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Abstract

Remote monitoring, modern data collection through sensors, rapid data transfer, and vast data storage through the Internet
of Things (IoT) have advanced precision livestock farming (PLF) in the last 20 yr. PLF is relevant to many fields of livestock
production, including aerial- and satellite-based measurement of pasture’s forage quantity and quality; body weight and
composition and physiological assessments; on-animal devices to monitor location, activity, and behaviors in grazing

and foraging environments; early detection of lameness and other diseases; milk yield and composition; reproductive
measurements and calving diseases; and feed intake and greenhouse gas emissions, to name just a few. There are many
possibilities to improve animal production through PLF, but the combination of PLF and computer modeling is necessary to
facilitate on-farm applicability. Concept- or knowledge-driven (mechanistic) models are established on scientific knowledge,
and they are based on the conceptualization of hypotheses about variable interrelationships. Artificial intelligence (Al), on
the other hand, is a data-driven approach that can manipulate and represent the big data accumulated by sensors and IoT.
Still, it cannot explicitly explain the underlying assumptions of the intrinsic relationships in the data core because it lacks
the wisdom that confers understanding and principles. The lack of wisdom in Al is because everything revolves around
numbers. The associations among the numbers are obtained through the “automatized” learning process of mathematical
correlations and covariances, not through “human causation” and abstract conceptualization of physiological or production
principles. Al starts with comparative analogies to establish concepts and provides memory for future comparisons.

Then, the learning process evolves from seeking wisdom through the systematic use of reasoning. Al is a relatively novel
concept in many science fields. It may well be “the missing link” to expedite the transition of the traditional maximizing
output mentality to a more mindful purpose of optimizing production efficiency while alleviating resource allocation for
production. The integration between concept- and data-driven modeling through parallel hybridization of mechanistic and
Al models will yield a hybrid intelligent mechanistic model that, along with data collection through PLF, is paramount to
transcend the current status of livestock production in achieving sustainability.
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Abbreviations

Al artificial intelligence

DIKW data-information-knowledge-wisdom
DL deep learning

DMI dry matter intake

DST decision support tools

GPS global positioning system

HIMM hybrid intelligent mechanistic model
IoT Internet of Things

ML machine learning

PLF precision livestock farming

RFID radio frequency identification

RGB-D red-green-blue and depth

SLI structured light illumination
Introduction

For about 60 yr in the United States (circa 1940 to 2000),
innumerable livestock experimental data were collected and
analyzed (Tedeschi, 2019) mainly groupwise, reflecting the
population’s samples. Such approaches are still commonly
adopted nowadays, though data are more often obtained on an
individual animal basis and consistently, given the surge in the
sensor technology initiated in the 2000s, as shown in Figure 1.
In tandem with the development, evolution, and dissemination
of the Internet of Things (IoT), sensor technology became
available in many shapes, forms, and sizes. While the objective
of sensors is clearly to collect data, the primary purpose of
IoT is to facilitate the transfer of data through a network to
be stored in the cloud, accessed remotely, and processed by
cloud computing in powerful remote servers. The humongous
amount of data collected (and stored) by the combination of
IoT and sensors gave rise to the concept of big data, and, with
it, scientists sought the modernization of agriculture (Tzounis
et al.,, 2017). However, the rapid development and dissemination
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Figure 1. Progression of the number of publications reported by the Web of
Science core collection database. The base search used the following criteria:
“((precision near livestock near farming) or (smart near livestock near farming)
or (smart near animal near agriculture) or (precision near animal) or (precision
near livestock)) and (sensor* or automatic* or robotic* or electronic®).”

of IoT and sensor devices were not without drawbacks, at least
for the end user. For example, sensor manufacturers may modify
their devices to improve their performances, but updating a
device may jeopardize compatibility with existing data. Thus,
this creates a problem in the long run because it restrains the
combination of data obtained from sensors of different brands
or manufacturers for meta-analytical purposes and limits the
use of the data for future applications, hindering their reliability
and acceptability.

Amidst the evolution of sensors and IoT, researchers started
to foment the concept of precision science based on the premise
that it would sustainably increase food production and animal
welfare. The agriculture community adopted the concept,
and the term precision agriculture was coined as a means of
optimizing productivity while preserving resources through
the whole-farm management idea. The adoption of precision
agriculture did not occur as quickly as anticipated because of the
lack of proper decision support tools (DST) to apply it (Newman
et al.,, 2000; McBratney et al., 2005). The DST is the software
component of precision science that integrates data analytics
with predictive analytics (i.e.,, modeling). The evolution in
precision animal technology closely followed precision agriculture
(Pham and Stack, 2018), though independent studies had
already proposed individual animal management through DST
to increase profitability and productivity (Tedeschi et al., 2004). It
is not clear whether the failures in adopting DST by the animal
science community and stakeholders were also related to the
fact that additional information on individual animals (and
their surroundings) was needed to customize the predictability
of DST to be more precise and accurate.

In the animal science community, different terminologies,
for example, precision livestock farming (PLF), smart livestock
farming, and smart animal agriculture, to name a few, have been
assigned to the same paradigm: how to sustainably increase
food production while maintaining animal welfare and reducing
environmental burden by merging data acquisition (sensors),
storage (IoT), and transformation with prediction analytics
using artificial intelligence (AI) tools (Tedeschi et al., 2017; Walter
et al.,, 2017; Wolfert et al., 2017). These terminologies may have
noticeable or subtle conceptual differences, but, in the end,
they seek the same outcome of smartly or precisely managing
livestock operations. Wathes et al. (2008) indicated that PLF uses
principles and technology of process engineering to manage
livestock production through “smart” sensors to monitor animal
growth, milk and eggs production, endemic diseases, animal
behavior, and components of the microenvironment within
the production unit, such as temperature and gas emissions.
Figure 2 illustrates the smart/precise and sustainable production
paradigm by depicting the sensor technology. It shows examples
that are currently available to gather data on diverse production
scenarios for livestock. Advancements in sensor technology
allow the capture of physiological, behavioral, and productivity
measurements of individual animals to aid the smart/precise and
sustainable production paradigm (Tedeschi et al., 2017; Gonzélez
et al., 2018), but, despite how data acquisition materializes
for this paradigm, a common problem exists, the modeling
component that may limit the applicability of the technology
if not adequately integrated with the big data. The precision
animal breeding concept deals with animals bred for a specific
purpose, such as production use, environment, or market (Flint
and Woolliams, 2008), and, although it is an essential component
for successful animal production, it is not a cornerstone in the
PLF concept despite ensuring livestock are well suited to the
environment and elicit optimal responses to PLF.
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Figure 2. Illustration of different sensor components associated with the IoT to assist in integrating DST within the concept of smart farming or PLF systems. Adapted

with permission from Tedeschi (2020).

Halachmi et al. (2019) defined PLF as real-time monitoring
technologies to manage the smallest manageable production
unit, usually using a sensor-based individual animal approach
or an animal-centric decision-making approach. Four critical
considerations for smart livestock farming exist. First, wireless
networks can handle the amount of data transmitted in “real-time”
for herd management applications. For instance, for extensive
systems, the wireless capabilities overcome most of the fixed
location issues known in wired transmit. Second, wireless data
transmit combined with Al are powerful enough to handle current
PLF needs. Third, some PLF sensors are moving from devices
worn by animals, where a sensor (e.g., collar activity monitor,
leg pedometer, and rumen bolus) monitors a single animal, to
sensors that monitor many animals concurrently. For example,
a single camera captures data for many animals as they exit the
milking parlor for lameness detection and body condition score
(Spoliansky et al., 2016), or only one camera monitors the feed
bunk to assess individual feed efficiency. Fourth, on-farm real-time
analyses embedded in sensor devices or local farm computers are
shifting to offline big data Al-based applications. However, because
of the unique circumstances of extensive compared with intensive
livestock systems, it is necessary to continue to evolve wearable
devices that can provide data in a form suitable for real-time
wireless transmission from remote sites within extensive systems
for PLF applications.

Therefore, this review aims to highlight significant
developments in data gathering using sensor technology
and predictive analytics by applying modeling techniques to
improve production, sustainability, and profitability of livestock
operations, focusing on ruminant production around the globe.

Precision Livestock Farming

Grazing and foraging ruminants

PLF for ruminants in grazing and foraging systems presents
unusual challenges, particularly for more extensive, remote
properties with large land areas and livestock numbers. Extensive
production systems for grazing and foraging ruminants require

measurement technologies that have specific characteristics,
including that they can: 1) be fixed on or worn by livestock; 2) be
strategically positioned and used in locations on properties that
have a higher frequency of visits by livestock such as watering
and supplementary feeding points; or 3) provide broader-scale
animal, pasture, and landscape measurement capacities, such
as aerial or satellite imagery, and be used for wireless data
processing and transmission on a spatiotemporal scale suitable
for extensive livestock enterprises.

Technological developments for remote monitoring in
extensive grazing systems have varied in their success and
remain limited in uptake. In contrast, the use of sensing,
imaging, and other measurement technologies within more
intensive, confined systems has the advantage of enabling
data transmission from within facilities where the livestock
reside and are yarded and, for dairying, at least, are milked as
in confined animals as discussed below. Similarly, within more
intensive, smaller-scale grazing systems, it may be feasible to
incorporate fixed measurement technologies such as imaging
into grazing paddocks. Certain technologies can be integrated
into facilities for livestock handling that are managed within
more extensive systems. However, in these circumstances,
the frequency of data collection, transmission, and sampling
may be lower than desired. Hence, it may provide historical
response data on livestock performance rather than real-time
performance data, such as behavior and location within the
grazing and foraging environment. In these situations, the
historical response data can be used in time series analysis to
access trends and provide means to forecasting performance.

Smart farming for extensive grazing and rangeland
systems has the potential to include applications linking
the environment, livestock, and the supply chain (Walmsley
et al, 2014; Greenwood et al., 2016, 2018; Jorquera-Chavez
et al, 2019), including metrics for climate, soils, herbage
availability from pastures, and animal performance and
products to enhance genetic improvement, management, and
production optimization, predictions, and risk management.
These applications, many of which are still being developed
using Al, more specifically machine learning (ML), will enable
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improvements in monitoring, objective measurement, and
management of livestock, including their productivity, health
and welfare, the landscape and environment, labor efficiency,
and hence profitability and sustainability. The application of
sensing, imaging, and other remote measurement technologies
will enable further development of DST to enhance enterprise
management. These tools require interfaces that producers can
easily use, for example, BeefSpecs (Walmsley et al., 2014), and
ideally can be linked to other enterprises across the supply chain.
Examples of DST include genetic improvement programs, such
as BREEDPLAN (https://breedplan.une.edu.au/), and precision
management tools to enhance pasture, grazing, nutritional, and
landscape management to improve reliability in meeting target-
market specifications (McPhee et al., 2014, 2020; Walmsley
et al., 2014). The capacity to link objective measurement tools,
integrate data across the supply chain, and use the so-called
dashboards that enable easy access to a range of DST will also
support improvements in the extensive livestock industries
(Greenwood et al., 2016, 2018).

Greenwood et al. (2016) reviewed the use and application
of various sensors, imaging, and other emerging technologies
concerning extensive beef production, and Gonzdlez et al. (2018)
and Halachmi et al. (2019) further discussed the attributes
of these technologies for livestock production in general.
The range of remote, near real-time monitoring technologies
being developed or applied or with potential applications for
free-ranging livestock and extensive grazing and foraging
environments is increasing rapidly and include 1) in-field
fixed and ground-, aerial-, and satellite-based measurement
of pastures, invasive weeds, and soil, water, and greenhouse
gas monitoring using sensors, photogrammetry (Bloch et al.,
2019), or other technologies including LiDAR (Fernandez-
Quintanilla et al., 2018; Reinermann et al., 2020; Segarra et al.,
2020; Weiss et al,, 2020); 2) multi-channel, satellite-based
spectrometry (Segarra et al., 2020), such as WorldView-2
Satellite Sensor (https://www.satimagingcorp.com/satellite-
sensors/worldview-2/), which may be coupled with weather and
soil grids to model and predict pasture biomass components
and to guide grazing management decisions for sheep and
cattle (http://grazingapp.com.au/; Badgery et al., 2017); 3) body
composition (McPhee et al., 2017; Miller et al., 2019; Zhao et al,,
2020) and physiological assessments (Beiderman et al., 2014),
including thermal imaging (Halachmi et al., 2008, 2013) to assess
body temperature (Gonzélez et al., 2013) using devices at, or
fixed to, handling facilities; 4) automated in-field liveweight
measurement (Nir et al., 2018) and drafting of livestock coupled
with radio frequency identification (RFID) to determine
individual or herd liveweight and growth of cattle (Charmley
et al., 2006; Gonzdlez et al., 2014, 2018) and sheep (Brown et al.,
2015; Gonzalez-Garcia et al., 2018a, 2018b); 5) virtual fencing
using global positioning system (GPS)-enabled collars and a
mobile phone app (https://www.agersens.com/) to remotely
fence, move and monitor animals, and control herd or flock
access to pastures and environmentally sensitive areas without
the need for conventional fencing (Campbell et al., 2019,
2020); 6) on-animal devices to monitor location, activity, and
behaviors in grazing and foraging environments (Dobos et al.,
2014; Gonzélez et al., 2014; Greenwood et al., 2014, 2017; Bailey
et al., 2015b; Andriamandroso et al., 2016; McGavin et al., 2018;
Rahman et al., 2018); and 7) early detection of lameness or other
diseases (Van Hertem et al., 2014; Steensels et al., 2016). The
RFID technology has also been used in conjunction with in-field
walk-over-weighing units to enable researchers to identify
parturition date (Aldridge et al., 2017; Menzies et al., 2018b),

maternal parentage (Menzies et al., 2018a), postpartum estrus
(Corbet et al., 2018), and welfare status more generally, and to
draft animals for provision of supplementary nutrients and
monitoring of the live weight and growth response (Imaz et al.,
2019, 2020; Simanungkalit et al., 2020).

Classification of cattle behaviors that will underpin the
development of a range of applications and DST in extensive
environments has used “classical” ML algorithms (Handcock
et al,, 2009; Dutta et al., 2015; Smith et al., 2016), which are
relatively simple to train. However, they require substantial
engineering of features and have limitations in the number
and types of behaviors that can be accurately classified and in
the transportability of the behavior classifiers across devices
and environments. Deep learning (DL)-based methods, such as
sequential Deep Neural Networks, which can use raw sensor
input data, have the potential to overcome these limitations
and improve the accuracy and reliability of cattle behavior
classifications (Rahman et al., 2016; Kumar et al., 2019; Peng
et al.,, 2019). Further improvements that allow for on-device
behavior classifications to enable wireless transmission of
behavior data will also require methods that have low energy,
computational, or memory needs to function on embedded
systems within wearable devices.

The establishment of phenomics platforms for extensive
livestock will also enhance DST development to improve
livestock performance within extensive grazing and foraging
environments. Livestock phenomics platforms can provide a
broad and deep array of environmental and cattle performance
and physiological data (Beiderman et al.,, 2014; Greenwood
et al., 2016; Halachmi and Guarino, 2016; Spoliansky et al., 2016;
Visser et al., 2020). In doing so, they may help to overcome
current limitations in data collection and development of new
(Bailey et al., 2015a; Pierce et al., 2020) and potentially more
relevant productivity and efficiency traits, particularly for
grazing cattle, that can be used in genomic and quantitative
genetic selection and development of management tools and
practices (Greenwood et al.,, 2016; Bailey et al., 2019). Such
data capture and data management platforms will also enable
the timely generation of environmental, health, and welfare
metrics and practices to improve livestock well-being and
environmental outcomes, which are increasingly being required
for the provenance of livestock products available to consumers
(Scollan et al., 2011).

Confined ruminants

Similar to grazing and forage ruminants, many PLF applications
for confined animals exist. It started with electronic milk
recording patenting in 1978, then real-time spectroscopy
patenting in 2007 and 2011, to the more recent heat stress release
patenting in 2021 (Halachmi, 2015; Halachmi et al., 2019), to list
just a few applications. The main relatively new applications
are monitoring individual feed efficiency, early detection of
lameness, and early lactation diseases.

Monitoring individual feed efficiency

Feed cost represents as much as 65% to 75% of the operational
expenses in intensive dairy or beef operations (the so-called
confined ruminants); therefore, every few percentages of feed
saved has a sizeable economic impact when encouraging the
adoption of feed efficiency performance. There is a considerable
variation between individuals, up to 30% (Halachmi et al., 2011,
2016; Ben Meir et al., 2018), and, consequently, phenotypic
and genetic selection of individuals for their feed efficiency
can have a substantial economic impact. Accordingly, PLF
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applications for confined ruminants were developed, with
the aim of improving feed efficiency. Traditional feed intake
monitoring systems utilize individual weighing balances
(electronic scales) and RFID antennas in feeding stalls to
measure the amount of feed consumed by each animal. The
electronic scale is the oldest (Halachmi et al., 1998) and likely
the most straightforward sensor for measuring feed intake in
group housing and feedlot settings. An electronic scale is placed
in a feeding station and measures each feed’s weight consumed
by each animal during each meal at each feed bin. A manager
can then decide how many electronic scales to deploy along a
feeding lane given the number of animals. Several companies
have developed electronic feed weighing systems, including
the Calan Broadbent Feeding System, the Controlling and
Recording Feed Intake system, the GrowSafe System, Intergado
Efficiency, and the Roughage Intake Control system. Numerous
researchers have evaluated these weighing systems (Halachmi
et al., 1998; DeVries et al., 2003; Bach et al., 2004; Ferris et al.,
2006; Wang et al., 2006; Chapinal et al., 2007; Stajnko et al., 2010;
Mendes et al., 2011; Chizzotti et al., 2015), but, unfortunately,
they have been infrequently used in commercial operations
due to their high price and frequent cleaning and maintenance
that many cannot afford (Wang et al., 2006; Stajnko et al., 2010).
Furthermore, some of these systems also maintain full control
over the collected data, and data manipulation is performed
without a transparent process to the end user.

Recent research advancements have occurred with low-
cost cameras and computer vision algorithms for designing
individual feed intake measuring systems to overcome these
obstacles. The camera is typically positioned above the ration
pile or feeding lane. Several methods are used to represent a 3D
geometrical position of the target surface visible to the camera.

Feed intake monitoring with structured light illumination

The structured light illumination (SLI) and time of flight (Lassen
et al., 2018) methods refer to systems composed of a camera
and light projector. The projector is used to project images of
light patterns across the scene being monitored. An SLI system
was applied for 3D scanning of dairy cow ration to determine
the volume and weight of feed in a bin before and after feeding
dairy cows (Shelley, 2013). When the SLI system was tested on
272 heaps in a laboratory, it showed a high variance between the
calculated image weight and actual values (Shelley, 2013). Only
72% of the results were within 814 g of the difference between the
estimated mass through image and the scale-measured mass.
Unfortunately, the SLI requires controlled lighting conditions,
tuning, and shading; thus, SLI systems currently work only in
indoor conditions protected from sunlight.

Feed intake monitoring with calibrated stereo cameras

Multiple cameras in calibrated stereo configuration can be used
to extract depth information on the objects via triangulation
and analyze the disparity between corresponding points.
Bloch et al. (2019) determined feed mass and volume using a
photogrammetry method, which operates on several images of
the object of interest (i.e., ration heaps) from various perspectives
to create a 3D model of the object surface. The method was tested
in laboratory and cowshed conditions, with 125 and 60 ration
heaps, respectively. The estimated error for calculating the mass
under laboratory conditions was 0.483 kg for ration heaps up to
7 kg. The SD for the cowshed experiment was 0.44 kg, resulting
in a total error of 1.32 kg for ration heaps up to 40 kg in the
cowshed (i.e., barn). A significant weakness of this approach is
that the colored markers used for the point cloud processing
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would not be useful in a cowshed on a working farm because
dirt can affect their colors, inadvertently detaching them from
the floor and walls by the tractors that regularly operate in the
barns. Additionally, eight cameras were required for a single
heap, making this method impractical.

Feed intake monitoring with red—-green-blue and depth cameras
and infrared sensors

Red-green-blue and depth (RGB-D) cameras provide a
combination of images representing RGB color wavelengths,
along with the depth of objects. These cameras include a depth
sensor based on an IR (infrared) or near-IR projector, and an RGB
camera, resulting in in-depth information per pixel within the
RGB image. The 3D data acquisition technique has been used in
both research and industry to assess object surface conditions
(Johnson, 2020). Several RGB-D feed intake methods and
algorithms have also been developed for indoor (Shelley et al.,
2016), outdoor, and open cowshed conditions (Lassen et al., 2018;
Bezen et al, 2020). An RGB-D camera and DL algorithm were
applied to overcome the effect of sunlight on the IR scanner
(Bezen et al., 2020). The data tested were obtained in an open
cowshed. The system directly measured the feed intake of a
single meal, with a mean absolute error of 0.127 kg per meal,
each meal was in the range of 0 to 8 kg. Currently, the method
described by Bezen et al. (2020) looks promising. Perhaps, it
will be improved when combined with eating behavior sensing
(Halachmi et al., 2016). Empirical (i.e., statistical) modeling
was used to predict daily dry matter intake (DMI) for many
species (dairy cows, beef cattle, pigs, goats, and sheep; Seymour
et al,, 2019). These models were based on data collected using
mechanical weighing systems (Halachmi et al., 2004, 2016;
National Research Council, 2007; Volden, 2011; Holtenius et al.,
2018). However, daily summaries of rumination and activity
behavior sensors using “in-house” intensive systems are a
poor indicator of DMI (Schirmann et al., 2012). Eating behavior
(Halachmi et al., 2016), 3D camera (Bezen et al., 2020), or 2D
photogrammetry (Bloch et al., 2019) may “deliver the goods.” In
2020, Jiang et al. (2020) repeated the method developed by Van
Hertem et al. (2018) and improved its accuracy to more than 98%.

Early detection of lameness

Lameness is second only to mastitis in terms of its detrimental
effects on dairy herd productivity (Booth et al., 2004). The annual
incidence of lameness ranges between 4 and 55 cases per 100
cows (Schlageter-Tello et al., 2014), depending on the farm,
location, and year of study. The overall cost of lameness reported
in the literature varies, from approximately US$ 446 per case
in the United Kingdom (Esslemont and Kossaibati, 1997) to an
average cost per case for a sole ulcer, digital dermatitis, and foot
rot of US$ 216.07, US$ 132.96, and US$ 120.70, respectively, in the
United States (Cha et al., 2010). Detection of severe lameness is
relatively easy; however, by the time the animal becomes severely
lame, successful treatment is less efficient. However, producers
often miss subtle signs of lameness. A PLF monitoring system
associated with a DST that could detect milder, subclinical
lameness cases would be beneficial. Rajkondawar et al. (2002,
2006) hypothesized that measuring vertical ground reaction
forces as animals walked over a force-plate system could
provide the basis for early detection of lameness. The product
StepMetrix was developed for lameness detection system by
using a pressure-sensor mat on which cows walked once or
twice a day (van der Tol et al., 2003; Chapinal et al., 2010; Van
Nuffel et al., 2016), but these systems are relatively expensive.
Van Hertem et al. (2011) developed a machine vision-based
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system under Israeli conditions. Together with other animal-
related data that already exist in the farm management software,
parameters correlated with lameness were identified, including
milk production and neck activity (Van Hertem et al., 2013b).
A side-view concept (Van Hertem et al., 2013a) was replaced
by a 3D camera placed above the cows (Viazzi et al., 2014). The
combined 3D camera and animal production-behavior-related
parameters appear to be the “winning setup.”

Early detection of calving diseases

The PLF technology could be potentially efficacious in identifying
calving diseases (such as mastitis and ketosis) affecting dairy
cow mammary glands (Steensels et al., 2012, 2016, 20173, 2017b).
However, the end user (e.g., farmers and veterinaries) must
also consider the usefulness of alerts for the systems. The
relationship of false-positive and false-negative alerts almost
always challenges biomarker effectiveness. The best designs
will minimize both false positives and false negatives. Missed
disease occurrences (i.e., false negatives) limit the system’s
value, with too many false positives potentially resulting in the
livestock producer being forced to follow up on alerts that are
not related to disease occurrence. Managing this balance is not
always easy. In general, these challenges reflect the difference
between the theoretical application of technologies and their
practical and economic use in the field. This is a common
problem in statistics mainly observed in “clinical trials” (Fawcett,
2006). While working on mastitis, Steensels et al. (2017a,
2017b) addressed a crucial issue on the transportability of an
application. These authors showed that it is possible to create a
model on one farm and validate it elsewhere as long as a local
calibration procedure that allows automatic adaptation to local
conditions is undertaken. This insight should be considered
when a new PLF tool is being planned, developed, and validated.

Predictive Analytics

As discussed above, there are many possibilities to improve
animal production through PLF, and the combination of PLF
with computer modeling can facilitate its on-farm applicability.
Contrary to the adoption experience observed with DST in the
past (Newman et al.,, 2000; McBratney et al., 2005), producers
appear to be adopting the PLF initiative and its modeling
components at an increasing rate (John et al., 2016).

Currently, the majority of animal agriculture modeling is
either empirical (Halachmi et al., 2001, 2004; Nitzan et al., 2006)
or mechanistic (i.e., concept- or knowledge-driven; France
and Kebreab, 2008; Tedeschi, 2019; Tedeschi and Fox, 2020). Al
is a relatively novel concept in many science fields, including
animal agriculture (Tedeschi, 2019), though its roots date back
to the 1950s when the adaptive neural network algorithm
was initially conceptualized (Widrow and Lehr, 1990). Two Al
approaches are mostly employed these days. ML and DL are
highly sophisticated, data-driven Al approaches based on neural
network programming, though some ML and DL may include
decision tree aspects in their algorithm. In this sense, ML has
few layers of codes, usually less than five (this is a notional
threshold that is not definitive), and each layer is based on neural
network algorithms, whereas DL is a subset of ML algorithms
that have multiple layers of codes, usually hundreds of layers
or more, that can retro-feed themselves (i.e., backpropagated,;
Tedeschi, 2019).

Interestingly, for animal agriculture, Al-based approaches
may be the missing link to expedite the transition of the traditional

goal of maximizing output mentality to a more mindful purpose
of optimizing production efficiency while alleviating resource
allocation for production (Tedeschi and Menendez, 2020). A, on
the other hand, is a data-driven technology that can manipulate
and represent the big data accumulated by sensors and IoT,
though it cannot explicitly explain the underlying assumptions
of the intrinsic relationships in the data core because it lacks the
wisdom in the data-information-knowledge-wisdom (DIKW)
hierarchy (Cannas et al., 2019; Tedeschi, 2019). Despite Al lacking
the wisdom component, it provides a robust advancement in
predictive analytics and provides the opportunity for the human
element to reap wisdom.

The concept-driven (mechanistic) programming depicted
in Figure 3A is provided in red (it also represents traditional
[empirical] programming) vs. the data-driven programming
(or learning, shown in blue) used by AI technology. In typical
traditional (i.e.,, empirical) or concept-driven (mechanistic)
programming, the algorithm (code) is hardcoded (software),
and inputs (independent variables) are submitted to calculate
the outputs (dependent variables), called model predictions
(Figure 3A). With the boom in the development of expert
systems in the 1980s, the learning era began to take shape, and
the question became: can computers create a code given the
inputs and outputs rather than making predictions based on
inputs and codes? (Chollet and Allaire, 2018). For data-driven
programming (learning paradigm), the algorithm (rules of the
calculation logic) is generated based on inputs and outputs, as
represented in blue in Figure 3A. That means Al approaches
learn by comparing inputs and outputs to figure out the rules
(codes) that can represent the data. The traditional (empirical)
and concept-driven (mechanistic) approaches have dominated
predictive analytics in many scientific areas, including animal
science; the data-driven approach is still incipient but growing
steadily (O’Grady and O’Hare, 2017; Tedeschi, 2019).

Each of these approaches has benefits and drawbacks that
are, in part, intrinsic to their assumptions and computational

(A)
Outputs mpp- ,

INPULS el Learning = Code

Code m=pp- e o
Inputs == |V =T E T i (o ===-Prediction
(B)

G pic= Learning —

I"Plﬂ'ts-l tPrediction 1Code =P Decision

Code ==p BRUEIEREITE

Figure 3. A graphical representation of how data-driven (learning, in blue)
and concept-driven (mechanistic, in red) paradigms use inputs (independent
variables), outputs (results), and codes (rules) for predictive analytic purposes
(A). A theoretical representation of a parallel hybridization of data- and
concept-driven paradigms (algorithms) in which decision represents a combined
prediction that met the minimum acceptability threshold (B). Based on Cannas
et al. (2019) and Tedeschi (2019).
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barriers. For instance, the mechanistic approach, also referred to
as deliberative thinking because it represents an abstraction of
reality, is based on a vast scientific knowledge base. The principal
benefit of this approach is that humans can analyze the results
and learn from them, but the degree to which humans acquire
new knowledge depends on the complexity, abstraction, and
quality of the concepts used to build the mechanistic model
in the first place. Perhaps the major limitation of mechanistic
modeling is the time and effort required to make them and
their intrinsic deterministic characteristics that might limit
their applicability when uncertainty dominates the problem.
The complexity of mechanistic modeling increases (possibly
exponentially) as the modeling scope changes from a single,
readily identifiable problem to issues that focus on systems
with several integrated elements within a network. Given the
complexity of animal production systems, it is nearly impossible
to develop mechanistic models that could incorporate all
perceived essential variables and their constraints and
relationships in developing a concept-driven model. Thus,
by design, uncertainty is inadvertently added to mechanistic
models because of the simplification of reality. This means
that fewer variables are deliberately included in the model to
explain the impact of, otherwise created by, many variables.
Therefore, innovative computational and modeling methods
must be developed and used to ascertain the adequacy of
mechanistic models because they are, in fact, a simplification
of reality. Because of the inherited need to simplify problems
to be modeled, there is a perception that reductionism leads to
avoiding the incorporation of other fields of science in solving
a problem. Reductionism and simplification are not necessarily
the same thing. Reductionism tends to assume that the
whole is the sum of the parts, whereas simplification seeks to
identify essential elements that can mimic reality or the whole.
Therefore, mechanistic models, which are, by default, based on
the simplification of reality, can still be used in combination
with other approaches to avoid extreme reductionism when
solving complex problems.

Data-driven approaches, based mostly on Al technology,
are not free of difficulties either. In addition to the lack of the
wisdom component of the DIKW hierarchy (Cannas et al.,
2019; Tedeschi, 2019), the data-crunching approach of Al-based
technology is exceptional, but nothing is known about why
a prediction is made (Knight, 2017). Furthermore, with the
development of unsupervised learning (more recently referred
to as self-supervised learning; LeCun et al., 2015), the search
for predictive reasoning may become even more complicated, if
not impossible. Another limitation of the data-driven approach
is that its predictability is highly dependent on the quality of
the training data and, of course, the independent variables
(i.e., inputs) needed for future predictive purposes. Al is a
powerful tool to use for large data sets, but Al predictions can
be wrong. In fact, it has been shown that Al can fail miserably
with simple tasks (Waldrop, 2019). Perhaps the failure in the
predictability of Al is not the worst of its misdeeds. The fact that
Al's predictions can be manipulated by adding ill-conditioned
data into the database used to develop AI's predictive rules
is more troublesome than its failure to predict correctly. The
reason is simple; when ill-conditioned data are inserted into
the database, the AI algorithm lacks the wisdom and proper
instructions to identify the incorrect data. Once the data are
inserted, Al cannot identify and certify the information used
for development and validation purposes. This fact is more
concerning than the inability to predict incorrectly because the
predictability can have a high degree of certainty, even if it is a
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high degree of certainty of an incorrect prediction. Furthermore,
it cannot discern an incorrect prediction or correct it by itself.

Assuming that ill-conditioned data are not used to develop
or train Al models, the question then becomes: can significant
advancements in predictive analytics be made if concept- and
data-driven modeling approaches are integrated? (Tedeschi,
2019). Alternatively, would their intrinsic drawbacks be
minimized or surpassed once the integration is achieved?
While we do not have definitive answers to these questions,
the integration has certainly been explored in different
ways (Mertoguno, 2019). The integration of concept-driven
(mechanistic) modeling with data-driven (e.g., neural network
and Al) modeling, which requires big data, might substantially
improve our ability to explain variability within acceptable
boundaries and improve the model’s predictability. For instance,
Figure 3B shows a possible integration between concept-
and data-driven modeling through parallel hybridization of
mechanistic and learning programming paradigms, yielding a
hybrid intelligent mechanistic model (HIMM). The HIMM may
not enhance our ability to understand the underlying principles
governing production systems or a problem, but they may well
increase prediction precision and accuracy. Therefore, HIMM
can become the heartbeat of the next generation of decision
support intelligence tools, and when combined with the latest Al
technology, such as natural language processing (https://www.
gwern.net/GPT-3), unsupervised learning (i.e., self-supervised
learning) will become one step closer.

In retrospect, scientists frequently have accursed the
lack of data for our inability to make useful predictions
or forecasts during the Animal Science discipline’s
establishment and development. Data became increasingly
abundant as research stations were constructed around
the world (Tedeschi, 2019), and, more recently, sensors and
IoT became broadly available, alleviating challenges for the
collection and storage of data. Through PLF, smart technology
provided the opportunity for generalized DST adoption by
livestock operations (O’Grady and O’Hare, 2017). Big data then
became available, but scientists lacked the means to analyze
until ML and DL became accessible. However, Al technology
cannot achieve wisdom in the DIKW hierarchy because Al
does not explicitly explain the underlying assumptions of the
data and the particular combination of specific inputs to yield
the outputs. The ebbs and flows in the evolutionary timeline
in the Animal Science discipline reflect our incessant search
for understanding the unknown to improve humankind
(Cannas et al., 2019; Tedeschi, 2019). Despite our incomplete
understanding of how AI works its way through the data
to learn, it is a robust advancement in predictive analytics.
The next generational wave in mathematical modeling may
well be the hybridization between mechanistic and learning
paradigms using, for example, HIMM. This, coupled with
data collection through PLF, is paramount to achieving truly
sustainable livestock production.

Acknowledgments

This article is based on presentations at the Production,
Management, and Environment Symposium on Big Data,
Artificial Intelligence, and Smart Farming Techniques during the
2020 Annual Meeting of the American Society of Animal Science,
July 19 to 23, 2020, that was held online. We contributed equally
to this manuscript, and the order of authorship is in alphabetical
order, except for the corresponding author.

1202 Areniga Gz uo 1sanb Aq 81662 1L9/8E00EYS/Z/66/2101ME/SEl/Wo0"dno-ojwapese//:sdny woly papeojumoq


https://www.gwern.net/GPT-3
https://www.gwern.net/GPT-3

8 | Journal of Animal Science, 2021, Vol. 99, No. 2

Conflict of interest statement

The authors declare no conflict of interest to disclose.

Literature Cited

Aldridge, M. N, S.J. Lee, J. D. Taylor, G. I. Popplewell, F. R. Job, and
W. S. Pitchford. 2017. The use of walk over weigh to predict
calving date in extensively managed beef herds. Anim. Prod.
Sci. 57(3):583-591. d0i:10.1071/AN15172

Andriamandroso, A. L. H., J. Bindelle, B. C. N. Mercatoris, and
F. Lebeau. 2016. A review on the use of sensors to monitor
cattle jaw movements and behavior when grazing. Biotechnol.
Agron. Soc. Environ. 20(s1):273-286.

Bach, A., C. Iglesias, and I. Busto. 2004. Technical Note:
A computerized system for monitoring feeding behavior and
individual feed intake of dairy cattle.J. Dairy Sci. 87:4207-42009.
doi:10.3168/jds.S0022-0302(04)73565-1

Badgery, W, G. Millar, K. Broadfoot, J. Martin, D. Pottie,
A. Simmons, and P. Cranney. 2017. Better management of
intensive rotational grazing systems maintains pastures and
improves animal performance. Crop Pasture Sci. 68(12):1131-
1140. doi:10.1071/CP16396

Bailey, D. W,, S. Lunt, A. Lipka, M. G. Thomas, J. F. Medrano,
A. Cénovas, G. Rincon, M. B. Stephenson, and D. Jensen. 2015a.
Genetic influences on cattle grazing distribution: association
of genetic markers with terrain use in cattle. Rangel. Ecol.
Manag. 68(2):142-149. doi:10.1016/j.rama.2015.02.001

Bailey, D. W,, J. C. Mosley, R. E. Estell, A. F. Cibils, M. Horney,
J. R. Hendrickson, J. W. Walker, K. L. Launchbaugh, and
E. A. Burritt. 2019. Synthesis Paper: Targeted livestock grazing:
prescription for healthy rangelands. Rangel. Ecol. Manag.
72(6):865-877. doi:10.1016/j.rama.2019.06.003

Bailey, D. W., M. B. Stephenson, and M. Pittarello. 2015b. Effect
of terrain heterogeneity on feeding site selection and
livestock movement patterns. Anim. Prod. Sci. 55(3):298-308.
doi:10.1071/AN14462

Beiderman, Y., M. Kunin, E. Kolberg, I. Halachmi, B. Abramov,
R. Amsalem, and Z. Zalevsky. 2014. Automatic solution for
detection, identification and biomedical monitoring of a cow
using remote sensing for optimised treatment of cattle. J.
Agric. Eng. 45(4):153-160. doi:10.4081/jae.2014.418

Ben Meir, Y. A, M. Nikbachat, Y. Fortnik, S. Jacoby, H. Levit,
G. Adin, M. Cohen Zinder, A. Shabtay, E. Gershon, M. Zachut,
et al. 2018. Eating behavior, milk production, rumination,
and digestibility characteristics of high- and low-efficiency
lactating cows fed a low-roughage diet.J. Dairy Sci. 101:10973-
10984. doi:10.3168/jds.2018-14684

Bezen, R, Y. Edan, and I. Halachmi. 2020. Computer vision
system for measuring individual cow feed intake using RGB-D
camera and deep learning algorithms. Comput. Electron. Agric.
172:105345. doi:10.1016/j.compag.2020.105345

Bloch, V,, H. Levit, and I. Halachmi. 2019. Assessing the potential
of photogrammetry to monitor feed intake of dairy cows. J.
Dairy Res. 86:34-39. doi:10.1017/50022029918000882

Booth, C.J.,L.D. Warnick, Y. T. Grohn, D. O. Maizon, C. L. Guard, and
D. Janssen. 2004. Effect of lameness on culling in dairy cows. J.
Dairy Sci. 87:4115-4122. doi:10.3168/jds.S0022-0302(04)73554-7

Brown, D. J.,, D. B. Savage, G. N. Hinch, and S. Hatcher. 2015.
Monitoring liveweight in sheep is a valuable management
strategy: a review of available technologies. Anim. Prod. Sci.
55(4):427-436. doi:10.1071/AN13274

Campbell, D. L. M., J. M. Lea, H. Keshavarzi, and C. Lee. 2019.
Virtual fencing is comparable to electric tape fencing for
cattle behavior and welfare. Front. Vet. Sci. 6:445. doi:10.3389/
fvets.2019.00445

Campbell, D. L. M., J. Ouzman, D. Mowat, J. M. Lea, C. Lee, and
R. S. Llewellyn. 2020. Virtual fencing technology excludes
beef cattle from an environmentally sensitive area. Animals.
10(6):1069. d0i:10.3390/ani10061069

Cannas, A., L. O. Tedeschi, A. S. Atzori, and M. F. Lunesu.
2019. How can nutrition models increase the production
efficiency of sheep and goat operations? Anim. Front. 9:33-44.
doi:10.1093/af/vfz005

Cha, E., J. A. Hertl, D. Bar, and Y. T. Gréhn. 2010. The cost of
different types of lameness in dairy cows calculated by
dynamic programming. Prev. Vet. Med. 97:1-8. d0i:10.1016/j.
prevetmed.2010.07.011

Chapinal, N., A. M. de Passillé, J. Rushen, and S. Wagner. 2010.
Automated methods for detecting lameness and measuring
analgesia in dairy cattle.J. Dairy Sci. 93:2007-2013. doi:10.3168/
jds.2009-2803

Chapinal, N., D. M. Veira, D. M. Weary, and M. A. von Keyserlingk.
2007. Technical Note: Validation of a system for monitoring
individual feeding and drinking behavior and intake in
group-housed cattle. J. Dairy Sci. 90:5732-5736. doi:10.3168/
jds.2007-0331

Charmley, E.,T. L. Gowan, and J. L. Duynisveld. 2006. Development
of a remote method for the recording of cattle weights under
field conditions. Austr. . Exp. Agric. 46(7):831-835. doi:10.1071/
EA05314

Chizzotti, M. L., F. S. Machado, E. E. Valente, L. G. Pereira,
M. M. Campos, T. R. Tomich, S. G. Coelho, and M. N. Ribas.
2015. Technical Note: Validation of a system for monitoring
individual feedingbehavior and individual feed intake in dairy
cattle. J. Dairy Sci. 98:3438-3442. doi:10.3168/jds.2014-8925

Chollet, F, and J. J. Allaire. 2018. Deep learning with R. Shelter
Island (NY): Manning Publications.

Corbet, N. J., K. P. Patison, D. J. Menzies, and D. L. Swain. 2018.
Using temporal associations to determine postpartum
oestrus in tropical beef cows. Anim. Prod. Sci. 58(8):1465-14609.
doi:10.1071/AN17781

DeVries, T. J, M. A. von Keyserlingk, D. M. Weary, and
K. A. Beauchemin. 2003. Technical Note: Validation of a
system for monitoring feeding behavior of dairy cows. J. Dairy
Sci. 86:3571-3574. doi:10.3168/jds.S0022-0302(03)73962-9

Dobos, R. C., S. Dickson, D. W. Bailey, and M. G. Trotter. 2014.
The use of GNSS technology to identify lambing behaviour
in pregnant grazing Merino ewes. Anim. Prod. Sci. 54(10):1722-
1727. doi:10.1071/AN14297

Dutta, R., D. Smith, R. Rawnsley, G. Bishop-Hurley, J. Hills,
G. Timms, and D. Henry. 2015. Dynamic cattle behavioural
classification using supervised ensemble classifiers. Comput.
Electron. Agric. 111:18-28. doi:10.1016/j.compag.2014.12.002

Esslemont, R. J., and M. A. Kossaibati. 1997. Culling in 50 dairy
herds in England. Vet. Rec. 140:36-39. d0i:10.1136/vr.140.2.36

Fawecett, T. 2006. An introduction to ROC analysis. Pattern Recognit.
Lett. 27(8):861-874. d0i:10.1016/j.patrec.2005.10.010

Fernidndez-Quintanilla, C., J. M. Pefia, D. Anddjar, J. Dorado,
A. Ribeiro, and F. Lépez-Granados. 2018. Is the current state
of the art of weed monitoring suitable for site-specific
weed management in arable crops? Weed Res. 58(4):259-272.
doi:10.1111/wre.12307

Ferris, C. P, T. W. J. Keady, F. J. Gordon, and D. J. Kilpatrick. 2006.
Comparison of a Calan gate and a conventional feed barrier
system for dairy cows: feed intake and cow behaviour. Irish
J. Agr. Food Res. 45(2):149-156.

Flint, A. P. F, and J. A. Woolliams. 2008. Precision animal
breeding. Philos. Trans. R. Soc. B. 363(1491):573-590. d0i:10.1098/
rstb.2007.2171

France, J., and E. Kebreab. 2008. Mathematical modelling in animal
nutrition. Wallingford (UK): CABI Publishing.

Gonzélez, L. A., G. Bishop-Hurley, D. Henry, and E. Charmley.
2014. Wireless sensor networks to study, monitor and manage
cattle in grazing systems. Anim. Prod. Sci. 54(10):1687-1693.
doi:10.1071/AN14368

Gonzélez, L.,A.-S. Clerc,and C. O’Neill. 2013. Radiant temperature
of cattle according to rangeland environment and breed. In:
Michalk, D. L., G. D. Millar, W. B. Badgery, and K. M. Broadfoot,
editors. Proceedings of the 22nd International Grassland Congress;

1202 Areniga Gz uo 1sanb Aq 81662 1L9/8E00EYS/Z/66/2101ME/SEl/Wo0"dno-ojwapese//:sdny woly papeojumoq


https://doi.org/10.1071/AN15172
https://doi.org/10.3168/jds.S0022-0302(04)73565-1
https://doi.org/10.1071/CP16396
https://doi.org/10.1016/j.rama.2015.02.001
https://doi.org/10.1016/j.rama.2019.06.003
https://doi.org/10.1071/AN14462
https://doi.org/10.4081/jae.2014.418
https://doi.org/10.3168/jds.2018-14684
https://doi.org/10.1016/j.compag.2020.105345
https://doi.org/10.1017/S0022029918000882
https://doi.org/10.3168/jds.S0022-0302(04)73554-7
https://doi.org/10.1071/AN13274
https://doi.org/10.3389/fvets.2019.00445
https://doi.org/10.3389/fvets.2019.00445
https://doi.org/10.3390/ani10061069
https://doi.org/10.1093/af/vfz005
https://doi.org/10.1016/j.prevetmed.2010.07.011
https://doi.org/10.1016/j.prevetmed.2010.07.011
https://doi.org/10.3168/jds.2009-2803
https://doi.org/10.3168/jds.2009-2803
https://doi.org/10.3168/jds.2007-0331
https://doi.org/10.3168/jds.2007-0331
https://doi.org/10.1071/EA05314
https://doi.org/10.1071/EA05314
https://doi.org/10.3168/jds.2014-8925
https://doi.org/10.1071/AN17781
https://doi.org/10.3168/jds.S0022-0302(03)73962-9
https://doi.org/10.1071/AN14297
https://doi.org/10.1016/j.compag.2014.12.002
https://doi.org/10.1136/vr.140.2.36
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1111/wre.12307
https://doi.org/10.1098/rstb.2007.2171
https://doi.org/10.1098/rstb.2007.2171
https://doi.org/10.1071/AN14368

Sydney, Australia. New South Wales: Department of Primary
Industry; p. 1380-1381. Available at: https://uknowledge.uky.
edu/igc/22/2-8/10[accessed November 19, 2020].

Gonzélez, L. A, I. Kyriazakis, and L. O. Tedeschi. 2018. Review:
Precision nutrition of ruminants: approaches, challenges
and potential gains. Animal 12(s2):s246-s261. doi:10.1017/
S$1751731118002288

Gonzalez-Garcia, E., M. Alhamada, J. Pradel, S. Douls, S. Parisot,
F. Bocquier, J. B. Menassol, I. Llach, and L. A. Gonzdlez.
2018a. A mobile and automated walk-over-weighing
system for a close and remote monitoring of liveweight
in sheep. Comput. Electron. Agric. 153:226-238. doi:10.1016/j.
compag.2018.08.022

Gonzélez-Garcia, E., P. d. O. Golini, P. Hassoun, F. Bocquier,
D.Hazard,L. A. Gonzalez, A. B. Ingham, G. ]. Bishop-Hurley, and
P. L. Greenwood. 2018b. An assessment of walk-over-weighing
to estimate short-term individual forage intake in sheep.
Animal 12(6):1174-1181. d0i:10.1017/S1751731117002609

Greenwood, P. L., G. J. Bishop-Hurley, L. A. Gonzdlez, and
A. B. Ingham. 2016. Development and application of a
livestock phenomics platform to enhance productivity
and efficiency at pasture. Anim. Prod. Sci. 56(8):1299-1311.
doi:10.1071/AN15400

Greenwood, P. L., G. E. Gardner, and D. M. Ferguson. 2018.
Current situation and future prospects for the Australian beef
industry — a review. Asian-Australas. J. Anim. Sci. 31(7):992—
1006. doi:10.5713/ajas.18.0090

Greenwood, P. L., D. R. Paull, J. McNally, T. Kalinowski, D. Ebert,
B. Little, D. V. Smith, A. Rahman, P. Valencia, A. B. Ingham,
et al. 2017. Use of sensor-determined behaviours to develop
algorithms for pasture intake by individual grazing cattle.
Crop Pasture Sci. 68(12):1091-1099. doi:10.1071/CP16383

Greenwood, P. L., P. Valencia, L. Overs, D. R. Paull, and I. W. Purvis.
2014. New ways of measuring intake, efficiency and
behaviour of grazing livestock. Anim. Prod. Sci. 54(10):1796-
1804. doi:10.1071/AN14409

Halachmi, I. 2015. Precision livestock farming applications: making
sense of sensors to support farm management. Wageningen (The
Netherlands): Wageningen Academic.

Halachmi, I, Y. Ben Meir, J. Miron, and E. Maltz. 2016. Feeding
behavior improves prediction of dairy cow voluntary
feed intake but cannot serve as the sole indicator. Animal
10(9):1501-1506. doi:10.1017/S1751731115001809

Halachmi, I, C. F. Bgrsting, E. Maltz, Y. Edan, and M. R. Weisbjerg.
2011. Feed intake of Holstein, Danish Red, and Jersey cows
in automatic milking systems. Livest. Sci. 138 (1):56-61.
doi:10.1016/j.1ivsci.2010.12.001

Halachmi, I, A. Dzidic,]. H. M. Metz, L. Speelman, A. A. Dijkhuizen,
and J. P. C. Kleijnen. 2001. Validation of simulation model for
robotic milking barn design. Eur. J. Oper. Res. 134(3):677-688.
doi:10.1016/S0377-2217(00)00283-6

Halachmi, I., Y. Edan, E. Maltz, U. M. Peiper, U. Moallem, and
I. Brukental. 1998. A real-time control system for individual
dairy cow food intake. Comput. Electron. Agric. 20(2):131-144.
doi:10.1016/S0168-1699(98)00013-1

Halachmi, I., Y. Edan, U. Moallem, and E. Maltz. 2004. Predicting
feed intake of the individual dairy cow. J. Dairy Sci. 87:2254—
2267. d0i:10.3168/jds.S0022-0302(04)70046-6

Halachmi, I, and M. Guarino. 2016. Editorial: Precision
livestock farming: a ‘per animal’ approach using advanced
monitoring technologies. Animal 10:1482-1483. doi:10.1017/
S1751731116001142

Halachmi, I, M. Guarino, J. Bewley, and M. Pastell. 2019. Smart
animal agriculture: application of real-time sensors to
improve animal well-being and production. Annu. Rev. Anim.
Biosci. 7:403-425. doi:10.1146/annurev-animal-020518-114851

Halachmi, 1., M. Klop¢i¢, P. Polak, D. J. Roberts, and J. M. Bewley.
2013. Automatic assessment of dairy cattle body condition
score using thermal imaging. Comput. Electron. Agric. 99:35-40.
doi:10.1016/j.compag.2013.08.012

Tedeschietal. | 9

Halachmi, I., P. Polak, D. J. Roberts, and M. Klopcic. 2008. Cow
body shape and automation of condition scoring. J. Dairy Sci.
91:4444-4451. d0i:10.3168/jds.2007-0785

Handcock, R. N,, D. L. Swain, G. J. Bishop-Hurley, K. P. Patison,
T. Wark, P. Valencia, P. Corke, and C. J. O'Neill. 2009. Monitoring
animal behaviour and environmental interactions using
wireless sensor networks, GPS collars and satellite remote
sensing. Sensors (Basel). 9:3586-3603. d0i:10.3390/s90503586

Holtenius, K., L. A. O'Hara, and J. Karlsson. 2018. The influence
of milk yield, body weight and parity on feed intake by dairy
cows. In: Udén, P, T. Eriksson, R. Spdrndly, B.-O. Rustas,
and M. Liljeholm, editors. Proceedings of the 9th Nordic
Feed Science Conference; Uppsala, Sweden. Department
of Animal Nutrition and Management, Swedish University
of Agricultural Sciences (SLU); p. 101-105 Available at:
https://www.slu.se/nordicfeedscienceconference [accessed
November 19, 2020].

Imaz, J. A.,, S. Garcia, and L. A. Gonzalez. 2019. Real-time
monitoring of self-fed supplement intake, feeding behaviour,
and growth rate as affected by forage quantity and quality
of rotationally grazed beef cattle. Animals (Basel). 9(12):1129.
doi:10.3390/ani9121129

Imaz, J. A, S. Garcia, and L. A. Gonzalez. 2020. Application of
in-paddock technologies to monitor individual self-fed
supplement intake and liveweight in beef cattle. Animals
(Basel). 10(10):93. d0i:10.3390/ani10010093

Jiang, B., X. Yin, and H. Song. 2020. Single-stream long-term
optical flow convolution network for action recognition
of lameness dairy cow. Comput. Electron. Agric. 175:105536.
doi:10.1016/j.compag.2020.105536

John, A. ], C. E. Clark, M. J. Freeman, K. L. Kerrisk, S. C. Garcia,
and I. Halachmi. 2016. Review: Milking robot utilization, a
successful precision livestock farming evolution. Animal
10:1484-1492. doi:10.1017/S1751731116000495

Johnson, J. W. 2020. Automatic nucleus segmentation with
mask-RCNN. In: Arai, K., and S. Kapoor, editors. Advances in
computer vision, v. 2. Cham: Springer International Publishing;
p. 399-407.

Jorquera-Chavez, M., S. Fuentes, F. R. Dunshea, E. C. Jongman,
and R. D. Warner. 2019. Computer vision and remote sensing
to assess physiological responses of cattle to pre-slaughter
stress, and its impact on beef quality: a review. Meat Sci.
156:11-22. doi:10.1016/j.meatsci.2019.05.007

Knight, W. 2017. The dark secret at the heart of AL. MIT Technol.
Rev. 120(3):54-65.

Kumar, D. P, T. Amgoth, and C. S. R. Annavarapu. 2019. Machine
learning algorithms for wireless sensor networks: a survey.
Inform. Fusion 49:1-25. doi:10.1016/j.inffus.2018.09.013

Lassen, J., J. Thomasen, R. H. Hansen, G. Nielsen, E. Olsen,
P. R. B. Stentebjerg, N. Hansen, and S. Borchersen. 2018.
Individual measure of feed intake on in-house commercial
dairy cattle using 3D camera system. Proceedings of the World
Congress on Genetics Applied to Livestock Production, v. Technologies
- Novel Phenotypes; Auckland, NZ. Massey University. Available
at: http://www.wcgalp.org/proceedings/2018/individual-
measure-feed-intake-house-commercial-dairy-cattle-using-
3d-camera [accessed February 13, 2021].

LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature
521:436-444. do0i:10.1038/nature14539

McBratney, A., B. Whelan, T. Ancev, and J. Bouma. 2005. Future
directions of precision agriculture. Precis. Agric. 6(1):7-23.
doi:10.1007/s11119-005-0681-8

McGavin, S. L., G. J. Bishop-Hurley, E. Charmley, P. L. Greenwood,
and M. J. Callaghan. 2018. Effect of GPS sample interval and
paddock size on estimates of distance travelled by grazing
cattle in rangeland, Australia. Rangeland J. 40(1):55-64.
doi:10.1071/RJ17092

McPhee, M. J., B. J. Walmsley, H. C. Dougherty, W. A. McKiernan,
and V. H. Oddy. 2020. Live animal predictions of carcass
components and marble score in beef cattle: model

1202 Areniga Gz uo 1sanb Aq 81662 1L9/8E00EYS/Z/66/2101ME/SEl/Wo0"dno-ojwapese//:sdny woly papeojumoq


https://uknowledge.uky.edu/igc/22/2-8/10
https://uknowledge.uky.edu/igc/22/2-8/10
https://doi.org/10.1017/S1751731118002288
https://doi.org/10.1017/S1751731118002288
https://doi.org/10.1016/j.compag.2018.08.022
https://doi.org/10.1016/j.compag.2018.08.022
https://doi.org/10.1017/S1751731117002609
https://doi.org/10.1071/AN15400
https://doi.org/10.5713/ajas.18.0090
https://doi.org/10.1071/CP16383
https://doi.org/10.1071/AN14409
https://doi.org/10.1017/S1751731115001809
https://doi.org/10.1016/j.livsci.2010.12.001
https://doi.org/10.1016/S0377-2217(00)00283-6
https://doi.org/10.1016/S0168-1699(98)00013-1
https://doi.org/10.3168/jds.S0022-0302(04)70046-6
https://doi.org/10.1017/S1751731116001142
https://doi.org/10.1017/S1751731116001142
https://doi.org/10.1146/annurev-animal-020518-114851
https://doi.org/10.1016/j.compag.2013.08.012
https://doi.org/10.3168/jds.2007-0785
https://doi.org/10.3390/s90503586
https://www.slu.se/nordicfeedscienceconference
https://doi.org/10.3390/ani9121129
https://doi.org/10.3390/ani10010093
https://doi.org/10.1016/j.compag.2020.105536
https://doi.org/10.1017/S1751731116000495
https://doi.org/10.1016/j.meatsci.2019.05.007
https://doi.org/10.1016/j.inffus.2018.09.013
http://www.wcgalp.org/proceedings/2018/individual-measure-feed-intake-house-commercial-dairy-cattle-using-3d-camera
http://www.wcgalp.org/proceedings/2018/individual-measure-feed-intake-house-commercial-dairy-cattle-using-3d-camera
http://www.wcgalp.org/proceedings/2018/individual-measure-feed-intake-house-commercial-dairy-cattle-using-3d-camera
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s11119-005-0681-8
https://doi.org/10.1071/RJ17092

10 | Journal of Animal Science, 2021, Vol. 99, No. 2

development and evaluation. Animal 14(S2):s396-s405.
doi:10.1017/S1751731120000324

McPhee, M. ], B. J. Walmsley, D. G. Mayer, and V. H. Oddy. 2014.
BeefSpecs fat calculator to assist decision making to increase
compliance rates with beef carcass specifications: evaluation
of inputs and outputs. Anim. Prod. Sci. 54(12):2011-2017.
doi:10.1071/AN14614

McPhee, M. ], B. J. Walmsley, B. Skinner, B. Littler, J. P. Siddell,
L. M. Cafe, J. F. Wilkins, V. H. Oddy, and A. Alempijevic. 2017.
Live animal assessments of rump fat and muscle score in
Angus cows and steers using 3-dimensional imaging. J. Anim.
Sci. 95:1847-1857. doi:10.2527/jas.2016.1292

Mendes, E. D., G. E. Carstens, L. O. Tedeschi, W. E. Pinchak, and
T. H. Friend. 2011. Validation of a system for monitoring
feeding behavior in beef cattle. J. Anim. Sci. 89:2904-2910.
doi:10.2527/jas.2010-3489

Menzies, D., K. P. Patison, N. J. Corbet, and D. L. Swain. 2018a.
Using temporal associations to determine maternal
parentage in extensive beef herds. Anim. Prod. Sci. 58(5):943—
949. doi:10.1071/AN16450

Menzies, D., K. P. Patison, N. J. Corbet, and D. L. Swain. 2018b.
Using Walk-over-Weighing technology for parturition date
determination in beef cattle. Anim. Prod. Sci. 58(9):1743-1750.
doi:10.1071/AN16694

Mertoguno, J. S. 2019. Toward autonomy: symbiotic formal and
statistical machine reasoning. 2019 IEEE First International
Conference on Cognitive Machine Intelligence (CogMI); Los
Angeles, CA. Institute of Electrical and Electronics Engineers;
p. 210-215. Available at: https://ieeexplore.ieee.org/abstract/
document/8998973 [accessed February 13, 2021]. doi:10.1109/
CogMI48466.2019.00038

Miller, G. A.,].]. Hyslop, D. Barclay, A. Edwards, W. Thomson, and
C.-A. Duthie. 2019. Using 3D imaging and machine learning
to predict liveweight and carcass characteristics of live
finishing beef cattle. Front. Sustain. Food Syst. 3:30. d0i:10.3389/
fsufs.2019.00030

National Research Council. 2007. Nutrient requirements of small
ruminants: sheep, goats, cervids, and new world camelids. 7th ed.
Animal Nutrition Series. Washington (DC): National Academy
Press.

Newman, S., T. Lynch, and A. A. Plummer. 2000. Success and
failure of decision support systems: learning as we go. J. Anim.
Sci. 77 (E-Suppl):1-12. doi:10.2527/jas2000.77E-Supplle

Nir, O.,Y. Parmet, D. Werner, G. Adin, and I. Halachmi. 2018. 3D
Computer-vision system for automatically estimating heifer
height and body mass. Biosystems Eng. 173:4-10. doi:10.1016/j.
biosystemseng.2017.11.014

Nitzan, R., I. Bruckental, Z. Bar Shira, E. Maltz, and I. Halachmi.
2006. Stochastic models for simulating parallel, rotary, and
side-opening milking parlors. J. Dairy Sci. 89:4462-4472.
doi:10.3168/jds.50022-0302(06)72495-X

O’Grady, M. J.,and G. M. P. O’Hare. 2017. Modelling the smart farm.
Inf. Process. Agric. 4:179-187. d0i:10.1016/j.inpa.2017.05.001

Peng, Y., N. Kondo, T. Fujiura, T. Suzuki, Wulandari, H. Yoshioka,
and E. Itoyama. 2019. Classification of multiple cattle
behavior patterns using a recurrent neural network with long
short-term memory and inertial measurement units. Comput.
Electron. Agric. 157:247-253. d0i:10.1016/j.compag.2018.12.023

Pham, X., and M. Stack. 2018. How data analytics is transforming
agriculture. Bus. Horiz.  61(1):125-133.  doi:10.1016/j.
bushor.2017.09.011

Pierce, C. F, S. E. Speidel, S. J. Coleman, R. M. Enns, D. W. Bailey,
J. F. Medrano, A. Cénovas, P. J. Meiman, L. D. Howery,
W. F. Mandeville, et al. 2020. Genome-wide association
studies of beef cow terrain-use traits using Bayesian
multiple-SNP regression. Livest. Sci. 232:103900. doi:10.1016/j.
livsci.2019.103900

Rahman, A., D. Smith, J. Hills, G. Bishop-Hurley, D. Henry, and
R.Rawnsley. 2016. A comparison of autoencoder and statistical

features for cattle behaviour classification. International Joint
Conference on Neural Networks (JCNN); Vancouver, Canada.
Institute of Electrical and Electronics Engineers; p. 2954-2960.
Available at: https://ieeexplore.ieee.org/document/7727573
[accessed February 13, 2021]. doi:10.1109/]JCNN.2016.7727573

Rahman, A., D. V. Smith, B. Little, A. B. Ingham, P. L. Greenwood,
and G. J. Bishop-Hurley. 2018. Cattle behaviour classification
from collar, halter, and ear tag sensors. Inf. Process. Agric.
5(1):124-133. d0i:10.1016/j.inpa.2017.10.001

Rajkondawar, P. G., M. Liu, R. M. Dyer, N. K. Neerchal, U. Tasch,
A. M. Lefcourt, B. Erez, and M. A. Varner. 2006. Comparison of
models to identify lame cows based on gait and lesion scores,
and limb movement variables. J. Dairy Sci. 89:4267-4275.
doi:10.3168/jds.S0022-0302(06)72473-0

Rajkondawar, P. G., U. Tasch, A. M. Lefcourt, B. Erez, R. M. Dyer,
and M. A. Varner. 2002. A system for identifying lameness in
dairy cattle. Appl. Eng. Agric. 18(1):87. doi:10.13031/2013.7707

Reinermann, S., S. Asam, and C. Kuenzer. 2020. Remote sensing
of grassland production and management—A review. Remote
Sens. 12(12):1949. doi:10.3390/rs12121949

Schirmann, K., N. Chapinal, D. M. Weary, W. Heuwieser, and
M. A. von Keyserlingk. 2012. Rumination and its relationship
to feeding and lying behavior in Holstein dairy cows. J. Dairy
Sci. 95:3212-3217. doi:10.3168/jds.2011-4741

Schlageter-Tello, A., E. A. Bokkers, P. W. Groot Koerkamp,
T. Van Hertem, S. Viazzi, C. E. Romanini, I. Halachmi, C. Bahr,
D. Berckmans, and K. Lokhorst. 2014. Effect of merging
levels of locomotion scores for dairy cows on intra- and
interrater reliability and agreement. J. Dairy Sci. 97:5533-5542.
doi:10.3168/jds.2014-8129

Scollan, N. D,, P. L. Greenwood, C. ]J. Newbold, D. R. Y. Ruiz,
K.J. Shingfield, R. J. Wallace, and J. F. Hocquette. 2011. Future
research priorities for animal production in a changing world.
Anim. Prod. Sci. 51(1):1-5. doi:10.1071/AN10051

Segarra, J.,, M. L. Buchaillot, J. L. Araus, and S. C. Kefauver.
2020. Remote sensing for precision agriculture: Sentinel-2
improved features and applications. Agronomy. 10(5):641.
doi:10.3390/agronomy10050641

Seymour, D. J., A. Canovas, C. F. Baes, T. C. S. Chud, V. R. Osborne,
J. P. Cant, L. F Brito, B. Gredler-Grandl, R. Finocchiaro,
R. F. Veerkamp, et al. 2019. Invited Review: Determination of
large-scale individual dry matter intake phenotypes in dairy
cattle. J. Dairy Sci. 102:7655-7663. doi:10.3168/jds.2019-16454

Shelley, A. N. 2013. Monitoring dairy cow feed intake using machine
vision [thesis]. Lexington (UK): University of Kentucky.
Available from https://uknowledge.uky.edu/ece_etds/24/
[accessed November 11, 2020].

Shelley, A. N., D. L. Lau, A. E. Stone, and J. M. Bewley. 2016.
Short Communication: Measuring feed volume and weight
by machine vision. J. Dairy Sci. 99(1):386-391. doi:10.3168/
jds.2014-8964

Simanungkalit, G., R. S. Hegarty, F. C. Cowley, and M. J. McPhee.
2020. Evaluation of remote monitoring units for estimating
body weight and supplement intake of grazing cattle. Animal
14(S2):s332-5340. d0i:10.1017/S1751731120000282

Smith, D., A. Rahman, G. J. Bishop-Hurley, J. Hills, S. Shahriar,
D. Henry, and R. Rawnsley. 2016. Behavior classification of
cows fitted with motion collars: decomposing multi-class
classification into a set of binary problems. Comput. Electron.
Agric. 131:40-50. doi:10.1016/j.compag.2016.10.006

Spoliansky, R., Y. Edan, Y. Parmet, and I. Halachmi. 2016.
Development of automatic body condition scoring using a
low-cost 3-dimensional Kinect camera. J. Dairy Sci. 99:7714—
7725. doi:10.3168/jds.2015-10607

Stajnko, D., P. Vindi$, M. JanZekovi¢, and M. Brus. 2010. Non
invasive weighing of live cattle by thermal image analysis. In:
Joo, E. M., editor. New trends in technologies: control, management,
computational intelligence and network systems. Shanghai
(China): InTech China; p. 243-256.

1202 Areniga Gz uo 1sanb Aq 81662 1L9/8E00EYS/Z/66/2101ME/SEl/Wo0"dno-ojwapese//:sdny woly papeojumoq


https://doi.org/10.1017/S1751731120000324
https://doi.org/10.1071/AN14614
https://doi.org/10.2527/jas.2016.1292
https://doi.org/10.2527/jas.2010-3489
https://doi.org/10.1071/AN16450
https://doi.org/10.1071/AN16694
https://ieeexplore.ieee.org/abstract/document/8998973
https://ieeexplore.ieee.org/abstract/document/8998973
https://doi.org/10.1109/CogMI48466.2019.00038
https://doi.org/10.1109/CogMI48466.2019.00038
https://doi.org/10.3389/fsufs.2019.00030
https://doi.org/10.3389/fsufs.2019.00030
https://doi.org/10.2527/jas2000.77E-Suppl1e
https://doi.org/10.1016/j.biosystemseng.2017.11.014
https://doi.org/10.1016/j.biosystemseng.2017.11.014
https://doi.org/10.3168/jds.S0022-0302(06)72495-X
https://doi.org/10.1016/j.inpa.2017.05.001
https://doi.org/10.1016/j.compag.2018.12.023
https://doi.org/10.1016/j.bushor.2017.09.011
https://doi.org/10.1016/j.bushor.2017.09.011
https://doi.org/10.1016/j.livsci.2019.103900
https://doi.org/10.1016/j.livsci.2019.103900
https://ieeexplore.ieee.org/document/7727573
https://doi.org/10.1109/IJCNN.2016.7727573
https://doi.org/10.1016/j.inpa.2017.10.001
https://doi.org/10.3168/jds.S0022-0302(06)72473-0
https://doi.org/10.13031/2013.7707
https://doi.org/10.3390/rs12121949
https://doi.org/10.3168/jds.2011-4741
https://doi.org/10.3168/jds.2014-8129
https://doi.org/10.1071/AN10051
https://doi.org/10.3390/agronomy10050641
https://doi.org/10.3168/jds.2019-16454
https://uknowledge.uky.edu/ece_etds/24/
https://doi.org/10.3168/jds.2014-8964
https://doi.org/10.3168/jds.2014-8964
https://doi.org/10.1017/S1751731120000282
https://doi.org/10.1016/j.compag.2016.10.006
https://doi.org/10.3168/jds.2015-10607

Steensels, M., A. Antler, C. Bahr, D. Berckmans, E. Maltz, and
I. Halachmi. 2016. A decision-tree model to detect post-
calving diseases based on rumination, activity, milk yield,
BW and voluntary visits to the milking robot. Animal 10:1493-
1500. doi:10.1017/S1751731116000744

Steensels, M., C. Bahr, D. Berckmans, I. Halachmi, A. Antler, and
E. Maltz. 2012. Lying patterns of high producing healthy dairy
cows after calving in commercial herds as affected by age,
environmental conditions and production. Appl. Anim. Behav.
Sci. 136(2):88-95. doi:10.1016/j.applanim.2011.12.008

Steensels, M., E. Maltz, C. Bahr, D. Berckmans, A. Antler, and
I. Halachmi. 2017a. Towards practical application of sensors
for monitoring animal health: the effect of post-calving
health problems on rumination duration, activity and milk
yield. J. Dairy Res. 84:132-138. doi:10.1017/S0022029917000176

Steensels, M., E. Maltz, C. Bahr, D. Berckmans, A. Antler, and
I. Halachmi. 2017b. Towards practical application of sensors
for monitoring animal health; design and validation of a
model to detect ketosis. J. Dairy Res. 84:139-145. doi:10.1017/
50022029917000188

Tedeschi, L. O. 2019. ASN-ASAS SYMPOSIUM: FUTURE OF
DATA ANALYTICS IN NUTRITION: Mathematical modeling
in ruminant nutrition: approaches and paradigms, extant
models, and thoughts for upcoming predictive analytics. J.
Anim. Sci. 97 (5):1321-1944. doi:10.1093/jas/skz092

Tedeschi, L. O. 2020. Modelling a sustainable future for livestock
production. Scientia. (134):88-91. doi:10.33548/SCIENTIA523

Tedeschi, L. O., M. A. Fonseca, J. P. Muir, D. P. Poppi, G. E. Carstens,
J.P. Angerer, and D. G. Fox. 2017. A glimpse of the future in animal
nutrition science. 2. Current and future solutions. Rev. Bras.
Zootec. 46(5):452-469. doi:10.1590/51806-92902017000500012

Tedeschi, L. O., and D. G. Fox. 2020. The ruminant nutrition system:
volume I — an applied model for predicting nutrient requirements
and feed utilization in ruminants. 3rd ed. Ann Arbor (MI): XanEdu.

Tedeschi, L. O., D. G. Fox, and P. J. Guiroy. 2004. A decision
support system to improve individual cattle management.
1. A mechanistic, dynamic model for animal growth. Agric.
Syst. 79(2):171-204. doi:10.1016/S0308-521X(03)00070-2

Tedeschi, L. O., and H. M. Menendez, III. 2020. Mathematical
modeling in animal production. In: F. W. Bazer, G. C. Lamb,
and G. Wu, editors. Animal agriculture: sustainability, challenges
and innovations. Cambridge, MA: Academic Press by Elsevier;
p. 431-453. doi:10.1016/B978-0-12-817052-6.00025-2

van der Tol, P. P. J., J. H. M. Metz, E. N. Noordhuizen-Stassen,
W. Back, C. R. Braam, and W. A. Weijs. 2003. The vertical
ground reaction force and the pressure distribution on the
claws of dairy cows while walking on a flat substrate. J. Dairy
Sci. 86(9):2875-2883. doi:10.3168/jds.50022-0302(03)73884-3

Tzounis, A., N. Katsoulas, T. Bartzanas, and C. Kittas. 2017.
Internet of Things in agriculture, recent advances and
future challenges. Biosystems Eng. 164:31-48. do0i:10.1016/j.
biosystemseng.2017.09.007

Van Hertem, T., V. Alchanatis, A. Antler, E. Maltz, I. Halachmi,
A. Schlageter-Tello, C. Lokhorst, S. Viazzi, C. E. B. Romanini,
A. Pluk, et al. 2013a. Comparison of segmentation algorithms
for cow contour extraction from natural barn background
in side view images. Comput. Electron. Agric. 91:65-74.
doi:10.1016/j.compag.2012.12.003

Van Hertem, T., V. Alchanatis, A. Antler, E. Maltz, I. Halachmi,
A. A. Schlageter Tello, C. Lokhorst, A. Voros, E. Romanini Bites,
M. Bahr, et al. 2011. Experimental setup for the study of a
computer vision based automatic lameness detection system
for dairy cows, In: Lokhorst, C., and D. Berckmans, editors.
Proceedings of the 5th European Conference on Precision
Livestock Farming. Prague (Czech Republic): Czech Centre for
Science and Society; p. 113-121.

Van Hertem, T., E. Maltz, A. Antler, C. E. Romanini, S. Viazzi,
C. Bahr, A. Schlageter-Tello, C. Lokhorst, D. Berckmans, and

Tedeschietal. | 11

I. Halachmi. 2013b. Lameness detection based on multivariate
continuous sensing of milk yield, rumination, and neck
activity. J. Dairy Sci. 96:4286-4298. d0i:10.3168/jds.2012-6188

Van Hertem, T., A. Schlageter Tello, S. Viazzi, M. Steensels,
C. Bahr, C. E. B. Romanini, K. Lokhorst, E. Maltz, I. Halachmi,
and D. Berckmans. 2018. Implementation of an automatic
3D vision monitor for dairy cow locomotion in a
commercial farm. Biosystems Eng. 173:166-175. doi:10.1016/j.
biosystemseng.2017.08.011

Van Hertem, T.,, S. Viazzi, M. Steensels, E. Maltz, A. Antler,
V. Alchanatis, A. A. Schlageter-Tello, K. Lokhorst,
E. C. B. Romanini, C. Bahr, et al. 2014. Automatic
lameness detection based on consecutive 3D-video
recordings. Biosystems Eng. 119:108-116. doi:10.1016/j.
biosystemseng.2014.01.009

Van Nuffel, A, T. Van De Gucht, W. Saeys, B. Sonck,
G. Opsomer, J. Vangeyte, K. C. Mertens, B. De Ketelaere, and
S. Van Weyenberg. 2016. Environmental and cow-related
factors affect cow locomotion and can cause misclassification
in lameness detection systems. Animal 10:1533-1541.
doi:10.1017/S175173111500244X

Viazzi, S., C. Bahr, T. Van Hertem, A. Schlageter-Tello,
C. E. B. Romanini, I. Halachmi, C. Lokhorst, and D. Berckmans.
2014. Comparison of a three-dimensional and two-
dimensional camera system for automated measurement of
back posture in dairy cows. Comput. Electron. Agric. 100:139-
147. doi:10.1016/j.compag.2013.11.005

Visser, C., E. Van Marle-Koster, H. C. Myburgh, and A. De Freitas.
2020. Phenomics for sustainable production in the South
African dairy and beef cattle industry. Anim. Front. 10:12-18.
doi:10.1093/af/vfaa003

Volden, H. 2011. NorFor — the Nordic feed evaluation system.
Wageningen (The Netherlands): Wageningen Academic
Publishers.

Waldrop, M. M. 2019. News feature: what are the limits of
deep learning? Proc. Natl. Acad. Sci. U. S. A. 116:1074-1077.
doi:10.1073/pnas.1821594116

Walmsley, B. J., M. J. McPhee, and V. H. Oddy. 2014. Development
of the BeefSpecs fat calculator to assist decision making to
increase compliance rates with beef carcass specifications.
Anim. Prod. Sci. 54(12):2003-2010. d0i:10.1071/AN14611

Walter, A., R. Finger, R. Huber, and N. Buchmann. 2017. Opinion:
smart farming is key to developing sustainable agriculture.
Proc. Natl. Acad. Sci. U. S. A. 114:6148-6150. doi:10.1073/
pnas.1707462114

Wang, Z.,]. D. Nkrumah, C. Li, J. A. Basarab, L. A. Goonewardene,
E. K. Okine, D. H. Crews Jr, and S. S. Moore. 2006. Test duration
for growth, feed intake, and feed efficiency in beef cattle using
the GrowSafe System. J. Anim. Sci. 84:2289-2298. doi:10.2527/
jas.2005-715

Wathes, C. M., H. H. Kristensen, J. M. Aerts, and D. Berckmans.
2008.Is precision livestock farming an engineer’s daydream or
nightmare, an animal’s friend or foe, and a farmer’s panacea
or pitfall? Comput. Electron. Agric. 64(1):2-10. doi:10.1016/j.
compag.2008.05.005

Weiss, M., F. Jacob, and G. Duveiller. 2020. Remote sensing for
agricultural applications: a meta-review. Remote Sens. Environ.
236:111402. d0i:10.1016/j.rse.2019.111402

Widrow, B., and M. A. Lehr. 1990. 30 Years of adaptive neural
networks: perceptron, Madaline, and backpropagation. Proc.
IEEE. 78(9):1415-1442. d0i:10.1109/5.58323

Wolfert, S., L. Ge, C. Verdouw, and M.-J. Bogaardt. 2017. Big data in
smart farming - a review. Agric. Syst. 153:69-80. d0i:10.1016/j.
agsy.2017.01.023

Zhao, K.,A. N. Shelley, D. L. Lau, K. A. Dolecheck, and J. M. Bewley.
2020. Automatic body condition scoring system for dairy
cows based on depth-image analysis. Int. J. Agric. & Biol. Eng.
13(4):45-54. doi:10.25165/j.ijabe.20201304.5655

1202 Areniga Gz uo 1sanb Aq 81662 1L9/8E00EYS/Z/66/2101ME/SEl/Wo0"dno-ojwapese//:sdny woly papeojumoq


https://doi.org/10.1017/S1751731116000744
https://doi.org/10.1016/j.applanim.2011.12.008
https://doi.org/10.1017/S0022029917000176
https://doi.org/10.1017/S0022029917000188
https://doi.org/10.1017/S0022029917000188
https://doi.org/10.1093/jas/skz092
https://doi.org/10.33548/SCIENTIA523
https://doi.org/10.1590/s1806-92902017000500012
https://doi.org/10.1016/S0308-521X(03)00070-2
https://doi.org/10.1016/B978-0-12-817052-6.00025-2
https://doi.org/10.3168/jds.S0022-0302(03)73884-3
https://doi.org/10.1016/j.biosystemseng.2017.09.007
https://doi.org/10.1016/j.biosystemseng.2017.09.007
https://doi.org/10.1016/j.compag.2012.12.003
https://doi.org/10.3168/jds.2012-6188
https://doi.org/10.1016/j.biosystemseng.2017.08.011
https://doi.org/10.1016/j.biosystemseng.2017.08.011
https://doi.org/10.1016/j.biosystemseng.2014.01.009
https://doi.org/10.1016/j.biosystemseng.2014.01.009
https://doi.org/10.1017/S175173111500244X
https://doi.org/10.1016/j.compag.2013.11.005
https://doi.org/10.1093/af/vfaa003
https://doi.org/10.1073/pnas.1821594116
https://doi.org/10.1071/AN14611
https://doi.org/10.1073/pnas.1707462114
https://doi.org/10.1073/pnas.1707462114
https://doi.org/10.2527/jas.2005-715
https://doi.org/10.2527/jas.2005-715
https://doi.org/10.1016/j.compag.2008.05.005
https://doi.org/10.1016/j.compag.2008.05.005
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.1109/5.58323
https://doi.org/10.1016/j.agsy.2017.01.023
https://doi.org/10.1016/j.agsy.2017.01.023
https://doi.org/10.25165/j.ijabe.20201304.5655

