for which it is not
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AVERAGING TIME
CURrent sales

change in
average
sales

Average Sales

a. Stock and ® ow diagram

(1) Average Sales = INTEG(change in average sales,100)

(2) AVERAGING TIME = 2

(3) change in average sales = (CURrent sales-Average Sales)

/AVERAGING TIME

(4) CURrent sales = 100+STEP(20,10)

(5) FINAL TIME = 20

(6) INITIAL TIME = 0

(7) SAVEPER = TIME STEP

(8) TIME STEP = 0.0625

b. Vensim equations
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80

0 10 20
Time (WEEK)

c. Sales move up d. Sales move down

Figure 4.3 Goal seeking process
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possible to obtain a simple solution, and thus we show the simulation equations
for this process.

Note that the process shown in Figure 4.4 is a negative feedback process. As
the value of \change in average sales" increases, this causes an increase in the
value of Average Sales, which in turn leads to a decrease in the value of \change
in average sales."

4.3 S-shaped Growth

Exponential growth can be exhilarating if it is occurring for something that you
makes you money. The future prospects can seem endlessly bright, with things
just getting better and better at an ever increasing rate. However, there are
usually limits to this growth lurking somewhere in the background, and when
these take e¯ ect the exponential growth turns into goal seeking behavior, as
shown in Figure 4.1c.

Figure 4.4 shows a business process structure which can lead to this \s-shaped"
growth pattern. This illustrates a possible structure for the sale of some sort of
durable good for which word of mouth from current users is the source of new
sales. This might be called a \contagion" model of sales|being a user of the
product is contagious to other people! We assume that there is a speci±ed
INITIAL TOTAL RELEVANT POPULATION of potential customers for the
product. (This is the limit that will ultimately stop growth in Actual Customers.)
At any point in time, there is a total of \Potential Customers" of potential users
who have not yet bought the product.

Visualize the process of someone in the Potential Customers group being con-
verted into an Actual Customer as follows: The two groups of people who are
in the Actual Customers group and in the Potential Customers group circulate
among the larger general population and from time to time they make contact.
When they make contact, there is some chance that the comments of the per-
son who is an Actual Customer will cause the person who is in the Potential
Customers to buy the product.

The model shown in Figure 4.4 assumes that for each such contact between a
person in the Actual Customers and a person in the susceptible population there
will be a number of sales equal to SALES PER CONTACT, which will probably
be less than one in most realistic settings. The number of sales per unit of
time will be equal to SALES PER CONTACT times the number of contacts per
unit of time between persons in the Actual Customers and Potential Customers
groups. But with the assumed random contacts between persons in the two
groups, the number of contacts per unit time will be proportional to both the
size of the Actual Customers group and the size of the Potential Customers
group. Hence sales is proportional to the product of Actual Customers and
Potential Customers. The proportionality constant is called BASE CONTACT
RATE in Figure 4.4, and it represents the number of contacts per unit time
when each of the two groups has a size equal to one. (That is, it is the number
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of contacts per unit time between any speci±ed member of the Actual Customers
group and any speci±ed member of the Potential Customers group.)

The argument in the last paragraph for a multiplicative form for the \sales"
equation (as shown in equation 6 of Figure 4.4b) was somewhat informal. A
more formal argument can be made by using probability theory. Select a short
enough period of time so that at most one contact can occur between any persons
in the Actual Customers group and the Potential Customers group regardless of
how large these groups are. Then assume that the probability that any speci±ed
member of the Actual Customers group will contact any speci±ed member of the
Potential Customers group during this period is some (unspeci±ed) number p.
Then, if this probability is small enough (which we can make it by reducing the
length of the time period considered), the probability that the speci±ed mem-
ber of the Actual Customers group will contact any member of the susceptible
population is equal to p � Potential Customers.

Assuming that this probability is small enough for any individual member of
the Actual Customers population, then the probability that any member of the
Actual Customers population will contact a member of the Potential Customers
population is just this probability times the number of members in the Actual
Customers population, or

p � susceptible population � Actual Customers:

Assuming the interaction process between the two groups is a Poisson process
and the probability of a \successful" interaction (that is, a sale) is ±xed, then
the sale process is a random erasure process on a Poisson process and hence
is also a Poisson process. Thus, the expected number of sales per unit time
is proportional to the probability expression above, and hence to the product
of Actual Customers and susceptible population. This is the form assumed in
equation 6 of Figure 4.4b.

Figure 4.4c shows the resulting pattern for the number of Actual Customer,
as well as the sales. This s-shaped pattern is seen with many new products.
First the process grows exponentially, and then it levels o¯ . Sales also grow
exponentially for a while, and then they decline. This can be a di�cult process
to manage because the limit to growth is often not obvious while the exponential
growth is under way. For example, when a new consumer product like the
compact disk player is introduced, what is the INITIAL TOTAL RELEVANT
POPULATION of possible customers for the product? The di¯ erence between a
smash hit like the compact disk player and a dud like quadraphonic high ±delity
sound systems can be hard to predict.

Note that there are two feedback loops, one positive and one negative, that
involve the variable \sales" in the Figure 4.5a diagram. The positive loop involves
sales and Actual Customers. The negative loop involves sales and Potential
Customers. At ±rst the positive loop dominates, but later the negative loop
comes to dominate. (There is another feedback loop through the initial condition
on Potential Customers, which depends on Actual Customers. However, this is
not active once the process starts running.)
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BASE CONTACT
RATE

SALES PER
CONTACT

INITIAL TOTAL RELEVANT POPULATION

sales

Actual
Customers

Potential
Customers

a. Stock and ® ow diagram

(01) Actual Customers = INTEG(sales, 10)

(02) BASE CONTACT RATE = 0.02

(03) FINAL TIME = 10

(04) INITIAL TIME = 0

(05) Potential Customers = INTEG(-sales,

INITIAL TOTAL RELEVANT POPULATION - Actual Customers)

(06) sales = BASE CONTACT RATE * SALES PER CONTACT

* Actual Customers * Potential Customers

(07) SALES PER CONTACT = 0.1

(08) SAVEPER = TIME STEP

(09) TIME STEP = 0.0625

(10) INITIAL TOTAL RELEVANT POPULATION = 500

b. Vensim equations

CURRENT
Actual Customers

600
450
300
150

0
sales

200
150
100

50
0

0 5 10
Time (Month)

c. Customer and sales performance

Figure 4.4 S-shaped growth process
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4.4 S-shaped Growth Followed by Decline

Figure 4.5 shows a process model for a variation on s-shaped growth where the
leveling o¯ process is followed by decline. In this process, it is assumed that
some Actual Customers and some Potential Customers permanently quit. Such
a process might make sense for a new \fad" durable good which comes on the
market. In such a situation, there may be a large INITIAL TOTAL RELEVANT
POPULATION of possible customers but some of those who purchase the prod-
uct and become Actual Customers may lose interest in the product and cease to
discuss it with Potential Customers. Similarly, some Potential Customers lose
interest before they are contacted by Actual Customers. Gradually both sales
and use of the product will decline.

In equation 5 of Figure 4.5, the quitting processes for both Potential Cus-
tomers and Actual Customers are shown as exponential growth processes running
in \reverse." That is, the number of Actual Customers leaving is proportional
to the number of Actual Customers rather than the number arriving, as in a
standard exponential growth process. Similarly, the number of Potential Cus-
tomers leaving is proportional to the number of Potential Customers. This type
of departure process also can be viewed as a balancing process with a goal of
zero, and it is sometimes called exponential decline or exponential decay. From
Figure 4.5c, we see that this exponential decline process eventually leads to a
decline in the number of Actual Customers.

4.5 Oscillating Process

The Figure 4.6a stock and ® ow diagram is a simpli±ed version of a production-
distribution process. In this process, the retailer orders to the factory depend
on both the retail sales and the Retail Inventory level. The factory production
process is shown as immediately producing to ful±ll the retailer orders, but there
is a delay in the retailer receiving the product because of shipping delays.

In this process, RETail sales are 100 units per week until week 5, at which
point they jump to 120 units and remain there for the rest of the simulation run.
We see from Figure 4.6c that there are substantial oscillations in key variables
of the process.

Unless there are very unusual ® ow equations, there must be at least two stocks
in a process for the process to oscillate. Furthermore, the degree of oscillation is
usually impacted by the delays in the process. The important role of stocks and
delays in causing oscillation is one of the factors behind moves to just in time
production systems and computer-based ordering processes. These approaches
can reduce the stocks in a process and also can reduce delays.

Figure 4.7 illustrates another aspect of oscillating systems. The process in
Figure 4.7 is identical to that in Figure 4.6 except that the RETail sales function
has been changed from a step to a sinusoid. Thus, sales are stable at 100 units per
week until week 5, and then sales vary sinusoidally with an amplitude above and
below 100 units per week of 20. The results for three di¯ erent cycle lengths are
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potential
customer

quits

<QUIT RATE>

actual
customer

quits

QUIT RATE

BASE CONTACT
RATESALES PER

CONTACT

INITIAL TOTAL RELEVANT POPULATION

sales

Actual
Customers

Potential
Customers

a. Stock and ® ow diagram

(01) actual customer quits = QUIT RATE * Actual Customers

(02) Actual Customers = INTEG(sales - actual customer quits, 10)

(03) BASE CONTACT RATE = 0.02

(04) FINAL TIME = 10

(05) INITIAL TIME = 0

(06) INITIAL TOTAL RELEVANT POPULATION = 500

(07) potential customer quits = QUIT RATE * Potential Customers

(08) Potential Customers = INTEG(-sales - potential customer quits,

INITIAL TOTAL RELEVANT POPULATION - Actual Customers)

(09) QUIT RATE = 0.2

(10) sales = BASE CONTACT RATE * SALES PER CONTACT

* Actual Customers * Potential Customers

(11) SALES PER CONTACT = 0.1

(12) SAVEPER = TIME STEP

(13) TIME STEP = 0.0625

b. Vensim equations

CURRENT
Actual Customers

80
60
40
20
0

0 5 10
Time (Month)

c. Customer performance

Figure 4.5 S-shaped growth followed by decline
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SHIPPING DELAY

TIME TO
ADJUST

INVENTORY

DESIRED
INVENTORY

retailer
orders

factory
production

RETail
sales

product
received

In TransitRetail
Inventory

a. Stock and ® ow diagram

CURRENT
Retail Inventory

400
325
250
175
100

product received
200
170
140
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RETail sales
200
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150
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100

0 25 50
Time (Week)

c. Process oscillations

(01) DESIRED INVENTORY = 200

(02) factory production = retailer orders

(03) FINAL TIME = 50

(04) In Transit = INTEG(factory production-orders received, 300)

(05) INITIAL TIME = 0

(06) product received = DELAY FIXED(factory production,

SHIPPING DELAY, factory production)

(07) Retail Inventory = INTEG(product received-retail sales, 200)

(08) RETail sales = 100 + STEP(20, 5)

(09) retailer orders = retail sales+ (DESIRED INVENTORY

- Retail Inventory) / TIME TO ADJUST INVENTORY

(10) SAVEPER = TIME STEP

(11) SHIPPING DELAY = 3

(12) TIME STEP = 0.0625

(13) TIME TO ADJUST INVENTORY = 2

b. Vensim equations

Figure 4.6 Oscillating feedback process



40 CHAPTER 4 BASIC FEEDBACK STRUCTURES

shown in Figure 4.7c. The RUN4 results are for a cycle length of 4 weeks (that
is, a monthly cycle). The RUN13 results are for a 13 week (that is, quarterly)
cycle, and the RUN52 results are for a 52 week (that is, annual) cycle.

Notice that the amplitude of the variations in Retail Inventory and product
received are di¯ erent for the three di¯ erent cycle lengths. The amplitude is
considerably greater for the 13 week cycle than for either the 4 week or 52 week
cycles. This is true even though the amplitude of the RETail sales is the same
for each cycle length.

Now go back and examine the curves in Figure 4.6c which shows the response
of this process to a step change in retail sales. Note in particular that the cycle
length for the oscillations is around 12 weeks. A cycle length at which a process
oscillates in response to a step input is called a resonance of the process, and
the inverse of the cycle length is called a resonant frequency. Thus, a resonant
frequency for this process is 1=12 = 0:0833 cycles per week.

A process will generally respond with greater amplitude to inputs which vary
with a frequency that is at or near a resonant frequency. Thus, it is to be
expected that the response shown in Figure 4.7c for the sinusoidal with a 13
week cycle is greater than the responses for the sinusoids with 4 and 52 week
cycles.

In engineered systems, an attempt is often made to keep the resonant frequen-
cies considerably di¯ erent from the usual variations that are found in operation.
This is because of the large responses that such systems typically make to inputs
near their resonant frequencies. This can be annoying, or even dangerous. (Have
you ever noticed the short period of vibration that some planes go through just
after takeo¯ ? This is a resonance phenomena.)

Unfortunately, the resonant frequencies for many business processes are in the
range of variations that are often found in practice. This has two undesirable
aspects. First, it means that the amplitude of variations is greater than it might
otherwise be. Second, it may lead managers to assume there are external causes
for the variations. Suppose that in a particular process these oscillations have
periods that are similar to some \natural" time period like a month, quarter, or
year. In such a situation, it can be easy to assume that there is some external
pattern that has such a period, and start to organize your process to such a cycle.
This can make the oscillations worse. For example, consider the traditional yearly
cycle in auto sales. Is that due to real variations in consumer demand, or is it
created by the way that the auto companies manage their processes?
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a. Diagram

<Time>

CYCLE LENGTH SHIPPING DELAY
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INVENTORY

DESIRED INVENTORY

retailer
orders

factory
production

RETail
sales

product
received

In TransitRetail
Inventory

CYCLE LENGTH = 13

RETail sales

= 100 + STEP(20, 5) * SIN(2 * 3.14159 * (Time-5) / CYCLE LENGTH)

b. Changes to Figure 4.6 Vensim equations
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c. Process oscillations (4, 13, and 52 week cycles)

Figure 4.7 Performance with oscillating retail sales
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DevelopingaModel

This chapter illustrates how a simulation model is developed for a business
process. Speci± cally, we develop and investigate a model for a simple production-
distribution system. Such systems are at the heart of most companies that make
and sell products, and similar systems exist in most service-oriented businesses.
Regardless of where you work within most companies, it is useful to under-
stand the sometimes counterintuitive behavior that is possible in a production-
distribution system. As we will see, di° culties in a production-distribution sys-
tem that are often attributed to external events can be caused by the internal
structure of the system.

The purpose of this example is to familiarize you with what is required to
build a simulation model, and how such a model can be used. Some of the
details presented below may not be totally clear at this point. In later chapters,
we will investigate in further detail a number of topics that help clarify these
details and assist you in building your own models.

A basic stock and ®ow diagram for the system we will consider is shown in
Figure 5.11. There are two ®ow processes: The production process shown at the
top of the ± gure with a ®ow to the right, and the distribution system shown at
the bottom of the ± gure with a ®ow to the left. The production system is a ®ow
of orders, while the distribution system is a ®ow of materials. The two processes
are tied together by factory production, as shown at the right side of the ± gure.
As items are produced, the orders for these items are removed from the Factory
Order Backlog, and the items are placed into Retail Inventory.

Note the use of the small \clouds" which are shown at the right and left ends
of the production and distribution processes. These clouds represent either a
source or a sink of ®ow which is outside the process that we are considering.
For example, the cloud in the upper right corner of the ± gure shows that we are
not considering in our analysis what happens to orders once they have initiated
factory production. (In an actual system, the orders probably continue to ®ow
into a billing process. That is outside the bounds of what we are interested in

1 The models in this chapter are adapted from Jarmain (1963), pp. 118{124.
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retailer orders

factory
production

retail sales
Retail

Inventory

Factory Order
Backlog

Figure 5.1 A simple production-distribution system

here, and therefore we simply show a cloud into which the orders disappear|a
\sink".)

The production-distribution system shown in Figure 5.1 is simpler than most
real systems. These often involve multiple production stages, and also multi-
ple distribution stages (for example, distributor, wholesaler, and retailer), each
of which has an inventory of goods. Thus, it might seem that this example is
too simple to teach us much that is interesting about real-world production-
distribution processes. Surely our intuition will be su° cient to quickly ± nd a
good way to run this system! Perhaps not. As we will see, this simpli± ed
production-distribution system is still complicated enough to produce counter-
intuitive behavior. Furthermore, this behavior is typical of what is seen in real
production-distribution systems.

We will study the policy that the retailer uses to place orders with the fac-
tory, and we will develop ± ve di�erent models to investigate di�erent policies
for placing these orders. As we will see, it is not necessarily straightforward to
develop an ordering policy that has desirable characteristics.

5.1 The First Model

Figure 5.2, which has three parts, shows the ± rst model for the production-
distribution system, and the four other models which follow will also be shown
with analogous three-part ± gures. Figure 5.2a shows the stock and ®ow diagram
for the ± rst model, Figure 5.2b shows the Vensim equations for this model, and
Figure 5.2c shows the performance of key variables within the process.

Figure 5.2a was developed from the Figure 5.1 stock and ®ow diagram by
adding several information ®ows. At the left-center side of the diagram, the
auxiliary variable \average retail sales" has been added, along with an auxiliary
constant \TIME TO AVERAGE SALES." In the lower left side of the ± gure,
another auxiliary variable \TESt input" has been added. Since this variable
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Figure 5.2a Stock and ¯ ow diagram for � rst model

name starts with three capital letters, we know that it varies over time in a
prespeci± ed manner. A variable which has a prespeci± ed variation over time is
called an exogenous variable.

In the center of the Figure 5.2a diagram, an auxiliary variable \desired pro-
duction" has been added, along with an auxiliary constant \TARGET PRO-
DUCTION DELAY." Finally, at the right-center of the diagram, the auxiliary
constant \TIME TO ADJUST PRODUCTION" has been added.

Factory Production

The Figure 5.2a diagram presents a particular procedure for how ordering is done
by the retailer, as well as how production is managed. We are going to focus on
di�erent ordering policies for the retailer in our analysis, but ± rst we will develop
a model for how factory production is managed. This is shown by the variables
at the right side of Figure 5.2a. From the information arrows shown there, we
see that there is a \desired production" which depends on the Factory Order
Backlog and the TARGET PRODUCTION DELAY. This desired production
is then used to set the actual \factory production," but there is some delay in
adjusting factory production, as shown by the constant TIME TO ADJUST
PRODUCTION. In this diagram, a delay in an information ®ow is indicated by
using a thicker arrow. Such thicker arrows are shown pointing from \retail sales"
to \average retail sales," and from \desired production" to \factory production."

In this simpli± ed model for production, there is no inventory within the
factory|instead, the ®ow of the production system is adjusted to attempt to
maintain a TARGET PRODUCTION DELAY, which is measured in weeks.
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That is, the philosophy underlying this production system is that the retail or-
derer should be able to predict the length of time it will take to receive an order
that is placed. Thus, if the TARGET PRODUCTION DELAY is two weeks, the
factory will attempt to set production so that the current Factory Order Backlog
will be cleared in two weeks. In equation form, this says that

desired production =
Factory Order Backlog

TARGET PRODUCTION DELAY

where the Factory Order Backlog is measured in units of the item being produced,
and the TARGET PRODUCTION DELAY is measured in weeks.

In typical realistic factory settings, production cannot be instantaneously
changed in response to variations in orders because it takes time to change pro-
duction resources, such as personnel and equipment. A more complex model of
production would include explicit consideration of each of these factors, but we
will approximate them here by saying that there is an average delay of TIME
TO ADJUST PRODUCTION before the actual \factory production" is brought
into line with \desired production."

In most realistic settings, the rate at which production can be adjusted varies
depending on the immediate circumstances. Thus, the delay would not always
be exactly equal to TIME TO ADJUST PRODUCTION. A simple model for
this, but one which matches the data for many realistic settings, is that the
time it takes to adjust production follows an exponential delay process. We
will consider this particular approach in further detail below, but for now just
consider the delay in bringing actual production into line with desired production
to be variable with an average length of TIME TO ADJUST PRODUCTION.

The equations for the production process, as well as the rest of the ± rst model
for the production-distribution system, are shown in Figure 5.2b. Equation 12
of this ± gure shows that the TARGET PRODUCTION DELAY is 2 weeks, and
equation 15 shows that the TIME TO ADJUST PRODUCTION is 4 weeks. (The
values for these and other constants in the production-distribution model are
illustrative and not intended to necessarily represent good management practice.)

Equation 2 shows that the desired production is given by the equation dis-
cussed earlier. Equation 4 shows that actual factory production is delayed from
desired production by an average time of TIME TO ADJUST PRODUCTION.
(In Vensim, the exponential delay function is called SMOOTH.)

When setting up a process model, it is important to keep the measurement
units that you use consistent. If you use units of \weeks" of time in one place
and \months" in another, then you will obviously get incorrect answers. (Note
that you can set up a Vensim model to automatically check units. To simplify
the presentation, we are not using this feature in our model.)

For the remainder of our discussion of the production-distribution system, we
will focus on the retailer ordering process. We will assume that the production
process has the characteristics just presented, and will not attempt to improve
this. In reality, this could be a source of improvements. For example, just-in-time
production processes are designed to improve the performance of a production
process of this type.
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(01) average retail sales

= SMOOTH(retail sales, TIME TO AVERAGE SALES)

(02) desired production

= Factory Order Backlog / TARGET PRODUCTION DELAY

(03) Factory Order Backlog

= INTEG(retailer orders - factory production, 200)

(04) factory production

= SMOOTH(desired production, TIME TO ADJUST PRODUCTION)

(05) FINAL TIME = 50

(06) INITIAL TIME = 0

(07) Retail Inventory = INTEG(factory production - retail sales, 400)

(08) retail sales = TESt input

(09) retailer orders = average retail sales

(10) SAVEPER = TIME STEP

(11) TARGET PRODUCTION DELAY = 2

(12) TESt input = 100 + STEP(20, 10)

(13) TIME STEP = 0.25

(14) TIME TO ADJUST PRODUCTION = 4

(15) TIME TO AVERAGE SALES = 1

Figure 5.2b Vensim equations for � rst model

Retailer Ordering

We now turn our attention to retail sales and orders to the factory by the re-
tailer. We will assume that retail sales are predetermined. (That is, they are an
exogenous variable to the portion of the process we are modeling.) We will soon
consider what these orders are, but ± rst we specify a procedure that the retailer
uses to order from the factory.

The simplest ordering procedure is to order exactly what you sell. However,
in practice, most retailers cannot instantly order each time they make a sale.
Thus, ordering is based on an average over some time period. Furthermore, this
average is likely to take into account recent trends. For example, if sales over
the last few days have been up, then the retailer is likely to put more weight on
that than on the lower sales of an earlier period.

A simple model of this type of averaging process is called exponential smooth-
ing, and this will be studied in more detail later. For now, you can consider that
this type of averaging is approximately taking an average over a speci± ed period
of time, but that more weight is given to recent sales than earlier sales. Thus,
in the Figure 5.2a stock and ®ow diagram, the variable \average retail sales"
is calculated by taking an exponential smooth of \retail sales" over the period
TIME TO AVERAGE SALES. This is shown by equation 1 in the Figure 5.2b
Vensim equations, and equation 15 shows that TIME TO AVERAGE SALES is
equal to 1 week.

Note that the same function (called SMOOTH) is used for the exponential
averaging process as was used for the exponential delay process shown for ad-
justing factory production in equation 4. It turns out that the equation for an
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exponential averaging process and an exponential delay process are identical,
and thus the same function is used for these in Vensim. However, conceptually
the two processes are somewhat di�erent. For the delay, we are interested in
how long it takes for something in the future to happen. For the average, we are
interested in what the average was for some variable over a past period.

The retailer ordering equations are completed by equation 9 in Figure 5.2b,
which says that retailer orders are equal to average retail sales.

Test Input

To complete this ± rst model of the production-distribution system, we need to
determine \retail sales." Equation 8 of Figure 5.2b shows that these are equal
to \TESt input," and thus we need to specify this. Actual retail sales typically
have some average value with random ®uctuation around this average. There
may also be seasonal variation and an overall trend, hopefully upward. Thus,
your ± rst thought is probably to use a complex test input which represents these
features of the real world.

However, we will use a very simple test input, and it is important to under-
stand why this particular input is used because it is often used as a test input for
process simulation models. The input we use will be a simple step: The input
will start at one level, remain constant at that level for a period, and then jump
instantly to another level and remain constant at the new level for the remainder
of the period studied. The implementation of this input is shown in equation 12
of Figure 5.2b. The function STEP is de± ned by the following equation:

STEP(height; step time) =

�
0; Time < step time
height; otherwise

That is, the function is zero until the time is equal to \step time," and then it
is equal to \height." Thus, equation 12 of Figure 5.2b says that TESt input is
equal to 100 units per week until the time is 10 weeks, and then TESt input is
equal to 120 units per week for the remainder of the time.

Why is this used as a test input? It seems quite unlikely that the actual sales
would have this form! The reason for using this form of test input has to do with
what we are trying to accomplish with our model, and thus we need to discuss
the purpose of our modeling.

Our primary purpose in constructing this model is to determine ways to im-
prove the performance of the production-distribution process. In particular, we
are studying di�erent possible retailer ordering policies and how these impact the
performance of the entire production-distribution process. There are, of course,
many di�erent possible patterns of retail sales, and we want to make sure that
the particular pattern that we use in our model allows us to study the charac-
teristics of the process that are important to understand if we are to improve
the performance of the process. Remarkably, a step pattern for the retail sales
is a good pattern for this purpose.

Understanding in detail why this is true requires studying some theory that is
beyond the scope of this text, but we will later look at a more realistic pattern of
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retail orders and show that the behavior of the production-distribution process
in response to this more realistic pattern is remarkably similar to its behavior
with a step input. If you have studied engineering systems, you have probably
already learned that the response of a linear system to a step input completely
characterizes the behavior of the system. While the processes that we are consid-
ering are generally nonlinear, their responses to a step input still gives important
information about how the process responds to a variety of inputs.

To continue this theoretical discussion slightly longer, readers who have stud-
ied Fourier or Laplace analysis methods will remember that the frequency spec-
trum for a step function contains all frequencies. Therefore, using a step as
input to a process excites all resonant frequencies of the process. These resonant
frequencies are usually a critical determinant of the behavior of the process, and
therefore the process response to a step input is often a good indicator of how
the process will respond to a variety of inputs.

Other Model Equations

The remainder of the model equations in Figure 5.2b are mostly straightforward.
Equations 3 and 7 for the stock variables Factory Order Backlog and Retail
Inventory are known from the stock and ®ow diagram in Figure 5.2a, except
for the initial values. We see from equation 3 that the initial value of Factory
Order Backlog is 200 units, and equation 7 shows that the initial value of Retail
Inventory is 400 units.

At an initial Factory Order Backlog of 200 units with a TARGET PRODUC-
TION DELAY of 2 weeks (as given by equation 11 in Figure 5.2b), the \desired
production" is 200=2 = 100 units per week. As long as there is no variation
in Factory Order Backlog, then \factory production" will be equal to \desired
production," and hence will also be equal to 100 units per week.

We see from equation 12 that the initial value of TESt input is 100 units per
week, and hence from equation 8 this is also the initial value of retail sales. With
no variation in retail sales, average retail sales will be equal to retail sales, and
hence also equal to 100 units per week, and thus from equation 9 this will also
be the retailer orders to the factory.

Since initial retail sales, and hence retailer order to the factory, are equal to
factory production (100 units per week), then the system will initially be rather
boring|the factory will make 100 units per week, which will be sold by the
retailer. The Factory Order Backlog will remain stable at 200 units, and the
Retail Inventory will remain stable at 400 units.

When a process is in a situation like that described in the last few paragraphs
where the variables remain constant over time, it is said to be in equilibrium or
steady state. A steady state condition for a simulation model can be detected
by examining the stocks in the model. In steady state, the sum of all in®ows to
each stock is equal to the sum of all out®ows, and therefore the magnitudes of
the stocks do not change over time.

If the production-distribution process we are studying had not started out in
equilibrium, then even without any changes in TESt input some of the variables
would have changed over time. For example, if the initial value for Factory Order
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Backlog had been greater than 200 units, then this level would have declined
over time even if retail sales had remained steady at 100 units per week. This is
because at a Factory Order Backlog greater than 200 units factory production
will exceed 100 units per week, which is the retailer order rate, and hence the
®ow out of Factory Order Backlog will exceed the ®ow in.

Since our purpose in this analysis is to study the impact of changes in retail
sales on the production-distribution process, it is desirable to start the process
model in steady state. Otherwise, it will be di° cult to separate variations over
time in the values of the various model variables which are due to changes in
retail sales from those variations which are due to the lack of initial steady state.
Similar arguments hold for many business process models, and it is usually good
practice to initialize the variables in a model so that it starts in steady state.

The remaining equations in Figure 5.2b (equations 5, 6, 10, and 13) set char-
acteristics of the simulation model. From equations 5 and 6 we see that the
simulation will run for 50 weeks, or approximately one year. The rationale for
setting the TIME STEP (equation 13) to 0.25 will discussed below.

5.2 Performance of the Process

Before reviewing Figure 5.2c which shows results from simulating the model in
Figure 5.5a and Figure 5.2b, you may wish to consider how you expect the process
to respond to the TESt input. This is a much simpler production-distribution
system than many in the real world, and many of those real world systems are
managed with relatively little analysis. Perhaps all this analysis is not necessary.
What do you think will happen in the process? Is the retailer ordering policy
used in this model a good one? What are its strengths and weaknesses?

Figure 5.2c shows plots of three key variables (retail sales, retailer orders, and
Retail Inventory) when the simulation model in Figure 5.2b is run. For the ± rst
ten weeks everything remains constant. The graphs show that retail sales are
100 units per week, and retailer orders also remain at 100 units per week. Retail
Inventory remains at 400 units. At week 10, retail sales jump to 120 units per
week, and remain there for the remaining 40 weeks shown in the graph. Retailer
orders do not immediately jump to 120 units per week because an average of
past sales is used as a basis for ordering, and it takes a while for the average to
climb to 120 units. However, since the averaging period (TIME TO AVERAGE
SALES) is only 1 week, retailer orders quickly move upward, and by week 14
these are also at 120 units per week.

A careful reader may wonder why these orders do not reach 120 units per
week by week 11 since the TIME TO AVERAGE SALES is only 1 week. An
exponential averaging process actually considers a period longer than the aver-
aging time, but it gives increasingly less weight to earlier values as time goes on.
This will be discussed further below.

The behavior of retail sales and retailer orders is what we would probably have
expected. What about Retail Inventory? Figure 5.2c shows that this remains
level until week 10 and then starts to decline. It wiggles somewhat before leveling
o�at 340 units. It reaches a low of about 310 units at week 17, and then increases
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Figure 5.2c Plots for � rst model

to a peak of about 350 units at week 26 before dropping back to 340 units. Note
that there is also a slight valley at around week 35.

This type of wiggling is called oscillation. When you did your intuitive predic-
tion of how the process would perform, did you expect this oscillation? For that
matter, did you predict that Retail Inventory would decline? While not shown
in Figure 5.2c, after seeing this ± gure you will probably not be surprised to
learn that Factory Order Backlog and factory production also both show similar
oscillation to those shown by Retail Inventory.

While these oscillations are not large, they pose some challenges to a fac-
tory manager. Decisions have to be made about how to provide the necessary
resources under oscillating production conditions. For example, do you lay o�
factory workers when production dips? Also, the revenue stream associated with
oscillating conditions is likely to be uneven, which is generally not desirable.

We will shortly be paying considerably more attention to oscillations, but
for now focus on the ± nal level of Retail Inventory. Is this acceptable? For
the particular retail sales stream analyzed here, it may be. In fact, the lower
Retail Inventory resulting from the jump in sales probably means lower inventory
carrying costs, and hence higher pro± t. However, a little additional thought
shows that this could be a dangerous policy in some situations. In particular,
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suppose that retail sales continue to grow (as we would hope they do!). What
happens then? In that case, because average retail sales will always be somewhat
less than current retail sales, there will never be quite enough ordered to replace
what is sold, and eventually Retail Inventory will be depleted.

This e�ect can be reduced by reducing the TIME TO AVERAGE SALES,
which corresponds to more rapidly ordering, however, it cannot be entirely elim-
inated because even if you instantaneously order after each sale, you will still
fall behind because of delays in production.

This e�ect is one reason that many production-distribution systems are mov-
ing to automated, speeded-up ordering systems. For example, Wal Mart has
made extensive use of such systems in its rise to retailing dominance. However,
there is a limit to what is possible along these lines, particularly in businesses
where the supply chain is not yet highly integrated. Is there some approach
that a retailer can use in ordering that will reduce the danger of running out
of inventory when sales rise? (Incidentally, note that if sales steadily fall, then
Retail Inventory will steadily rise.)

5.3 The Second Model

It seems that we need to directly consider the level of Retail Inventory when
retailer orders are placed in order to make sure that this inventory does not
reach undesirable levels. The stock and ®ow diagram in Figure 5.3a shows an
approach to doing this. This is modi± ed from the Figure 5.2a diagram as follows:
There is an information arrow from Retail Inventory to retailer orders to show
that these orders depend on Retail Inventory. There are two auxiliary constants
DESIRED INVENTORY and TIME TO ADJUST INVENTORY which also
in®uence retailer orders. The remainder of this diagram is the same as Figure
5.2a.

The approach to considering Retail Inventory in retailer orders which is shown
in this diagram makes intuitive sense: There is a speci± ed level of DESIRED
INVENTORY and retailer orders are adjusted to attempt to maintain this level.
Of course, we do not want to radically change our orders for every small change
in Retail Inventory, and so we take some time to make the adjustment (TIME
TO ADJUST INVENTORY). Turning this into a speci± c equation, there is now
a component of retailer orders as follows:

DESIRED INVENTORY £ Retail Inventory

TIME TO ADJUST INVENTORY

That is, if everything were to remain the same, the di�erence between DESIRED
INVENTORY and the actual Retail Inventory would be eliminated in a time
period equal to TIME TO ADJUST INVENTORY. Note that if DESIRED IN-
VENTORY is below Retailer Inventory, then the ordering level will be reduced,
while if DESIRED INVENTORY is above Retailer Inventory the ordering level
will be increased.
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Figure 5.3a Stock and ¯ ow diagram for second model

The equations for the second model are shown in Figure 5.3b. These are
identical to the equations in Figure 5.2b except that de± nitions have been added
for the two constants DESIRED INVENTORY and TIME TO ADJUST IN-
VENTORY, and the equation for retailer orders has been modi± ed as discussed
in the preceding paragraph. Speci± cally, in Figure 5.3b, equation 2 shows that
the DESIRED INVENTORY is 400 units (which was the initial level of Retail
Inventory), and equation 15 shows that the TIME TO ADJUST INVENTORY
is 2 weeks. Equation 10 shows that retailer orders now include the component
discussed above to adjust the level of Retailer Inventory, in addition to the com-
ponent to replace retail sales.

A note is in order here on possible de± ciencies in the formulation of this model.
Because the component of the retailer orders equation (equation 10) to replenish
inventory can have a negative sign, it is possible that the overall value of retailer
orders could become negative. Exactly what would happen in that case depends
on the ordering arrangements. It may be possible to withdraw previously placed
orders, or it may not be possible to do this. In a more complete model, this
would be taken into account. Our simple model assumes that it is possible to
withdraw previously placed orders. In fact, the model even assumes that it is
possible to withdraw more orders than you have actually placed, which is not
likely to be true in a realistic setting.
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(01) average retail sales = SMOOTH(retail sales, TIME TO AVERAGE SALES)

(02) DESIRED INVENTORY = 400

(03) desired production = Factory Order Backlog / TARGET PRODUCTION DELAY

(04) Factory Order Backlog

= INTEG(retailer orders - factory production, 200)

(05) factory production

= SMOOTH(desired production, TIME TO ADJUST PRODUCTION)

(06) FINAL TIME = 50

(07) INITIAL TIME = 0

(08) Retail Inventory = INTEG(factory production - retail sales, 400)

(09) retail sales = TESt input

(10) retailer orders = average retail sales

+ (DESIRED INVENTORY - Retail Inventory) / TIME TO ADJUST INVENTORY

(11) SAVEPER = TIME STEP

(12) TARGET PRODUCTION DELAY = 2

(13) TESt input = 100 + STEP(20,10)

(14) TIME STEP = 0.25

(15) TIME TO ADJUST INVENTORY = 2

(16) TIME TO ADJUST PRODUCTION = 4

(17) TIME TO AVERAGE SALES = 1

Figure 5.3b Vensim equations for second model

Thinking further along those lines, you will see that there is also no constraint
in the model on the possible values for Factory Order Backlog and Retail Inven-
tory. Thus, it is possible in this model for these to become negative. Again, a
more complete model should take these issues into consideration. However, we
are interested at the moment in the general characteristics of the performance
of this process, rather than the details. The model we have developed will be
su° cient for this purpose, as we will shortly see.

What do you think will be the performance of the modi± ed ordering policy?
Do you think it will cure the problem of under ordering when sales are growing
and over ordering when sales are declining?

Figure 5.3c gives the answer, and it is not pleasant. The same three variables
are plotted here as in Figure 5.2c which we considered earlier. We see that the
system goes into large and growing oscillation. In fact, the situation is worse
than it may ± rst appear because the scales for some of the graphs is Figure
5.3c (as shown on the left side of the graphs) are greater than those for Figure
5.2c. Thus, the oscillations are greater than it might ± rst appear by visually
comparing Figure 5.2c and Figure 5.3c.

Retail sales still display the same step pattern as in Figure 5.2c. (They must
do this since they are de± ned exogenously to the model.) However, both retailer
orders and Retail Inventory wildly oscillate. Furthermore, both of these go
substantially negative. As noted above, the model equations are probably not
valid when this happens, so a real world system would not display exactly the
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Figure 5.3c Plots for second model

behavior shown here. However, it is clear that the revised retailer ordering policy
is highly unacceptable.

What is going wrong? Some thought shows the answer and provides insight
into the performance of real world production-distribution systems. The di° -
culty with the new ordering policy results from the delays in producing the stock
that has been ordered. It takes time for the orders to work their way through
the Factory Order Backlog, be produced, and ®ow into Retail Inventory. While
this is going on, retailer orders continue to be high in a continuing attempt to
replace the declining Retail Inventory. Then, when the ordered units ± nally start
to arrive, Retail Inventory grows. At this point, the inventory correction term in
retailer orders turns negative in an attempt to reduce the level of Retail Inven-
tory. Once again, it takes time for the impact of this to work its way through the
process, and this eventually leads to an overcorrection in the opposite direction.
Figure 5.3c shows this problem getting worse as time goes on.
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A Technical Note

Our main emphasis is on model formulation, but a brief note is in order on how
the model equations are solved to develop a graph like the one shown in Figure
5.3c. As our earlier development showed, the solution of the model equations re-
quires that some integrals be calculated. There are a variety of di�erent methods
to do this, and most simulation packages provide options for how this is done.
The simplest of these methods, called Euler integration, was used to determine
Figure 5.3c (as well as all the other output presented in this text).

The Euler integration method implemented in Vensim consists of the following
steps:

1 Set \Time" to its initial value.
2 Set all of the stocks in the model to their initial values as speci± ed by the

\initial value" argument of the INTEG function for each stock.
3 Compute the rate of change at the current value of \Time" for each stock

by computing the net values of all the ®ows ®ow into and out of each stock.
(That is, ®ows into a stock increase the value of the stock, while ®ows out of
a stock decrease the value of the stock.)

4 Assume that the rate of change for each stock will be constant for the time
interval from \Time" to \Time + TIME STEP," and compute how much the
stock will change over that interval. This can be expressed in equation form
as follows: If the rate of change for a particular stock calculated in Step 3
is \rate(Time)," then the value of that stock at time Time + TIME STEP is
given by

Stock(Time + TIME STEP) = Stock(Time) + TIME STEP¤rate(Time)

5 Add \TIME STEP" to \Time."
6 Repeat Steps 3 through 5 until \Time" reaches \FINAL TIME."

From this procedure, it is apparent that the accuracy of the Euler method is
in®uenced by the value chosen for the model constant TIME STEP. It is generally
recommended that a value of TIME STEP be selected that is less than one-third
of the smallest time-related constant in the model. In the Figure 5.3b model,
the smallest such constant is TIME TO AVERAGE SALES which is equal to
1 week. Therefore, TIME STEP was set equal to 0.25, which is one-quarter of
TIME TO AVERAGE SALES. A quick test for whether TIME STEP is small
enough is to reduce it by a factor of two and rerun the simulation. If there is no
signi± cant change in the output, then this indicates that TIME STEP is small
enough.

However, even with a small value of TIME STEP, the Euler integration
method can yield inaccurate results when there are signi± cant oscillations in
a process. As Figure 5.3c shows, there are signi± cant oscillations in the process
we are studying. Therefore, other, more sophisticated integration procedures
should be used if high accuracy is needed. However, even without using these
more sophisticated integration method, it is clear that the ordering policy in our
second model is not a good one.
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More sophisticated integrated methods available in many simulation packages
often include one or more of the Runge-Kutta methods. The underlying idea of
these methods is to estimate the rate at which the ®ows into stocks are varying
over time, and then use this information to improve on the approximation in
Step 4 of the Euler procedure presented above. When this is done, it is often
possible to achieve improved accuracy without as much increase in computation
as would be necessary if the value of TIME STEP were decreased in the Euler
procedure.

5.4 The Third Model

You might suspect that the problem displayed in Figure 5.3c is due to including
a component in the retailer orders to take account of retail sales. Perhaps if we
focus completely on Retail Inventory when making retailer orders, this will ± x
the problem. The stock and ®ow diagram in Figure 5.4a shows this approach.
This di�ers from the diagram in Figure 5.3a in that the variables related to
ordering to replace retail sales are removed. Speci± cally, at the left center of the
diagram, the auxiliary variable \average retail sales" is removed along with the
constant TIME TO AVERAGE SALES.

The corresponding equations are shown in Figure 5.4b. These di�er from
the equations in Figure 5.3b in that the equations for \average retail sales" and
TIME TO AVERAGE SALES are removed, and the term for average retail sales
is removed from equation 9 for retailer orders.

The resulting performance is shown in Figure 5.4c, and we see that this per-
formance is even worse than what was shown in Figure 5.3c. (Note that the
scales for some of the graphs in Figure 5.4c are considerably increased relative
to Figure 5.3c, and thus the amplitude of the oscillations are much worse.)

Clearly this is not the answer.

5.5 The Fourth Model

Return now to the second model, whose performance is shown in Figure 5.3c.
While the oscillations are clearly unacceptable, there is one way in which the
performance of this process is better than the performance for the ± rst model
which was shown in Figure 5.2c. While there are wild oscillations in the Retail
Inventory in Figure 5.3c, these oscillations are around an average level of 400
units, which is the Retail Inventory that we are trying to maintain. Thus, this
process does not display the declining Retail Inventory level that is shown in
Figure 5.2c. Unfortunately, the oscillations shown in Figure 5.3c are much too
great to be acceptable in most real world production-distribution systems.

Our discussion above of the second model showed that the oscillations are
due to the delays in obtaining the product that the retailer has ordered. This
is sometimes referred to as a \pipeline" e�ect. We place orders into the supply



58 CHAPTER 5 DEVELOPING A MODEL

DESIRED
INVENTORY TIME TO

ADJUST
INVENTORY

retailer orders

TESt input

TIME TO ADJUST
PRODUCTION

TARGET
PRODUCTION

DELAY

factory
production

desired production

retail sales
Retail

Inventory

Factory Order
Backlog

Figure 5.4a Stock and ¯ ow diagram for third model



5.5 THE FOURTH MODEL 59

(01) DESIRED INVENTORY = 400

(02) desired production

= Factory Order Backlog / TARGET PRODUCTION DELAY

(03) Factory Order Backlog

= INTEG(retailer orders - factory production, 200)

(04) factory production

= SMOOTH(desired production, TIME TO ADJUST PRODUCTION)

(05) FINAL TIME = 50

(06) INITIAL TIME = 0

(07) Retail Inventory = INTEG(factory production - retail sales, 400)

(08) retail sales = TESt input

(09) retailer orders

= (DESIRED INVENTORY - Retail Inventory)

/ TIME TO ADJUST INVENTORY

(10) SAVEPER = TIME STEP

(11) TARGET PRODUCTION DELAY = 2

(12) TESt input = 100 + STEP(20, 10)

(13) TIME STEP = 0.25

(14) TIME TO ADJUST INVENTORY = 2

(15) TIME TO ADJUST PRODUCTION = 4

Figure 5.4b Vensim equations for third model
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pipeline, and then we basically forget about these orders and keep ordering. As
discussed above, this leads to the oscillatory performance of the process.

The stock and ®ow diagram in Figure 5.5a shows one way to account for the
orders that are in the pipeline. This diagram is developed from the diagram
in Figure 5.3a (not Figure 5.4a!) as follows: An information arrow is added
from Factory Order Backlog to retailer orders. Thus, the retailer ordering policy
will now explicitly take into account the backlog of orders. How this is done is
indicated by the new auxiliary variable \desired pipeline orders" in the center of
the left side of the diagram, and the two new constants DELAY IN RECEIVING
ORDERS and TIME TO ADJUST PIPELINE.

The \desired pipeline orders" are the amount we want to have on order at
any time, and this depends on \average retail orders" and the DELAY IN RE-
CEIVING ORDERS. In particular, we need to have an amount in the supply
pipeline equal to the product of \average retail orders" and DELAY IN RE-
CEIVING ORDERS if we are to continue to receive enough to replenish our
sales on average. That is,

desired pipeline orders = average retail sales

¤DELAY IN RECEIVING ORDERS:

However, following the same logic presented above regarding adjusting retailer
orders to account for changes in Retail Inventory, we do not want to instantly
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change our orders in response to changes in desired pipeline orders. Hence there is
a constant TIME TO ADJUST PIPELINE which plays a similar role to TIME
TO ADJUST INVENTORY. Therefore, there should be a component in the
retailer order equation to account for orders in the supply pipeline as follows:

desired pipeline orders £ Factory Order Backlog

TIME TO ADJUST PIPELINE
:

The required model equations are shown in Figure 5.5b. The value of DE-
LAY IN RECEIVING ORDERS is set to agree with TARGET PRODUCTION
DELAY. Since the factory has set up a TARGET PRODUCTION DELAY of
2 weeks (equation 14), DELAY IN RECEIVING ORDERS is also set to this
value in equation 2. The TIME TO ADJUST PIPELINE is also set to 2 weeks
in equation 18. Finally, the additional retailer ordering term discussed above is
added to retailer orders in equation 12.

The resulting process performance is shown in Figure 5.5c. This is substan-
tially improved relative to what is shown in any of the earlier ± gures. The
magnitude of oscillation for Retail Inventory is not much greater than in the
original process in Figure 5.2c, but now the Retail Inventory fairly quickly re-
turns to the desired level of 400 units. (Note that the scales for Figure 5.2c and
Figure 5.5c are the same.) Retailer orders now rise above retail sales, but they
then quickly drop back to the level of retail sales without the wild oscillations
that were displayed in the second and third models. (This type of behavior is
called an overshoot.) This performance is pretty good, although there is still
some oscillation in Retail Inventory.

5.6 The Fifth Model

After some study of the fourth model, you might consider a possible enhancement
to reduce the amount of oscillation. In the fourth model, a constant value is used
for the DELAY IN RECEIVING ORDERS. Perhaps adding a forecast for this
delay would improve the performance of the process. Figure 5.6a shows a stock
and ®ow diagram for a process which includes such a forecast. The constant
DELAY IN RECEIVING ORDERS shown in Figure 5.5a has been replace by
an auxiliary variable \delivery delay forecast by retailer," which is shown in the
upper left corner of the diagram. This forecast depends on a constant TIME TO
DETECT DELIVERY DELAY and another auxiliary variable \delivery delay
estimate." The \delivery delay estimate" depends on Factory Order Backlog
and \factory production."

Note that a new type of diagram element has been introduced. This is the
symbol for \factory production" in the upper right portion of the diagram. This
is a second copy of \factory production." (The ± rst copy of this variable is shown
in the center right of the diagram.) The second copy is shown in angle brackets
(<, >), and such a second copy of a variable is called a shadow variable or a ghost
variable. Shadow variables are used to avoid the need to run additional arrows
in a stock and ®ow diagram which would make it more complex and confusing
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(01) average retail sales = SMOOTH(retail sales,TIME TO AVERAGE SALES)

(02) DELAY IN RECEIVING ORDERS = 2

(03) DESIRED INVENTORY = 400

(04) desired pipeline orders

= DELAY IN RECEIVING ORDERS * average retail sales

(05) desired production = Factory Order Backlog / TARGET PRODUCTION DELAY

(06) Factory Order Backlog

= INTEG(retailer orders - factory production, 200)

(07) factory production

= SMOOTH(desired production, TIME TO ADJUST PRODUCTION)

(08) FINAL TIME = 50

(09) INITIAL TIME = 0

(10) Retail Inventory = INTEG(factory production - retail sales, 400)

(11) retail sales = TESt input

(12) retailer orders = average retail sales

+ (DESIRED INVENTORY - Retail Inventory) / TIME TO ADJUST INVENTORY

+ (desired pipeline orders - Factory Order Backlog)

/ TIME TO ADJUST PIPELINE

(13) SAVEPER = TIME STEP

(14) TARGET PRODUCTION DELAY = 2

(15) TESt input = 100 + STEP(20,10)

(16) TIME STEP = 0.25

(17) TIME TO ADJUST INVENTORY = 2

(18) TIME TO ADJUST PIPELINE = 2

(19) TIME TO ADJUST PRODUCTION = 4

(20) TIME TO AVERAGE SALES = 1

Figure 5.5b Vensim equations for fourth model
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Figure 5.5c Plots for fourth model
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Figure 5.6a Stock and ¯ ow diagram for � fth model

to read. In this case, it avoids the need to run an information arrow from the
original version of \factory production" in the right center of the diagram all
the way to the top center of the diagram where the \delivery delay estimate"
variable is located.

The forecasting submodel is an attempt to model what an actual retailer might
be able to do to forecast what is happening at its supplier. Such a retailer is
likely to have some idea of what Factory Order Backlog and \factory production"
are at any time. The product of these yields an estimate of delivery delay:

delivery delay estimate =
Factory Order Backlog

factory production

However, the retailer's estimates of Factory Order Backlog and factory pro-
duction are likely to be somewhat out of date at any given time, and also in-
®uenced by what has been happening at the factory over a period of time. A
simple model of this is the exponential averaging process that we have brie®y
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discussed earlier. Thus, the \delivery delay forecast by retailer" is modeled as
an exponential average of the \delivery delay estimate" over an averaging period
of TIME TO DETECT DELIVERY DELAY.

The equations for the ± fth model are shown in Figure 5.6b. Equation 2
gives \delivery delay estimate," and equation 3 gives \delivery delay forecast by
retailer." The constant TIME TO DETECT DELIVERY DELAY is given in
equation 22 as 2 weeks.

Alas, as Figure 5.6c shows, adding this forecast makes things somewhat worse
than in the fourth model. The process now oscillates. The basic problem is
that forecasts tend to predict that current trends will continue into the future.
Thus, when retail sales jump at 10 weeks, the forecast leads to more extreme
over ordering than in the fourth model. This overcorrection problem also occurs
during the later attempt to reduce ordering, and the oscillating process continues.
Forecasts sometimes do not help system performance, as this example shows.

5.7 Random Order Patterns

At this point, some readers may say, \Yah, but this model is too simple. The
real world is more complex than this, and things average out. You don't really
have to worry about all this stu� in the real world." While this is a natural
reaction, it is a little strange when you think about it: A more complicated
process will perform better and be easier to manage? This doesn't seem very
likely. And the data doesn't support that view. The oscillatory behavior of
production-distribution systems, as well as many other social-technical systems
(including the national and world economies) is well documented.

As a small con± rmation of the more general applicability of what we have
seen in this chapter, Figure 5.7 shows the performance of the second model and
the fourth model that we studied above in the presence of random retail orders.
To produce these diagrams, equation 12 of the second model (shown in Figure
5.3b) and the equivalent equation 16 of the fourth model (shown in Figure 5.5b)
were replaced by

TESt input = 100 + STEP(20; 10) � RANDOM UNIFORM(0; 1; 0):

The Vensim function RANDOM UNIFORM(m, x, s) produces random numbers
that are uniformly distributed between m and x, with the argument s (called the
seed) setting the speci± c stream of random numbers. Therefore, this modi± ed
equation will produce a TESt input of 100 until week 10, and then it will produce
a random TESt input that is distributed uniformly between 100 and 120.

Note that some of the scales are di�erent for Figure 5.7a and Figure 5.7b.
When we compare these graphs to the corresponding Figure 5.3c and Figure
5.5c, we see that the performance is very similar with a random retail order
stream to what was seen with a step order stream. This supports the statement
made earlier that the step input often serves as a good test input for a process
model. Furthermore, these results support a conclusion that the oscillations in
the process are due to innate characteristics of the process and not to external
characteristics of, for example, the retail order stream.
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(01) average retail sales = SMOOTH(retail sales, TIME TO AVERAGE SALES)

(02) delivery delay estimate = Factory Order Backlog / factory production

(03) delivery delay forecast by retailer

= SMOOTH(delivery delay estimate, TIME TO DETECT DELIVERY DELAY)

(04) DESIRED INVENTORY = 400

(05) desired pipeline orders

= delivery delay forecast by retailer * average retail sales

(06) desired production = Factory Order Backlog / TARGET PRODUCTION DELAY

(07) Factory Order Backlog

= INTEG(retailer orders - factory production, 200)

(08) factory production

= SMOOTH(desired production,TIME TO ADJUST PRODUCTION)

(09) FINAL TIME = 50

(10) INITIAL TIME = 0

(11) Retail Inventory = INTEG(factory production - retail sales,400)

(12) retail sales = TESt input

(13) retailer orders = average retail sales

+ (DESIRED INVENTORY - Retail Inventory) / TIME TO ADJUST INVENTORY

+ (desired pipeline orders - Factory Order Backlog)

/ TIME TO ADJUST PIPELINE

(14) SAVEPER = TIME STEP

(15) TARGET PRODUCTION DELAY = 2

(16) TESt input = 100 + STEP(20,10)

(17) TIME STEP = 0.25

(18) TIME TO ADJUST INVENTORY = 2

(19) TIME TO ADJUST PIPELINE = 2

(20) TIME TO ADJUST PRODUCTION = 4

(21) TIME TO AVERAGE SALES = 1

(22) TIME TO DETECT DELIVERY DELAY = 2

Figure 5.6b Vensim equations for � fth model
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Figure 5.6c Plots for � fth model
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Figure 5.7a Random retail sales for second model
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Figure 5.7b Random retail sales for fourth model
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5.8 Concluding Comments

Production-distribution processes, and similar structures in service businesses,
are widespread throughout industry. Understanding these processes is useful
for any business person. The di° culty of controlling these processes which was
displayed in this example is shared by many real world processes. The result in
many such processes is a massive control structure to ensure stability. Unfor-
tunately, such structures often make the processes strongly resistant to change
when the external environment changes. In the remainder of this text, we will
investigate ways of looking at processes that can help you in the search for better
performance.

5.9 Reference

W. E. Jarmain (ed.), Problems in Industrial Dynamics, The MIT Press, Cam-
bridge, Massachusetts, 1963.
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Delays,Smoothing,
andAveraging

Delays are inherent in many management processes. It takes time to make a
product or deliver a service. It takes time to hire or lay o° workers. It takes time
to build a new facility. In this chapter, we will investigate how such delays can
be modeled. We will also investigate the related topic of smoothing (averaging)
information ¯ ows.

6.1 Pipeline Material Flow Delays

The simplest type of delay to visualize is the \pipeline" delay where material
¯ ows into one end of the delay and ¯ ows out the other end unchanged some
speci�ed period of time later, just like water ¯ owing through a pipeline. Most
simulation systems include one or more functions to implement a pipeline delay.
For example, Vensim includes the DELAY FIXED and DELAY MATERIAL
functions.

The use of the DELAY FIXED function is illustrated in Figure 6.1. The
stock and ¯ ow diagram in Figure 6.1a demonstrates a suggested notation for
indicating delays in a diagram. In this diagram, there is a delay in the ¯ ow from
Input Stock to Output Stock. The ¯ ow out of Input Stock is controlled by the
¯ ow variable \delay input," and this ¯ ow enters the delay leading from \delay
input" to \delay output," which controls the ¯ ow into Output Stock. The delay
between these two ¯ ow controls is indicated by a thick solid pipe.

There are three arguments for the DELAY FIXED function, as shown in
equation 2 of Figure 6.1b. The �rst is the input to the delay, the second is the
delay time through the pipeline, and the third speci�es what the output should
be from the pipeline from the beginning of the simulation until there has been
enough time for input to reach the end of the pipeline.

The results from a simulation run of the Figure 6.1b model are shown in
Figure 6.1c. A step TESt input has been used, and we see from this �gure that
the delay output is the same step, but delayed by the length DELAY TIME
of the pipeline, which is 10. Regardless of the form of the input, the output



74 CHAPTER 6 DELAYS, SMOOTHING, AND AVERAGING

DELAY TIME
TESt input

Output StockInput Stock
delay outputdelay input

a. Stock and ¯ ow diagram

(01) delay input = TESt input

(02) delay output

= DELAY FIXED(delay input,DELAY TIME, delay input)

(03) DELAY TIME = 10

(04) FINAL TIME = 40

(05) INITIAL TIME = 0

(06) Input Stock = INTEG(delay input, 10000)

(07) Output Stock = INTEG(delay output, 0)

(08) SAVEPER = TIME STEP

(09) TESt input = 100 + STEP(20, 10)

(10) TIME STEP = 0.5

b. Vensim equations
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c. Delay

Figure 6.1 Pipeline delay in material ¯ ow
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from the pipeline will be identical to the input, but delayed by the length of the
pipeline.

In some business processes, the length of the delay in a pipeline delay can
change depending on conditions elsewhere in the process. For example, the
delay in a production process may change depending on the available personnel.
If you need to model a situation of this type, then carefully consult the reference
manual for your simulation package to be sure you understand what function to
use to correctly model such a situation. In particular, you should make sure that
the function you use conserves the material in the delay when the delay time
changes. In Vensim, the DELAY MATERIAL function should be used for such
a situation. This function requires you to specify some information about what
happens to material ¯ ow when the delay changes.

6.2 Third Order Exponential Delays

The pipeline delay is an intuitively appealing model for material ¯ ow delays, but
in some situations the ¯ ow process is not quite as clearcut. When orders are
placed, sometimes all of the ordered goods do not arrive at exactly the same
time. That is, there may be some variation in the delay time for the goods
to arrive. The third order exponential delay provides a simple model for this
situation. The use of this type of delay is illustrated in Figure 6.2. The same
stock and ¯ ow diagram as in Figure 6.1a applies here, but the function for the
delay between \delay input" and \delay output" is di° erent than in Figure 6.1.
The only change in the information you need to enter is in equation 2, and the
modi�ed equation is shown in Figure 6.2a.

The third order exponential delay equation in Vensim is called DELAY3, and
it has two arguments. The �rst is the input variable to the delay, and the
second is the delay time through the delay. The initial output from the delay is
automatically set equal to the initial input to the delay. (Vensim provides another
function DELAY3I which is identical to DELAY3, except that the initial output
from the delay can be speci�ed as di° erent from the initial input.)

A step input to the third order exponential delay and the resulting output
are shown in Figure 6.2b. In the left graph, a step input is shown, and the right
graph shows that the output from this changes more gradually than with the
pipeline delay. There is very little output for two or three time units after the
step occurs, and then the output gradually comes through.

Material ¯ ow through a third order exponential delay is conserved even if the
length of the delay changes while ¯ ow is occurring.

While the third order exponential delay is a satisfactory way to model many
situations where there is some variability in the ¯ ow rate through the delay, you
should be aware that it impacts time-varying inputs in a way that may not be
appropriate as a model for some material ¯ ow processes. This is illustrated in
Figure 6.3.

Figure 6.3a shows the changes from the Figure 6.2a equations which were
made to generate the results shown in Figure 6.3b. Speci�cally, the step input of
height 20 starting at time 10 was replaced with a sinusoidal input of amplitude
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(01) delay input = TESt input
(02) delay output = DELAY3(delay input, DELAY TIME)
(03) DELAY TIME = 10
(04) FINAL TIME = 40
(05) INITIAL TIME = 0
(06) Input Stock = INTEG(delay input, 10000)
(07) Output Stock = INTEG(delay output, 0)
(08) SAVEPER = TIME STEP
(09) TESt input = 100 + STEP(20, 10)
(10) TIME STEP = 0.5

a. Vensim equations
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Figure 6.2 Third order delay in material ¯ ow
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20 starting at time 10. The results for three di° erent cycle lengths (periods) for
this sinusoidal are shown in Figure 6.3b. The left hand graphs in Figure 6.3b
show the delay input for three di° erent values of CYCLE LENGTH, and the
right hand graphs show the resulting delay output for each of these three inputs.

Each of the three delay inputs has an amplitude of 20, but the cycle lengths
varies. The top curve marked RUN4 has a cycle length of 4 time units, the
middle curve marked RUN13 has a cycle length of 13, and the bottom curve
marked RUN52 has a cycle length of 52. Thus, if the time units are weeks, these
correspond to roughly monthly, quarterly, and annual cycles. Note that the three
left hand graphs have the same amplitudes.

However, the amplitudes shown in the output curves in the right hand graphs
are substantially di° erent for the three inputs. The amplitude of the graph with
a 4 week cycle is so small that it is hard to see much wiggle at all, the graph for
the 13 week cycle has a somewhat larger amplitude, and the graph for the 52
week cycle has the largest amplitude. Note that none of these curves has as large
an amplitude as the input. Furthermore, each of the output graphs is shifted
somewhat to the right from the corresponding input graph. That is, the input
is delayed as we would expect. (This delay is sometimes referred to as a phase
shift when the input is a sinusoidal curve.)

These graphs illustrate that a third order exponential delay reduces (attenu-
ates) inputs which vary over time, and furthermore, it attenuates inputs which
vary faster more than inputs which vary slower. Using engineering jargon, a
third order exponential delay di° erentially� lters out higher frequency variations,
as well as phase shifting the input.

6.3 Information Averaging

Many management actions should not be made in reaction to every random
variation in the environment. For example, it takes time and resources to train
workers or acquire large capital equipment. You do not want to undertake ma-
jor changes in workforce or capital without some assurance that the long term
conditions warrant this. In such situations, averaging is used to deal with the
inherent irregularity of the processes.

The process of attempting to detect underlying, signi�cant changes in data,
while ignoring random, transitory ¯ uctuations is called averaging or smoothing.
This process can either be formal using statistical methods, or it can be informal
and done \on the ¯ y" while going about the daily activities of business man-
agement. This \psychological smoothing" is widespread, and experience with
process models shows that it can have a signi�cant impact on the dynamics of a
business process. Therefore, it is important to model averaging/smoothing in a
process.

In considering averaging, it is important to understand that the use of an
average in decision making implicitly introduces a delay into the decision making.
If, for example, you act based on the average of sales for the last month, rather
than current sales, then you are inherently acting on delayed information since
all of the numbers used in calculating the average except the most recent are
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CYCLE LENGTH = 4
TESt input
= 100 + STEP(20, 10)

* SIN(2 * 3.14159 * (Time - 10) / CYCLE LENGTH)

a. Changes in Vensim equations from Figure 6.2a 
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Figure 6.3 Third order delay impact on amplitude and phase
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delayed. The delays in an averaging process can have an important impact on
how the process responds to changes in the external environment.

Moving Average

The most obvious averaging procedure is a moving average. With this approach,
data is used from a speci�ed period (for example, daily sales �gures for the last
month), and each of the entries used in the average is given the same weight in
calculating the average. Thus, the average is calculated by simply adding up the
entries and dividing by the number of entries. As time moves along, the average
is recalculated by dropping the oldest entry each time period and adding on the
most recent entry.

The moving average is a simple procedure to explain and implement. Most
people learn how to calculate averages in elementary school, and adding the
\moving" component to the procedure is straightforward.

However, this process has one disadvantage, either as a formal calculation
procedure, or as a model for the informal averaging that most people do in their
heads every day as they take actions. This disadvantage is that the moving
average gives the same weight to all of the entries in the average, regardless of
how old they are. Thus, if a moving average of daily sales for the last month is
calculated, the sales �gure for a month ago receives as much weight in calculating
the average as the sales �gure for yesterday. However, conditions change, and
it seems that often the sales �gure for yesterday should receive more weight, at
least if the average is going to be used as a basis for taking some action. After
all, yesterday's sales were made under conditions that are the closest to today's
conditions. Especially in a model of how people informally average information,
it seems clear that recent data should receive more weight. When we think about
past conditions, we are generally give more weight to what has just happened
then to conditions days, weeks, or months ago.

Exponential Smoothing

A straightforward averaging process which gives more weight to recent data is
exponential smoothing. With this process, each successively older entry used in
the average receives proportionately less weight in calculating the average, and
the ratio of the weights for each successive pair of data points is the same. Thus,
if the ratio of the weights for the most recent and second most recent data points
is 0.8, then the ratio of the weights for any entry and the next older entry will
also be 0.8. This implies, for example, that the ratio of the weights between the
most recent and the third most recent entries will be 0:8 � 0:8 = 0:64.

In concept, exponential smoothing considers a set of data stretching back in-
�nitely far into the past. However, the weights for older data points become
smaller as new data points are added, and thus older data points have succes-
sively less impact on the average as time goes on.

Most simulation systems include functions to implement exponential smooth-
ing. In Vensim, this is done with functions SMOOTH and SMOOTHI. The use
of SMOOTH is illustrated in Figure 6.4. SMOOTH takes two arguments, the
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�rst of the which is the input to be smoothed, and the second is the averaging
constant which is used to set the ratios of the weights for the weighted expo-
nential average. Figure 6.4a shows a stock and ¯ ow diagram for an exponential
average. The information arrow over which the averaging is taking place is shown
bolder than a standard information arrow. (This notation is useful to quickly
show links over which averaging is done, but it is not universally used. In some
stock and ¯ ow diagrams, there is no indication given of a smoothed input.)

Figure 6.4b shows the Vensim equations for the smoothing operation. Equa-
tion 7 shows how the smoothing equation is entered.

Figure 6.4c shows the result of smoothing a step input. As we would expect
from the discussion above, the smoothed version moves slowly from the original
level of the input to the �nal level.

The starting value for the SMOOTH output is set equal to the initial value
of the input. The function SMOOTHI allows you to set this starting value to a
di° erent level if desired.

6.4 Information Delays

Transmission of information can be delayed in transit in the same way that ma-
terial ¯ ow can be delayed. The various material ¯ ow delay functions can be used
to model information delay. However, in situations where the length of the delay
can vary over time, the behavior of delayed information can di° er from the behav-
ior of delayed material. Delayed material must be conserved, even if the amount
of the delay varies. On the other hand, some of the delayed information can be
forgotten if the delay varies. Vensim provides the functions DELAY INFORMA-
TION, SMOOTH3 AND SMOOTH3I to model this phenomenon. Consult the
reference manuals for further information about these functions.
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Figure 6.4 Exponential smoothing
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RepresentingDecision
Processes

Decisions processes are the glue that binds together the information and ma-
terial ® ow networks in an organization. Decisions about what information to
collect and how to process it determine how information ® ows into an informa-
tion network at the points where this network originates on the material ® ow
network. Similarly, decisions about how to use information and what actions
to take on material ® ows determine how information will impact those material
® ows at points where the information network points into the material ® ow net-
work. Thus, a critical aspect of creating useful simulation models is appropriately
modeling decision processes.

Increasingly, decision making is automated as computers take over more rou-
tine decision making activities in business processes, but many decisions continue
to be made by humans. Thus, it is necessary to model human decision making
if a realistic model is to be constructed of a process. This may seem like an
overwhelmingly complex undertaking. How can we hope to mimic the subtle
nuances of the human mind? Surely this is a task beyond the capabilities of a
computer model!

This chapter presents research results about human reasoning, and then con-
siders how to model decision making in a simulation model. As we shall see, the
research results strongly support the conclusion that human decision making is
neither particularly complex nor particularly e¯ ective. This somewhat discour-
aging result does, however, carry an optimistic message for those interested in
modeling and improving business processes: It is possible to model human deci-
sion making with relatively simple models, and it is also possible to improve on
unaided human decision making with systematic decision policies.
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7.1 Experts and Expertise

This section summarizes key points in Chapter 10, Proper and Improper Linear
Models, of Dawes (1988). That chapter presents results of research on the ability
of experts to provide accurate intuitive predictions. The research results strongly
support the conclusion that experts are not good intuitive predictors and that
simple models using the same predictor variables as the experts provide more
accurate predictions. Page references with the following quotes refer to Dawes
(1988) unless otherwise noted.

Research Findings

A large number of studies have addressed the question of whether trained ex-
perts' intuitive global predictions are better than statistically derived weighted
averages (linear models) of the relevant predictors. Dawes notes (pp. 205{6),
\This question has been studied extensively by psychologists, educators, and
others interested in predicting such outcomes as college success, parole violation,
psychiatric diagnosis, physical diagnosis and prognosis, and business success and
failure : : : In 1954 Meehl : : : summarized approximately twenty such studies com-
paring the clinical judgment method with the statistical one. In all studies, the
statistical method provided more accurate predictions, or the two methods tied.
Approximately ten years later, Jack Sawyer reviewed forty-±ve studies compar-
ing clinical and statistical prediction. Again, there was not a single study in
which clinical global judgment was superior to the statistical prediction."

Continuing, Dawes says (pp. 207{8), \The ±nding that linear combination is
superior to global judgment is strong; it has been replicated in diverse contexts,
and no exception has been discovered : : :Meehl was able to state thirty years
after his seminal book was published, `There is no controversy in social science
which shows such a large body of qualitatively diverse studies coming out so
uniformly in the same direction as this one' : : :People have great misplaced
con±dence in their global judgments."

The referenced work compared statistically derived weighted averages of rele-
vant predictors, however, Dawes (pp. 208{9) himself investigated the possibility
that any linear model might outperform experts. While, as he notes, \the possi-
bility seemed absurd," he found in several studies that linear models where the
weights were selected randomly except for sign outperformed the experts and
did almost as well as those with statistically derived weights.
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Discussion of the Research Findings

When ±rst studying these research ±ndings, they may appear to say that experts
can be replaced by simple linear equations (with random weights, no less!).
However, closer consideration of the research shows that this is too strong a
conclusion to reach from the research. Dawes (1979) notes, \The linear model
cannot replace the expert in deciding such things as `what to look for,' : : : it
is precisely this knowledge of what to look for in reaching the decision that is
the special expertise people have. [However,] people|especially the experts in
a ±eld|are much better at selecting and coding information than they are at
integrating it."

Dawes proposes (pp. 212-215) that the ±ndings can be explained by a principle
of nature, a mathematical principle, and a psychological principle. The princi-
ple of nature that Dawes states is that interactions among predictor variables
tend to be monotone in many situations of interest. That is, while there may
be interactions among predictor variables, these interactions do not change the
monotonicity between a particular variable and the prediction [i.e., more of the
predictor variable always predicts more (less) of the predicted variable regardless
of the levels of the other variables].

The related mathematical principle is that interaction e¯ ects among variables
which contribute monotonically to the overall e¯ ect can often be ignored and
the resulting linear model will still provide adequate predictions, and also that
speci±c coe�cients for predictor variables are not as important in determining
the results of a linear model as the signs of these coe�cients. (While Dawes
terms this principle mathematical , it is really an empirical statistical observation
concerning real world data since counterexamples can be constructed.)

The psychological principle explaining the superior predictive ability of linear
models is that people have di�culty integrating more than one variable. Thus,
they tend to anchor on a particular predictor variable while making a prediction
and do not adjust their predictions su�ciently to account for other variables.
Linear models, of course, give constantly proportional attention to all variables.

Dawes concludes (p. 215), \Given that monotone interactions can be well ap-
proximated by linear models (a statistical fact), it follows that because most
interactions that do exist in nature are monotone and because people have di�-
culty integrating information from noncomparable dimensions, linear model will
outperform clinical judgment. The only way to avoid this broad conclusion is to
claim that training makes experts superior to other people at integrating infor-
mation (as opposed, for example, to knowing what information to look for), and
there is no evidence for that. There is no evidence that experts think di¯ erently
from others."

He further comments (pp. 215{219), \The conclusion that [linear models]
outperform global judgments of trained experts is not a popular one with experts,
or with people relying on them : : :Experts have been revered|and well paid|
for years for their `it is my opinion that' judgments : : :As James March points
out, however, such reverence may serve a purely social function. People and
organizations have to make decisions, often between alternatives that appear
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equally good or bad. What better way to justify such decisions than to consult
any intuitive expert, and the more money she or he charges, the better : : : "

\But there is also a structural reason for doubting the inferiority of global
judgment : : :When we construct a linear model in a prediction situation, we
know exactly how poorly it predicts. In contrast, our feedback about our global
judgments is ® awed. Not only do we selectively remember our successes, we
often have no knowledge of our failures : : : [For example, considering judgments
on accepting or rejecting graduate school applicants], who knows what happens
to rejected graduate school applicants? Professors have access only to accepted
ones, and if the professors are doing a good job, the accepted ones will do well|
exonerating the professors' judgments : : : "

\In contrast, the systematic predictions of linear models yield data on just
how poorly they predict. For example, in [one] study only 18% of the variance
in longevity of Hodgkin's disease patients is predicted by the best linear model
: : : , but that is opposed to 0% by the world's foremost authority. Such results
bring us abruptly to an unpleasant conclusion: a lot of outcomes about which we
care deeply are not very predictable : : :We want to predict outcomes important
to us. It is only rational to conclude that if one method (a linear model) does
not predict well, something else may do better. What is not rational : : : is to
conclude this `something else' is intuitive global judgment."

Concluding Comments on the Research Findings

The research discussed above carries an optimistic message for those of us who
work on quantitative models. Even simple quantitative models can outperform
experts in prediction tasks. However, the research also points out that experts
play a key role in developing such models: They are needed to identify the key
variables to incorporate into a model.

The research also carries a cautionary message for those working on developing
computer-based expert systems. The generally stated criterion for judging the
e¯ ectiveness of such systems is how well they replicate the performance of an
expert. However, the research indicates that at least in prediction tasks it is
possible with even simple models to outperform experts once the key predictor
variables have been identi° ed . Thus, the performance of experts may not be a
good benchmark for judging the performance of a computer-based expert system.
It is probably possible to do better.

As a ±nal comment, I return to the quote from Dawes at the end of the last
subsection. While he notes the superiority of linear models over expert judgment,
he also notes that these models don't do a particularly good job either in many
situations. Often, better models are available, especially when physical system
performance is of interest. For example, someone predicting the behavior of a
new airplane that has not yet been built would not use either expert judgment
or a simple linear model. The physical principles which govern the behavior of
an airplane are well known, and a detailed quantitative model would be built to
predict the performance of the airplane long before it was built.
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7.2 Modeling Decision Processes

The remainder of this chapter presents structures that can be used to represent
decision making processes within a simulation model. Speci±cally, we consider
decisions at points where information arrows enter ® ows. These junctions are
key decision making points within an organizational process because they are
where information impacts the physical activities of the process.

Example: Managing Flows Through the Thurabond Dam

We will proceed by considering a management decision process with a simple
structure: Managing the out® ow from a water reservoir. While it is not likely
that most readers need to manage the out® ow from a reservoir, this decision
situation has two characteristics that make it a useful example for models of
decision processes. First, the stock and ® ow variables are graphically obvious:
The amount of water in the reservoir is clearly a stock, and the ® ows into and
out of the reservoir are clearly ® ows. Second, it has a relatively simple structure
where the implications of di¯ erent decision rules can be easily seen. In many
business settings, there are several interacting stocks and ® ows, and thus the
impact of changing a single decision rule may be obscured by the complexities of
the situation. This example is inspired by one in Roberts, et al (1983), Chapter
22.

The Rappanno Valley has ideal growing conditions for several di¯ erent types of
vegetables, but very little rain. During the waning years of Senator Thurabond's
distinguished Congressional career, Federal funds were allocated for the construc-
tion of the Thurabond Dam in Big Stormy Gorge on the Callahali River. This
dam, together with the Rappanno Valley Irrigation Project, established an ex-
tensive irrigation system throughout Rappanno Valley, and in the forty years
since the completion of the dam and irrigation system, a prosperous agricultural
community has developed there.

The essential features of the reservoir and irrigation system are shown in
Figure 7.1. The \in® ow" to Big Stormy Reservoir behind Thurabond Dam is not
under our control, and the amount of water in the reservoir is labeled \Reservoir
Contents." All releases from the reservoir ® ow into the Rappanno Valley drainage
basin where the water is primarily used for agricultural purposes. The amount
of water available in the drainage basin at any time for agricultural purposes
is labeled \Drainage Basin Contents." Water is consumed from the Rappanno
Valley drainage basin in a variety of ways, including transpiration from plants,
evaporation, and drainage. For notational simplicity, we refer to all of these
losses as \drainage." This drainage is not under the control of the Thurabond
Dam operator. Thus, there is only one decision variable, the \release" through
Thurabond Dam, which is shown in the center of Figure 7.1.

We will examine decision policies for managing releases through Thurabond
Dam for use in Rappanno Valley agriculture. The Dam impounds water from an
substantial stretch of the Callahali River, and the average net annual impound-
ment, taking into account evaporation losses, is 0.5 million acre-feet. Standard
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drainagereleaseinflow

Drainage Basin
Contents

Reservoir
Contents

Figure 7.1 Water �ow process

operating procedure at Thurabond Dam is to maintain a long term average of
one million acre-feet of water behind the dam in Big Stormy Reservoir, although
the actual amount of water in the reservoir may vary over the short term depend-
ing on rainfall and other conditions. Not surprisingly, agriculture has expanded
in the Rappanno Valley to consume 0.5 million acre-feet per year of water. More
speci±cally, the drainage system within the Valley holds one million acres-feet of
water accessible for agricultural use, and ±fty percent of this is consumed each
year.

A reservoir system can have several purposes. The rainy season in a region
may not coincide with the growing season, and then a reservoir can be used
to \time shift" water from the rainy season to the growing season. If there is
® ooding in an area, then the reservoir can trap water during periods of high ® ow
and gradually release it over an extended period of time. If there are periods
of drought, then the reservoir can save water over several years and release it
during drought years.

The primary purpose of Big Stormy Reservoir is to hold water that would
otherwise ® ow unused down the Callahali River to the ocean about two hundred
miles away, so that this water can be used for agriculture. Our analysis of
operating policies for releases through Thurabond Dam will focus on maintaining
su�cient ® ow to support agriculture in the Rappanno Valley, while assuring
that there is su�cient reserve in Big Stormy Reservoir to continue to support
agriculture through a drought period, and also assuring that water does not build
up in the reservoir to the point where it threatens to overtop Thurabond Dam.

It is important to note that in this situation, as in any process involving ® ow
of material, the ® owing material must be conserved. That, is the total amount of
material that ® ows into the process must, over the long run, average out to the
same amount that ® ows out of the process. Otherwise, material will inde±nitely
continue to \pile up" somewhere in the process and you will ultimately run out
of storage capacity. Since there is a sequential ® ow of water through the process
shown in Figure 7.1, the requirement that material must be conserved means
that the long run averages for \in® ow," \release," and \drainage" must all be
the same.
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Types of Decision Models

The discussion about experts earlier in this chapter shows that even experts in a
±eld use relatively simple decision procedures. Therefore, it is often appropriate
to use simple models to represent decision processes in simulation models. There
are two primary issues that must be addressed in constructing such models: 1)
What factors should be taken into account in the decision model, and 2) How
should these factors be combined. We investigate both of these issues below.

Many decision processes take into account multiple factors. For Thurabond
Dam, it seems clear that any reasonable decision process for releases will need to
consider both the level of Big Stormy Reservoir and the impact of out® ows from
the reservoir on agriculture in Rappanno Valley. In this case, and this is typical
of many decision situations, there are explicit or implicit goals with regard to
both of these factors. For the reservoir level: We do not want the quantity
of water in the reservoir to become so large that a sudden increase in in® ow
might lead to the threat of overtopping Thurabond Dam. (In such situations,
emergency releases must be made, which can lead to substantial downstream
® ooding.) We also do not want the water in the reservoir to get too low, because
if a drought occurs when the reservoir is low we might not be able to provide
su�cient water to the Rappanno Valley to support agriculture.

With regard to out® ows: We do not want these to be too high or they will
cause ® ooding in the Rappanno Valley, and we also do not want them to be too
low because this could cause crop failure. One way to address this is to attempt
to maintain a constant value for the contents of the drainage basis. If this gets
too high, then ® ooding will occur, and if it gets too low, there will be insu�cient
water to maintain crops.

Thus, to summarize, our goals are to maintain constant levels for the two
variables \Reservoir Contents" and \Drainage Basin Contents" in Figure 7.1.

One can visualize a variety of di¯ erent quantitative forms for decision func-
tions which address multiple goals. The two simplest are 1) an average of the
factors, perhaps with di¯ erent weights used for each factor, or 2) a product of
the factors. These forms are both used in simulation models, and they have
proved su�cient to model a variety of di¯ erent real-world decision processes.

7.3 Weighted-average Decision Models

The ideas underlying a weighted-average decision model for a ® ow variable are
straightforward and intuitively appealing:

1 A portion of the ® ow is being used to attempt to maintain some goal with
respect to each of the decision factors, and if the ® ow deviates from what is
needed to maintain that goal, then this portion of the ® ow should be adjusted.

2 These adjustments are made over a period of time (that is, averaged) in
order to avoid disruptive discontinuities in operations, and also to smooth out
transient shifts in conditions due to random factors.

3 The total ® ow is made up of a sum of the portions assigned to achieving each
goal.
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4 Di¯ erent weights may be assigned to meeting each goal depending on their
relative importance.

Figure 7.2a shows a stock and ® ow diagram to represent a weighted-average
decision model for the \release" decision variable. This has been developed from
the Figure 7.1 diagram by adding a variety of auxiliary variable, most of which
are related to the release decision. In the upper left corner of the diagram, LONG
TERM AVERAGE INFLOW is a constant which provides the average ® ow rate
into Big Stormy Reservoir. From our earlier discussion, we know that this is 0.5
million acre-feet per year. This is used to set a target for the amount of water in
Big Stormy Reservoir, which is indicated on the diagram by \reservoir target."
We will assume that the target is two times the LONG TERM AVERAGE
INFLOW. That is, the reservoir is operated to maintain on average two years of
in® ow.

There is also a target for the amount of accessible water in the Rappanno
Valley drainage system, which is indicated in the upper right corner of Figure
7.2a by DRAINAGE BASIN TARGET. This target is set to maintain a constant
amount of water in the basin over the long term. As noted above, annual drainage
from the valley is ±fty percent of the accessible water in the basin. We also know
from our earlier discussion that this average drainage must equal the LONG
TERM AVERAGE INFLOW, which is 0.5 million acre-feet. Therefore, the
DRAINAGE BASIN TARGET must be twice this, or one million acre-feet.

The two constants TIME TO ADJUST RESERVOIR and TIME TO ADJUST
BASIN, which are shown in the lower center of Figure 7.2a, relate to the averaging
period used to address deviations from the goals with respect to the reservoir
contents and the drainage basin contents. Finally, the constant RESERVOIR
WEIGHT in the upper center of the ±gure represents the weight assigned to
the goal of maintaining a constant value for Reservoir Constant, relative to
maintaining a constant value for Drainage Basin Contents.

As noted above, with a weighted-average decision rule, the ® ow is visualized as
being split into several parts which add up to constitute the entire ® ow. A useful
way to develop the decision rule is often to visualize the ® ow being controlled as
made up of a base component needed to maintain stable conditions over the long
run, and then \correction" terms needed to address deviations from each of the
goals. For the reservoir, the long term average in® ow to the reservoir is LONG
TERM AVERAGE INFLOW, and therefore the base component of \release"
must be equal to this.

The correction term for deviations from the target for the quantity of water in
the reservoir can then be built up in three steps: First, note that this correction
term should be zero when the value of Reservoir Contents is equal to \reservoir
target." Therefore, the correction term should be proportional to

Reservoir Contents £ reservoir target: (7:1)

That is, if there is more water in the reservoir than the target, then the release
should be increased, while if there is less water than the target, then release
should be decreased.
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a. Stock and ® ow diagram

(01) drainage = 0.5 * Drainage Basin Contents

(02) Drainage Basin Contents = INTEG(release-drainage,

DRAINAGE BASIN TARGET)

(03) DRAINAGE BASIN TARGET = 1

(04) FINAL TIME = 4

(05) inflow = LONG TERM AVERAGE INFLOW+TEST variation

(06) INITIAL TIME = 0

(07) LONG TERM AVERAGE INFLOW = 0.5

(08) release = LONG TERM AVERAGE INFLOW

+ RESERVOIR WEIGHT * (Reservoir Contents - reservoir target)

/ TIME TO ADJUST RESERVOIR

+(1 - RESERVOIR WEIGHT)

* (DRAINAGE BASIN TARGET - Drainage Basin Contents)

/ TIME TO ADJUST BASIN

(09) Reservoir Contents

= INTEG(inflow - release, reservoir target)

(10) reservoir target = 2 * LONG TERM AVERAGE INFLOW

(11) RESERVOIR WEIGHT = 0.5

(12) SAVEPER = TIME STEP

(13) TESt variation = STEP(0.1, 0.5)

(14) TIME STEP = 0.01

(15) TIME TO ADJUST BASIN = 0.05

(16) TIME TO ADJUST RESERVOIR = 0.5

b. Vensim equations

Figure 7.2 Weighted-average decision rule
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However, if the expression in equation 7.1 were used as the correction term for
deviations from the reservoir goal, this would mean that any deviation would be
instantly corrected. This is probably not feasible due to physical constraints on
the dam, and it may also not be desirable because every little random variation
in reservoir level would result in ® uctuations in the release. Thus, the correction
will be averaged over a period of time as follows:

Reservoir Contents £ reservoir target

TIME TO ADJUST RESERVOIR
: (7:2)

This means that if the correction were to continue at the same rate, it would
take a length of time equal to TIME TO ADJUST RESERVOIR to completely
remove the deviation. (In actuality, the level of the reservoir will change over
time, and thus the actual correction period will probably di¯ er from TIME TO
ADJUST RESERVOIR.)

Another way to visualize this is to de±ne

RESERVOIR ADJUSTMENT FACTOR =
1

TIME TO ADJUST RESERVOIR

and then equation 7.2 can be rewritten

RESERVOIR ADJUSTMENT FACTOR

�(Reservoir Contents £ reservoir target):

From this, we see that RESERVOIR ADJUSTMENT FACTOR is the portion
of the deviation from the goal that is corrected each unit of time.

Finally, to complete the correction factor for the reservoir goal, the expression
in equation 7.2 is multiplied by the RESERVOIR WEIGHT, which is a number
between zero and one, to take into account the relative importance of this goal.
This gives

RESERVOIR WEIGHT�Reservoir Contents £ reservoir target

TIME TO ADJUST RESERVOIR
: (7:3)

A similar procedure can be used to determine the correction factor for the
drainage basin goal, which is

(1 £ RESERVOIR WEIGHT)

�DRAINAGE BASIN TARGET £ Drainage Basin Contents

TIME TO ADJUST BASIN

(7:4)

Note that in this case, the actual level for the variable (Drainage Basin Contents)
is subtracted from the goal (DRAINAGE BASIN TARGET) because we wish
to decrease the ® ow if the actual level is above the target and increase it is the
actual level is below the target. Note also that we are assigning weights to the
two goals so that these weights add up to one. Therefore, it is not necessary
to de±ne a separate weight for the drainage basin goal: It must be equal to
1 £ RESERVOIR WEIGHT.
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The ±nal complete expression for the release decision rule is obtained by
adding the two correction terms in equations 7.3 and 7.4 to the long term average
® ow rate LONG TERM AVERAGE INFLOW. This yields

release = LONG TERM AVERAGE INFLOW

+ RESERVOIR WEIGHT�Reservoir Contents £ reservoir target

TIME TO ADJUST RESERVOIR

+ (1 £ RESERVOIR WEIGHT)

�DRAINAGE BASIN TARGET £ Drainage Basin Contents

TIME TO ADJUST BASIN
(7:5)

The complete set of equations for the reservoir management model with a
weighted-additive decision rule are given in Figure 7.2b. Equation 8 of this ±gure
corresponds to equation 7.5 above. The values assumed for the various constants
are also shown in Figure 7.2b. Note, also that equation 1 in this ±gure shows
that the drainage is a proportion of the Drainage Basin Contents as discussed
above.

As shown by equations 2 and 9 in Figure 7.2b, the initial values of Reservoir
Contents and Drainage Basin Contents are set equal to the targets for these
variables. Thus, so long as \in® ow" continues to be equal to LONG TERM
AVERAGE INFLOW, the entire process will be in steady state, and the levels
of the two stocks will remain the same with a constant ® ow of LONG TERM
AVERAGE INFLOW through the system. Referring back to Figure 7.2a for a
moment, note that there are dashed arrows from \reservoir target" to Reservoir
Contents, and also from DRAINAGE BASIN TARGET to Drainage Basin Con-
tents. These dashed arrows indicate that the initial level for each of the levels
depends on the speci±ed variable, as shown by equations 2 and 9 of Figure 7.2b.

As a test input for this simulation model, we use a step, as shown by equations
5 and 13 of Figure 7.2b. The results are shown in Figure 7.3. The top set of
graphs shows the results with a RESERVOIR WEIGHT equal to one, the middle
set of graphs shows the results with a RESERVOIR WEIGHT equal to 0.5, and
the bottom set of graphs shows the results with a RESERVOIR WEIGHT equal
to zero. Thus, in the top and bottom sets of graphs, only one of the goals is taken
into account in setting the reservoir release, while in the middle set of graphs
both goals are taken into account. (Note that some scales on corresponding
graphs in the three parts of Figure 7.3 di¯ er.)

The pattern for \release" is substantially di¯ erent for the three cases. When
there is no weight on the reservoir goal (RUN0) the release remains constant
at 0.5 million acre-feet per year, and the Reservoir Contents steadily grows to
absorb the extra in® ow that is not being released. When there is no weight on
the drainage basin goal (RUN10) the release grows to 0.6 million acre feet per
year to stabilize the amount of water in the reservoir, but the Drainage Basin
Contents grows substantially.

Finally, in the case where the two goals are given equal weight (RUN5), the
results are intermediate between the other two cases, but the values for Reser-
voir Contents and Drainage Basin Contents are closer to the RUN0 case than the
RUN10 cases. The reason for this can be seen from examining the values for the
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two constants TIME TO ADJUST BASIN and TIME TO ADJUST RESER-
VOIR in equations 15 and 16 of Figure 7.2b. We see from these equations that
TIME TO ADJUST BASIN is one-tenth of TIME TO ADJUST RESERVOIR
(0.05 versus 0.5). Thus, adjustments to Drainage Basin Contents are made much
more quickly than adjustments to Reservoir Contents, and hence the ±nal results
for the equal weight case are closer to the case where all the weight is placed on
maintaining a constant value for Drainage Basin Contents. This illustrates that
the overall performance of a weighted-average decision rule is equally impacted
by the weights and the adjustment time constants.

7.4 Floating Goals

The decision model discussed in the last section assumes that long term averages
are known and are stable, and therefore can be used in decision rules. What if
these long term averages are not known? The model in Figure 7.4 shows one way
to address this. The di¯ erences between the stock and ® ow diagram in Figure
7.4a and the one shown earlier in Figure 7.2a are in the upper left hand corner.
A new variable \short term average in® ow" has been introduced, and now this is
used as an input to the release decision, rather than LONG TERM AVERAGE
INFLOW.

This short term average in® ow is calculated by smoothing \in® ow" using a
±rst order exponential smooth with a time constant of INFLOW AVERAGING
TIME. Thus, this approach does not assume that the decision maker managing
\release" has access to the values of LONG TERM AVERAGE INFLOW. This
modeling approach is sometimes called \® oating goals" because the goal is cal-
culated from data generated as the model solves rather than being prespeci±ed.
Therefore, this goal can vary, or \® oat" as the data changes.

The equations for this model are shown in Figure 7.4b. These di¯ er from the
equations in Figure 7.2a as follows: Additional equations numbered 6 and 14
have been added to calculate \short term average in® ow."

The results of applying the ® oating goal decision rule are shown in Figure
7.5. The meanings of RUN0, RUN5, and RUN10 are the same in this ±gure as in
Figure 7.3. Note that in this case when all the weight is put on the reservoir goal
(RUN10) there is a somewhat counterintuitive result with respect to \release."
After the in® ow to the reservoir jumps at time 0.5, the release actually drops
for about a year. This is because the target for Reservoir Contents grows as
the in® ow to the reservoir grows, as shown by equation 11 of Figure 7.4b, and
therefore more water is needed in the reservoir to meet the target.
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Figure 7.3 Dynamics with weighted-average decision rule
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a. Stock and ® ow diagram

(01) drainage = 0.5 * Drainage Basin Contents
(02) Drainage Basin Contents

= INTEG(release - drainage, DRAINAGE BASIN TARGET)
(03) DRAINAGE BASIN TARGET = 1
(04) FINAL TIME = 4
(05) inflow = LONG TERM AVERAGE INFLOW + TESt variation
(06) INFLOW AVERAGING TIME = 0.5
(07) INITIAL TIME = 0
(08) LONG TERM AVERAGE INFLOW = 0.5
(09) release = short term average inflow +

RESERVOIR WEIGHT
* (Reservoir Contents - reservoir target)

/ TIME TO ADJUST RESERVOIR
+(1 - RESERVOIR WEIGHT)

* (DRAINAGE BASIN TARGET - Drainage Basin Contents)
/TIME TO ADJUST BASIN

(10) Reservoir Contents = INTEG(inflow - release, reservoir target)
(11) reservoir target = 2 * short term average inflow
(12) RESERVOIR WEIGHT = 0.5
(13) SAVEPER = TIME STEP
(14) short term average inflow = smooth(inflow, INFLOW AVERAGING TIME)
(15) TESt variation = STEP(0.1, 0.5)
(16) TIME STEP = 0.01
(17) TIME TO ADJUST BASIN = 0.05
(18) TIME TO ADJUST RESERVOIR = 0.5

b. Vensim equations

Figure 7.4 Floating goal decision rule



7.4 FLOATING GOALS 97

RUN0
release

1
.75
.5

.25
0

0 2 4
Time (year)

RUN0
Reservoir Contents

2
1.7
1.4
1.1
.8

0 2 4
Time (year)

RUN0
Drainage Basin Contents

10
7.75

5.5
3.25

1
0 2 4

Time (year)

a. RESERVOIR WEIGHT equal to zero

RUN5
release

1
.75
.5

.25
0

0 2 4
Time (year)

RUN5
Reservoir Contents

2
1.7
1.4
1.1
.8

0 2 4
Time (year)

RUN5
Drainage Basin Contents

10
7.5

5
2.5

0
0 2 4

Time (year)

b. RESERVOIR WEIGHT equal to 0.5

RUN10
release

.6
.55
.5

.45
.4

0 2 4
Time (year)

RUN10
Reservoir Contents

2
1.7
1.4
1.1
.8

0 2 4
Time (year)

RUN10
Drainage Basin Contents

2
1.7
1.4
1.1
.8

0 2 4
Time (year)

c. RESERVOIR WEIGHT equal to one

Figure 7.5 Dynamics with �oating goal decision rule
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Figure 7.6 Multipliers

7.5 Multiplicative Decision Rule

Another approach for modeling decision rules is to use a multiplicative form.
With the weighted-additive form, correction terms are added to a base ® ow rate,
while with the multiplicative form, correction factors are used to multiply the
base ® ow rate. The correction factors are illustrated in Figure 7.6. The left hand
graph in this ±gure applies to a situation where if the variable of interest is above
its target (goal) value the ® ow needs to be increased. (This is the situation in the
reservoir example for Reservoir Contents.) The right hand graph in Figure 7.6
applies to a situation where if the variable of interest is above its target value,
the ® ow needs to be reduced. (This is the situation in the reservoir example for
Drainage Basin Contents.)

It turns out to be useful to normalize the variables by dividing them by their
target values, as shown in the Figure 7.6 graphs. When this is done, a situation
where a normalized variable is equal to one will have a multiplier of one. That
is, when the value of a variable is equal to its target value, there will be no
correction applied to the base case ® ow.

The slope of the normalized curve, as de±ned in the graphs in Figure 7.6, then
sets the strength of the reaction in the ® ow that occurs for a speci±ed percentage
deviation in a variable from its target value. The greater the slope, the greater
the response for a speci±ed percentage deviation of a variable.

It is straightforward to derive the equation for the multiplier as a function of
the variable, its TARGET, and its slope. For the increasing case in Figure 7.6a,
this is

Multiplier = slope� actual

TARGET
+ (1 £ slope) (7:6a)

and for the decreasing case in Figure 7.6b, this is

Multiplier = 1 + slope £ slope� actual

TARGET
(7:6b)
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The results of applying the multiplicative decision rule approach to the reser-
voir example are shown in Figure 7.7. (Note that this example is the multi-
plicative version of the weighted-average example in Figure 7.2. If desired, a
® oating goals approach can be applied to the multiplicative case in a manner
analogous to that presented above for the weighted-average decision rule.) As in
the weighted-average case, the base case ® ow is LONG TERM AVERAGE IN-
FLOW. The targets for the reservoir and drainage basin are \reservoir target"
and DRAINAGE BASIN TARGET, respectively. The slopes of the correction
factors for these are RESERVOIR ADJUSTMENT SLOPE and DRAINAGE
BASIN ADJUSTMENT SLOPE, respectively.

The stock and ® ow diagram for this decision rule is shown in Figure 7.7a, and
the Vensim equations are shown in Figure 7.7b. Equation 9 of this ±gure shows
how equation 7.6 is applied in this case to develop the multiplicative decision
rule.

Figure 7.8 shows the results of running a simulation with the equations in
Figure 7.7b.

The performance of the weighted-average and multiplicative decision rules will
be similar for small variations from the desired ® ow, provided the constants in the
two models are suitably adjusted. For larger variations, the multiplicative rule
can lead to a more aggressive response than the weighted-average rule because
the responses for the two variables interact in a multiplicative fashion. This
type of decision rule may be appropriate for modeling some decision makers.
However, the discussion above of the performance of experts indicates that an
additive model will perform as well as many actual decision makers.
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TESt variation DRAINAGE
BASIN

ADJUSTMENT
SLOPE

RESERVOIR
ADJUSTMENT

SLOPE

DRAINAGE
BASIN

TARGET

reservoir
target

LONG TERM
AVERAGE
INFLOW

drainagereleaseinflow

Drainage Basin
Contents

Reservoir
Contents

a. Stock and ® ow diagram

(01) drainage = 0.5*Drainage Basin Contents
(02) DRAINAGE BASIN ADJUSTMENT SLOPE = 1
(03) Drainage Basin Contents = INTEG(release-drainage,

DRAINAGE BASIN TARGET )
(04) DRAINAGE BASIN TARGET = 1
(05) FINAL TIME = 4
(06) inflow = LONG TERM AVERAGE INFLOW+TEST variation
(07) INITIAL TIME = 0
(08) LONG TERM AVERAGE INFLOW = 0.5
(09) release = LONG TERM AVERAGE INFLOW

*(RESERVOIR ADJUSTMENT SLOPE
*(Reservoir Contents/reservoir target)
+(1-RESERVOIR ADJUSTMENT SLOPE))

*(1+DRAINAGE BASIN ADJUSTMENT SLOPE
-DRAINAGE BASIN ADJUSTMENT SLOPE
*(Drainage Basin Contents/DRAINAGE BASIN TARGET))

(10) RESERVOIR ADJUSTMENT SLOPE = 1
(11) Reservoir Contents = INTEG(inflow-release,reservoir target)
(12) reservoir target = 2*LONG TERM AVERAGE INFLOW
(13) SAVEPER =

TIME STEP
(14) TESt variation = step(0.1,0.5)
(15) TIME STEP = 0.01

b. Vensim equations

Figure 7.7 Multiplicative decision rule
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CURRENT
release

.6
.55
.5

.45
.4

0 2 4
Time (year)

CURRENT
Reservoir Contents

2
1.7
1.4
1.1
.8

0 2 4
Time (year)

CURRENT
Drainage Basin Contents

10
7.75

5.5
3.25

1
0 2 4

Time (year)

Figure 7.8 Dynamics with multiplicative decision rule
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Nonlinearities

A process is said to be linear if the process response is proportional to the
stimulus given to it. For example, if you double the amount deposited in a
conventional savings account (the stimulus), then you will receive double the
interest (the response). Similarly, if you work ten percent longer hours, you
would hope to accomplish ten percent more work. These are linear responses.

Models that assume a process is linear have been extensively studied because
the mathematics for such models is relatively straightforward, and linear models
can adequately represent the behavior of many realistic processes over a useful
range of conditions. It is often possible to solve the equations for linear models
without the need to use computers. Thus, in the era before the widespread
availability of computers, the ease of solution for linear models led to their use
even in situation where the real-world process was known to be nonlinear.

Many business processes are nonlinear, especially when pressed to extremes.
For example, while it may be true that if you work ten percent longer hours
you will accomplish ten percent more work, it is probably not true that if you
work twice as many hours you will accomplish twice as much work. Many of us
have attempted to do this, and have soon su± ered from \burnout" leading to a
reduction in our working e± ectiveness. This is a nonlinear response. Similarly,
the available production capacity may limit the amount of a product that can be
sold, regardless of the amount of sales e± ort or the degree of customer demand.

In other cases, such as graduated income taxes or variable interest rates on
money market accounts, nonlinear responses are deliberately designed into the
system. With graduated income taxes, the amount of tax grows more rapidly
than the increase in income, and with a money market account the rate of interest
may grow more than proportionally as the balance grows.

The simulation approach presented in preceding chapters can be extended
to address nonlinear e± ects without much di° culty. This capability for readily
modeling nonlinear processes is an advantage of simulation over hand calculation
methods. With hand calculation, nonlinear situations can be complex to address.
With simulation, it is often as straightforward to model nonlinear situations as
to model ones that are linear.
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8.1 Nonlinear Responses

Figure 8.1 shows the stock and ¯ow diagram, Vensim equations, and a graph
of Savings Balance for a conventional savings account with compound interest
where the interest is left to accumulate in the account for 20 years. The interest
rate is �ve percent (0.05) per year, and the initial balance is $900. After 20
years, the balance has grown to a little over $2,400. The response (that is, the
earned interest) is linearly related to the initial amount placed in the account.

Using IF THEN ELSE to Model Nonlinear Responses

Some money market accounts have a sliding interest rate where the interest rate
depends on the balance in the account. For example, suppose that an interest
rate of �ve percent (0.05) per year is paid on every dollar in the account up to
$1,000, and an interest rate of ten percent (0.10) per year is paid on every dollar
in the account over $1,000. Then the interest is given by

interest =

8
<
:

0:05 ¡ Savings Balance; Savings Balance < $1; 000
0:05 ¡ 1; 000

+0:10 ¡ (Savings Balance�1; 000); otherwise

A somewhat generalized version of this model is shown in Figure 8.2. In
Figure 8.2, the Savings Balance amount at which the interest rate changes is
speci�ed by the constant BREAKPOINT (which is 1,000 for this example), the
interest rate paid on each dollar below BREAKPOINT is speci�ed by the con-
stant LOW RATE (which is 0.05), and the interest rate paid on each dollar above
BREAKPOINT is speci�ed by the constant HIGH RATE (which is 0.10). (The
use of these constants, rather than \hard wiring" in speci�c values for BREAK-
POINT, LOW RATE, and HIGH RATE, facilitates sensitivity analysis using the
automated features of Vensim. This is discussed further below.)

From Figure 8.2c, we see that the Savings Balance after 20 years is over $3,400,
which is substantially more than with the conventional savings account shown
in Figure 8.1. (Note that the increase in savings rate for most real-world money
market savings accounts above the BREAKPOINT is usually not as great as
shown in this example! The large value used in this example for HIGH RATE
makes it easier to see the impact of the nonlinear interest rate.) A detailed
examination of the model output shows that the Savings Balance exceeds the
BREAKPOINT value of $1,000 during the second year, and after that the money
market account generates more interest than the conventional savings account.

It is straightforward to modify the model in Figure 8.2 to demonstrate that
this process is nonlinear. Speci�cally, the amount of interest earned by the ac-
count is not linearly proportional to the initial Savings Balance. As an example,
you may wish to verify that when the initial Savings Balance is doubled to $1,800,
the �nal Savings Balance after twenty years almost triples from about $3,500 to
almost $10,000. This happens because the modi�ed initial balance of $1,800 is
greater than $1,000. Therefore, each dollar of interest earned is compounded at
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interest

Savings
Balance

a. Stock and ¯ow diagram

(1) FINAL TIME = 20

(2) INITIAL TIME = 0

(3) interest = 0.05 * Savings Balance

(4) SAVEPER = TIME STEP

(5) Savings Balance= INTEG (interest, 900)

(6) TIME STEP = 0.125

b. Vensim equations

CURRENT
Savings Balance

4,000
3,000
2,000
1,000

0
0 10 20

Time (year)
c. Savings balance

Figure 8.1 Model for a conventional savings account
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HIGH RATE
LOW RATE

BREAKPOINT

interest

Savings
Balance

a. Stock and ¯ow diagram

(01) BREAKPOINT = 1000

(02) FINAL TIME = 20

(03) HIGH RATE = 0.1

(04) INITIAL TIME = 0

(05) interest=

IF THEN ELSE(Savings Balance < BREAKPOINT,

LOW RATE * Savings Balance,

LOW RATE * BREAKPOINT

+ HIGH RATE * (Savings Balance - BREAKPOINT))

(06) LOW RATE = 0.05

(07) SAVEPER = TIME STEP

(08) Savings Balance= INTEG (interest, 900)

(09) TIME STEP = 0.125

b. Vensim equations

CURRENT
Savings Balance

4,000
3,000
2,000
1,000

0
0 10 20

Time (year)
c. Savings balance

Figure 8.2 Model for a money market savings account (IF THEN ELSE)



8.1 NONLINEAR RESPONSES 107

HIGH RATE from the beginning, while this does not happen with the interest
for the Initial Balance of $900 speci�ed in Figure 8.2 until the Savings Balance
reaches $1,000.

The IF THEN ELSE feature illustrated in equation (05) of Figure 8.2b pro-
vides a powerful and ¯exible way to model this type of nonlinear response. For
example, it is possible to nest a second IF THEN ELSE within the �rst one to
handle a situation where there is a second breakpoint at which the interest rate
earned on each dollar changes again.

Using Lookup Functions to Model Nonlinear Responses

In addition to the IF THEN ELSE function, another approach to modeling
nonlinear responses is provided by many simulation languages using \lookup
functions." A Vensim model for the money market account example which uses
a lookup function is shown in Figure 8.3. With this approach, the nonlinear
response function (which is \interest" for this example) is modeled by entering
several pairs of points. The simulation program then creates a curve through
these points which is used to determine the necessary values to run the simula-
tion.

Equation (4) of Figure 8.3b de�nes this lookup function, which is called IN-
TEREST LOOKUP. This function is speci�ed by the three pairs of points (0,
0), (1000, 50), and (2000, 150). These points specify that there is $0 of interest
per year earned on a Savings Balance of $0, $50 of interest earned per year on
a Savings Balance of $1,000, and $150 of interest earned per year on a Savings
Balance of $2,000. In Vensim, the lookup function calculates intermediate val-
ues by drawing straight lines between the speci�ed pairs of values. Thus, the
complete lookup function is shown in Figure 8.3c.

A casual examination of the Figure 8.2 and Figure 8.3 models indicates that
these are the same, and thus they should show the same Savings Balance. How-
ever, a comparison of Figure 8.2c with Figure 8.3d shows that the Savings Bal-
ance curves are somewhat di± erent. What has happened?

The di± erence between the curves shown in Figure 8.2 and Figure 8.3 illus-
trates a potential di° culty with using lookup functions. The lookup function
in equation (4) of Figure 8.3b is speci�ed over a range of values for Savings
Balance from $0 to $2,000. However, the actual Savings Balance exceeds $2,000
during the thirteenth year. The speci�ed behavior for a lookup function in Ven-
sim when the range is exceeded is to \clamp" the output of the function at the
highest speci�ed value. Thus, whenever the Savings Balance is above $2,000,
the lookup function INTEREST LOOKUP gives an output of $150. Clearly,
this is incorrect for this savings account! (Vensim generates a warning message
whenever the range speci�ed for a lookup function is exceeded. In this particular
case the following message is generated: WARNING: At 13,25 Above ``INTER-

EST LOOKUP'' computing ``interest.'')
To correct this problem, it is necessary to widen the range over which IN-

TEREST LOOKUP is speci�ed. This can be done by replacing equation (4) in
Figure 8.3b with the following:
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INTEREST LOOKUP

interest

Savings
Balance

a. Stock and ¯ow diagram

(1) FINAL TIME = 20

(2) INITIAL TIME = 0

(3) interest = INTEREST LOOKUP(Savings Balance)

(4) INTEREST LOOKUP([(0,0)-(2000,200)],(0,0),(1000,50),(2000,150))

(5) SAVEPER = TIME STEP

(6) Savings Balance= INTEG (interest, 900)

(7) TIME STEP = 0.125

b. Vensim equations

CURRENT
INTEREST LOOKUP

200
150
100
50
0

0 1000 2000
-X-

CURRENT
Savings Balance

4,000
3,000
2,000
1,000

0
0 10 20

Time (year)
c. Lookup function d. Savings balance

Figure 8.3 Model for a money market savings account (lookup function)
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(4) INTEREST LOOKUP([(0,0)-(5000,500)],(0,0), (1000,50),(5000,450))

which expands the upper limit for the range of INTEREST LOOKUP from a
Savings Balance of $3,000 up to $5,000. When this change is made, identical
output is generated to that shown in Figure 8.2c.

Comparison of IF THEN ELSE and Lookup Functions

The IF THEN ELSE and lookup functions each have advantages and disadvan-
tages for modeling nonlinear functions. As Figure 8.2b shows, it is possible to
include constants in an IF THEN ELSE function so that a sensitivity analysis
can be conducted directly in terms of the model constants BREAKPOINT, LOW
RATE, and HIGH RATE using the automated procedures in Vensim. This can-
not be done so directly when a lookup function is used. (Vensim does support a
sensitivity analysis feature where a lookup function can be temporarily changed
for a particular model run, but some calculation is necessary to determine ex-
actly how the lookup function points must be changed to represent particular
low and high interest rates for the money market account model.)

On the other hand, a lookup function can easily be constructed for situations
where there are more than one breakpoint. While this can be done with IF THEN
ELSE functions by nesting them, this can lead to complex function expressions.

8.2 Resource Constraints

Another common cause of nonlinear responses in a business process is resource
constraints, such as limits on available personnel or production capacity. Figure
8.4 illustrates a �rst attempt at a model for a simple situation of this type
where there is a �xed Inventory of 100,000 units available to sell, and a sales
rate of 10,000 units per week. As the curves in Figure 8.4c demonstrate, this
�rst model is inadequate. The Inventory drops to zero at ten weeks, but sales
continue undiminished at a rate of 10,000 units per week. While an order backlog
might grow for a while when the product is not available, sales are likely to drop
as customers cannot get the product. The constraint on the number of units
available to sell needs to be included in the model.

Figure 8.5 shows a modi�cation to the Figure 8.4 model that uses an IF THEN
ELSE function to shut o± sales when Inventory reaches zero.
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sales
Inventory

a. Stock and ¯ow diagram

(1) FINAL TIME = 20

(2) INITIAL TIME = 0

(3) Inventory = INTEG (-sales, 100000)

(4) sales = 10000

(5) SAVEPER = TIME STEP

(6) TIME STEP = 0.125

b. Vensim equations

CURRENT
Inventory

200,000
100,000

0
-.1 M
-.2 M

0 10 20
Time (week)

sales
CURRENT: 10,000

c. Inventory and sales

Figure 8.4 Initial model for sales
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sales
Inventory

a. Stock and ¯ow diagram

(1) FINAL TIME = 20

(2) INITIAL TIME = 0

(3) Inventory = INTEG (-sales, 100000)

(4) sales = IF THEN ELSE(Inventory > 0, 10000, 0)

(5) SAVEPER = TIME STEP

(6) TIME STEP = 0.125

b. Vensim equations

CURRENT
Inventory

200,000
150,000
100,000
50,000

0
sales

20,000
15,000
10,000
5,000

0
0 10 20

Time (week)
c. Inventory and sales

Figure 8.5 Modi� ed model for sales
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InitialConditions

Each stock in a model must be given an initial value. Once this is done, the
simulation program will calculate the time history of each model variable for
the speci± ed time period. Sometimes initial values for the stocks can be quickly
determined, but in other situations this task can be complicated and tedious.
This chapter discusses two speci± c di® culties that often arise in specifying initial
conditions for the stocks in a model.

9.1 Initializing a Model to Equilibrium

Many models are speci± ed for a process that is in equilibrium. That is, the
values of the variables in the process are not changing. Often a model is being
constructed for the process in order to estimate the impacts of making changes
to the structure or operating policies of the process, and in such situations the
± rst step in the modeling e°ort is to set the model up so that it reproduces the
behavior of the existing process. This requires that the model be in equilibrium.

Figure 9.1 illustrates a simple model of this type for a personnel process which
includes trainees and trained personnel. Trainees require an average of 3 months
to train, and they stay in employment for an average of 3 years (36 months) once
they are trained. Hiring is done to replace trained employees who quit, and the
number of people to hire is determined using an exponential average of the quits
over the last 6 months (26 weeks). It is known that there are currently 1000
trained employees, and it is estimated that there are 250 trainees.

When the model is run, the curves shown in Figure 9.1c result. Since it is
desired to have the model in equilibrium, clearly something is wrong since the
number of trainees and trained personnel both change over time. If the model
were in equilibrium, these would remain constant.

The di® culty has resulted from the process used to set the initial conditions
for the two stocks \Trainees" and \Trained." For the process to be in equilibrium,
none of the model variables can change, and some thought shows that this means
that the in¯ ows and out¯ ows for each stock must be equal. For the model in
Figure 9.1, this means that \hires" must be equal to \training completions" (for
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EMPLOYMENT TIMETRAINING TIME

hires quitstraining
completions

TrainedTrainees

a. Stock and �ow diagram

(01) EMPLOYMENT PERIOD = 36

(02) FINAL TIME = 50

(03) hires = SMOOTH(quits, 26)

(04) INITIAL TIME = 0

(05) quits = Trained / EMPLOYMENT PERIOD

(06) SAVEPER = TIME STEP

(07) TIME STEP = 0.125

(08) Trained = INTEG (+training completions-quits, 1000)

(09) Trainees = INTEG (hires-training completions, 250)

(10) training completions = Trainees / TRAINING PERIOD

(11) TRAINING PERIOD = 3

b. Vensim equations

CURRENT
Trainees

400
300
200
100

0
0 25 50

Time (Month)

CURRENT
Trained

2,000
1,750
1,500
1,250
1,000

0 25 50
Time (Month)

a. Trainees b. Trained

Figure 9.1 Personnel training model
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CURRENT
Trainees

100
95
90
85
80

0 25 50
Time (Month)

CURRENT
Trained

2,000
1,750
1,500
1,250
1,000

0 25 50
Time (Month)

Figure 9.2 Personnel training model (modi� ed initial conditions)

the in�ows and out�ows to \Trainees" to be equal), and \training completions"
must be equal to \quits" (for the in�ows and out�ows to \Trained" to be equal.

However, as equations (03) and (10) in Figure 9.1b show, the �ow \training
completions" is equal to Trainees/TRAINING TIME, and the �ow \quits" is
equal to Trained/EMPLOYMENT TIME. Therefore, it is not possible to set
both of the stocks Trainees and Trained independently. Speci± cally, for the
rates \training completion" and \quits" to be equal it must be true that

Trainees

TRAINING TIME
=

Trained

EMPLOYMENT TIME

Thus, for the values of Trained, TRAINING TIME, and EMPLOYMENT TIME
speci± ed above, it must be true that Trainees = 1; 000 � (3=36) = 83:3, which is
considerable di°erent from the value of 250 that was assumed in the Figure 9.1
model.

Rather than doing all this arithmetic by hand, it may make sense to enter the
equation for the initial value of Trainees into the equation for this stock. This
requires replacing equation (09) in Figure 9.1b with

(09) Trainees = INTEG (hires-training completions,

Trained * (TRAINING PERIOD / EMPLOYMENT PERIOD))

The results of making this change to the Figure 9.1 model are shown in Figure
9.2. Now the model is in equilibrium.

We have not discussed how to set the initial value for the �ow \hires." This is
an exponentially smoothed value of \quits." The SMOOTH function in Vensim
is speci± ed to have an initial output value equal to its input value. The initial
value of the input to this SMOOTH is the initial value of \quits," and so the
initial value of \hires" (the output of the SMOOTH function) will be equal to
the initial value of \quits," which is (by the analysis above) equal to the initial
value of \training completions." Thus, the initial values of \hires" and \training
completions" are equal, and hence the in�ow and out�ow for Trainees are equal,
as they must be if the process is to be in equilibrium.
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9.2 Simultaneous Initial Conditions

A second type of di® culty that can arise in specifying initial conditions involves
the presence of simultaneous equations. Vensim and other similar simulation
programs cannot solve simultaneous equations, and therefore it is not possible
to set up initial conditions which require solving simultaneous equations. Such
simultaneous equations can occur when a causal loop structure in a model in-
cludes only auxiliary variables. Figure 9.3 illustrates a model with this di® culty.

This is a model where the quality of a product is determined by the testing
that is done on the product, and the order rate is impacted by the quality
perceived by the customer. When the quality perceived by the customer is equal
to one, there is an order rate of 10,000 units per month. In order to provide a
product with a quality of one, each unit shipped must receive a testing e°ort
equal to one hour of testing. Thus, at a shipping rate of 10,000 units per month,
a TESTING CAPACITY of 10,000 hours per month is required. The quality
perceived by the customer is an exponential smooth of the actual quality of the
product shipped with a smoothing period of 6 months. That is, the customer
perception of product quality changes more slowly than the rate at which actual
product quality changes.

Everything appears to be correct in this model for it to be initialized to
equilibrium. The TESTING CAPACITY is equal to 10,000 hours per month,
which is the capacity required to maintain a product quality equal to one, which
in turn is the quality required to have an order rate of 10,000 units per month.
Hence it appears that the model in equilibrium. However, when you attempt to
run the model, Vensim provides the following message: \Model has errors and
cannot be simulated. Do you want to correct the errors?" If you click the Yes
button, you see a further message that says there are \Simultaneous initial value
equations."

The di® culty is that there are simultaneous initial conditions involving the
variables \quality perceived by customers," \order rate," and \quality of product
shipped." When Vensim attempts to solve for any of these variables, it ends up
circling around back to the same variable. We know that the conditions speci± ed
in the Figure 9.3b equations are consistent, and they imply an order rate of 10,000
units per month with a quality of one, but Vensim is not able to determine this.

The SMOOTHI function is provided by Vensim to handle such situations.
This has the same functionality as the SMOOTH function except that it allows
you to specify an initial value for the output of the function. (Recall that with
the SMOOTH function the initial output value of the function is equal to the
initial input value.) The di® culty with simultaneous initial values is resolved by
replacing equation (05) in Figure 9.3b with the following:

(5) quality perceived by customers =

SMOOTHI(quality of product shipped, 6, 1)

This speci± es that the initial output for the SMOOTH function will be equal
to one. Vensim can then use this initial output to set the value for \quality
perceived by customers" to one, and then can use this to determine the initial
values for the other variables.
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quality
perceived by
customers

quality of
product
shipped

TESTING
CAPACITY

order rate

a. Stock and �ow diagram

(1) FINAL TIME = 50

(2) INITIAL TIME = 0

(3) order rate = 10000 * quality perceived by customers

(4) quality of product shipped = TESTING CAPACITY /order rate

(5) quality perceived by customers

= SMOOTH(quality of product shipped, 6)

(6) SAVEPER = TIME STEP

(7) TESTING CAPACITY = 10000

(8) TIME STEP = 0.125

b. Vensim equations

Figure 9.3 Quality impacts ordering
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