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ing it because modeling is not simply about writing equations and generating numbers through simula-
tions. Models tell not only about a story; they are spoken to by the circumstances under which they are
envisioned. They guide apprentice and experienced modelers to build better models by preventing
known pitfalls and invalid assumptions in the virtual world and, most importantly, learn from them
through simulation and identify gaps in pushing scientific knowledge further. The power of the human
mind is well-documented for idealizing concepts and creating virtual reality models, and as our hypothe-
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Livestock ses grow more complicated and more complex data become available, modeling earns more noticeable
Ruminant footing in biological sciences. The fundamental modeling paradigms include discrete-events, dynamic
Simulation systems, agent-based (AB), and system dynamics (SD). The source of knowledge is the most critical step

in the model-building process regardless of the paradigm, and the necessary expertise includes (a) clear
and concise mental concepts acquired through different ways that provide the fundamental structure and
expected behaviors of the model and (b) numerical data necessary for statistical analysis, not for building
the model. The unreasonable effectiveness of models to grow scientific learning and knowledge in
sciences arise because different researchers would model the same problem differently, given their
knowledge and experiential background, leading to choosing different variables and model structures.
Secondly, different researchers might use different paradigms and even unalike mathematics to resolve
the same problem; thus, model needs are intrinsic to their perceived assumptions and structures. Thirdly,
models evolve as the scientific community knowledge accumulates and matures over time, hopefully
resulting in improved modeling efforts; thus, the perfect model is fictional. Some paradigms are most
appropriate for macro, high abstraction with less detailed-oriented scenarios, while others are most suit-
able for micro, low abstraction with higher detailed-oriented strategies. Modern hybridization aggregat-
ing artificial intelligence (AI) to mathematical models can become the next technological wave in
modeling. Al can be an integral part of the SD/AB models and, before long, write the model code by itself.
Success and failures in model building are more related to the ability of the researcher to interpret the
data and understand the underlying principles and mechanisms to formulate the correct relationship
among variables rather than profound mathematical knowledge.
© 2023 The Author. Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Implications experiential background, leading to choosing different variables
and model structures. Mental concepts do not need data; they
Fundamental education in mathematical modeling is needed to require ideas of how variables are connected because data will
regress the aversion to mathematics by biologists. The three most become available in one way or another if the concept is sound.
commonly used paradigms for modeling problems are discrete-
events, agent-based, and system dynamics, but hybrid paradigms Introduction
exist. The unreasonable effectiveness of mathematical models
might be related to the fact that different researchers would model Mathematical modeling is, in its essence, the art of reduction-
the same problem differently, given their scientific knowledge and ism of scientific knowledge into an arithmetical layout. It fuses
data with pre-established concepts and visceral understandings
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the learning process. Therefore, mathematical models translate our
perceptions of real-life facts and observations into virtual repre-
sentations using mathematical formulations (Tedeschi, 2019). Sub-
sequently, sensitivity and stress analyses, using independent data,
validate and evaluate the behavior and predictability of the model,
i.e., its adequacy for a purpose (Tedeschi, 2006), while confronting
our hypothesis and concepts about reality. Suitable and robust sta-
tistical designs, methods, and analyses are critical to mathematical
models’ development and evaluation phases and concept forma-
tion during the learning process, usually of four kinds: experiential,
presentational, propositional, and practical (Heron, 2009). In the
first instance, statistical mediation is needed partly because of
inherited, unknown, and uncontrollable errors and mistakes asso-
ciated with the researcher’s data-gathering phase. Secondly, the
human mind achieves astonishing feats at associating, recognizing,
and comprehending complex concepts while forming hypotheses
and ideas behind abstract experiences (National Research
Council, 2000). However, although the mental representation of
numerical quantities may constitute a distinct format for thought
(Friedenberg and Silverman, 2006), the human mind fails miser-
ably to process numerical calculations as the number of variables
and their interactions increase (Perlovsky and Ilin, 2012).

The power of the human mind is well-documented for idealiz-
ing concepts and creating virtual reality models. Nonetheless, jug-
gling too many balls at the same time can be challenging, if not
impracticable. As our hypotheses grow more complicated and
interconnected as the availability of more complex data (i.e., big
data) expands, mathematical modeling earns more noticeable
footing in biology (Vittadello and Stumpf, 2022), including agri-
culture (Thornley and France, 2007) and, in particular, animal
science (Tedeschi et al, 2005; France and Kebreab, 2008;
Tedeschi and Menendez, 2020). Therefore, modeling biological
science is inherently more complicated than physical science,
partly because biological systems rely almost exclusively on
experimental trials and observational data, which are, by design,
reductionisms of reality conducted under a controlled environ-
ment. In biology, a controlled environment has to be interpreted
with some caution, meaning, as much as possible, a user-
controlled environment within reach, given the experimental con-
ditions. Tedeschi (2022a) presented a preliminary version of this
document. This paper aims to highlight prevailing mathematical
modeling classifications and paradigms in discussing and exem-
plifying model hybridization to support the advancement of sus-
tainable animal production.

Modeling natural sciences

Unfortunately, biological and physical modeling differences do
not stop with their natural characteristics; they are deeply influ-
enced by other factors (Vittadello and Stumpf, 2022). As an exam-
ple, May (2004) described that Charles Darwin would have
benefited from the mathematical importance of Gregor Mendel’s
particulate nature of inheritance to understand better that simply
blending maternal and paternal characteristics does not alter the
gene frequency in the population. Such a feat would require exter-
nal forces to be exerted upon the population, for example, migra-
tion, mutation, and controlled selection, to list a few. The
differences between modeling biology and physics are deeply
rooted in the individual’s education. Besides the intrinsic aversion
to mathematics by biologists, often attributed to a poorly taught
course or preconceived idea that biology and mathematics do not
blend, biologists are more pragmatic than physicists. Physicists
want to understand the theoretical fundaments of the problem,
whereas biologists want to observe, conclude, and apply.
Vittadello and Stumpf (2022) contended that physicists rely on
principles to build their models, whereas biologists use heuristic
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models, i.e., learning by trial and error under a controlled environ-
ment, to gain experience. Additionally, the curriculum in physical
sciences relies heavily on mathematics and calculus, whereas in
biological sciences, it is based on qualitative aspects of life, bio-
chemistry and metabolism, and statistical methods to infer obser-
vational and experimental data. Exceptions exist for those in
biological sciences with interest in data analytics and modeling
reasoning.

Therefore, mathematical modeling principles might be more
straightforward in physics than biology. The criticism about using
mathematics in natural sciences, including physics and biology,
has reached a higher level of discussions about its usefulness (or
lack of) (Wigner, 1960) that resulted in several reactions from great
minds in different science fields (Hamming, 1980; Lesk, 2000) to
ponder about the importance of philosophy of life, existence, and
mathematics. Stochasticity (i.e.,, randomness), perhaps more in
biology than in physics, affects how mathematical modeling is per-
ceived by their respective scientific community, given its impact
on the predictability of the outcome. However, associating the
frustrations and lack of trust in mathematical modeling pre-
dictability is digressing from the goal of modeling. Stochasticity
is inherited from the system or problem, and it cannot alone be
blamed for the failures in mathematical modeling. Other factors
might be more influential to the dissuasion of the applicability
and usefulness of mathematics in modeling. Hamming (1980) pro-
posed four factors that might be associated with the unreasonable
effectiveness of mathematics in natural sciences: we see what we
look for, we select the kind of mathematics to use, science answers
comparatively few problems, and the evolution of man provided
the model. Essentially, there are three main reasons why models
may (or may not) be effective conveyers of scientific learning and
knowledge in biological sciences. Firstly, different researchers
would model the same problem differently, given their scientific
knowledge and experiential background, leading to choosing dif-
ferent variables and model structures (e.g., feedback loops and
feedforward structures); thus, no two models are alike. Secondly,
different researchers might use different modeling paradigms
and even unalike mathematics to resolve the same problem; thus,
model needs are intrinsic to their perceived assumptions and
structures. Lastly, models evolve as the scientific understanding
by the scientific community accumulates and matures over time,
hopefully resulting in improvements in the modeling efforts; thus,
the perfect model will never be. Therefore, success and failures in
the mathematical modeling of natural sciences, including biology,
are more likely directly related to the ability of the researcher to
interpret the data (i.e., behaviors, events, outcomes) and under-
stand the underlying principles and mechanisms to guide the cor-
rect mathematical formulation. After all, one can only build a
mathematical model based on their grasp of the problem and accu-
mulated knowledge. Another reason for model failure is the unnec-
essary complexity of the mathematical model that overwhelm
even experienced users, making them lose sight of the forest for
the trees (Tedeschi, 2019). Thus, successful model development
might come from, for example, three-quarters creativity and only
one-quarter mathematical formulation. Whether mathematics
and mathematical modeling have a place in biology is an ongoing
discussion that has drawn supporters and dissenters from different
fields of science (Wigner, 1960; Cohen, 2004; Tegmark, 2008;
Abbott, 2013). Mathematical modeling is needed to understand
the very reason for the existence of biological sciences. Given the
combinatorial possibilities of the multitude of factors and variables
through randomness and all possible solutions to the problem,
mathematical models can assist with interpreting the data and
shedding light on the occurrences of events observed in biological
sciences through experimentation; thus, mathematical modeling
and biological sciences should walk hand-in-hand. Nevertheless,
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the question remains, how do we build mathematical models in
biological sciences?

Modeling paradigms

The fundamental modeling paradigms include discrete-events
(DE), dynamic systems (DS), agent-based (AB) or individual-
based, and system dynamics (SD) modeling (Borshchev and
Filippov, 2004; Tedeschi, 2019). Both DS and SD modeling are also
called equation-based modeling (EBM); thus, models developed
using these approaches are evaluated, whereas AB modeling is
based on emulation (i.e., agents that emulate reality through speci-
fic attributes and attitudes). The DE and AB modeling rely exclu-
sively on stochasticity to create events where the system’s
overall behavior changes. The three most commonly used para-
digms for modelling business, socioeconomic, and agricultural
problems are DE, AB, and SD. However, hybrid modeling paradigms
also exist, such as discrete dynamical modeling (Sandefur, 1991;
1993), and newer hybridization are being proposed, especially
those aggregating artificial intelligence (AI) as big data become
increasingly available to researchers (Tedeschi, 2022b). The combi-
nation of different modeling paradigms occurs when different
levels of analysis are required, such as temporal (daily vs decades
time horizon) and spatial scales (micro vs macro level) of social
and ecological dynamics (Martin and Schliiter, 2015).

Fig. 1 depicts the ideal association between model paradigms
and problem types based on levels of abstraction, aggregation,
and details using the black to gray to white analogy. The black
box type refers to mathematical models in which input and output
variables are known, but the system or the problem is largely
unknown and is characterized by a high level of abstraction and
aggregation with a low level of details (i.e., information), most of
which must usually be inferred using inverse problem (Karplus,
2003; Borshchev and Filippov, 2004). On the other hand, the white
box-type models represent those systems or problems with low
levels of abstraction and aggregation, containing high levels of
details, thus, being more deductive and less inductive (Karplus,
2003; Borshchev and Filippov, 2004). White box-type models usu-
ally present more satisfactory predictive performance than black
box-type ones. Most control systems, electric circuits, and traffic
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models are deemed white box models, whereas most socio-
politico-environmental systems or problems are on the other end
of the grayness spectrum, closer to the black box definition. Most
systems or problems based on chemical reactions and reaction
rates are in the middle of the grayness scale of abstraction
(Fig. 1), and they comprise most biological systems.

Classification of mathematical models

Classification of mathematical models is more a matter of opin-
ion on whether some aspects of mathematical structure are used or
even to which extent it is incorporated in the model, especially
when the model classification does not have a clear-cut design.
Model classification can become a point of contention among mod-
elers because some might prefer one type over another or even
have different perceptions about the superiority of the model pre-
dictability if a specific class is used. Mathematical models are clas-
sified in many different ways depending on their developmental
programming context, style, and scope, including optimization (lin-
ear vs non-linear programming), application (descriptive or elu-
cidative vs predictive or prescriptive), time representation (static
or steady-state vs dynamic), time continuity (discrete vs continu-
ous), calculation mode (deterministic vs stochastic or probabilistic),
nature (empirical vs mechanistic or theoretical or rational), or space
(homogeneous vs heterogeneous) (Haefner, 2005; Tedeschi and
Menendez, 2020). Mechanistic models are called process-
oriented or concept-driven models, whereas Al models are called
data-driven models. In general, all modeling paradigms can adopt
different modeling contexts, styles, and scopes, but some might
be more appropriate to specific paradigms. For instance, DE and
AB rely almost exclusively on stochastic elements, whereas DS
and SD are frequently developed with deterministic, continuous,
and dynamic attributes.

Discipline maturity usually sets the appropriate use of models
based on the degree of uncertainty of the problem or systems.
The incorrect use of a model for a more rigorous purpose than
appropriate can be misleading or dangerous (Haefner, 2005). Gen-
erally, the model’s intended use, such as to describe, predict, and
explain behavior, partially pre-establishes its classification
(Tedeschi and Fox, 2020). For instance, descriptive and predictive
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models are usually static and empirical, whereas explanatory or
mechanistic models may require a dynamic approach. Differential
equations, which may be solved analytically or numerically, are
implicitly or explicitly used with dynamic models.

Deterministic vs stochastic modeling

Among the modeling classification types described above,
deterministic and stochastic modeling deserve particular attention
given their importance for modeling sustainability and climate-
related issues; the others are intuitive and are comprehensively
discussed in modeling textbooks (Haefner, 2005). Heinz (2011)
detailedly compared deterministic and stochastic modeling. Mod-
els classified as purely deterministic will always yield the exact
solution for the same set of inputs. That means the model depends
exclusively on initial values and calculations performed during the
simulation process, as long as similar assumptions and decisions
are constant between model executions—no surprises will befall.
In contrast, critical stochastic elements must be adopted when
variability becomes the main focus of the modeling effort. In cli-
mate models (Latif, 2022), the need to understand the variability
and which variables are associated with the variability of climate
models has boosted the interest in stochastic modeling in the last
hundred years. From the fundamental discovery by Svante Arrhe-
nius in the 1890s that doubling the concentration of CO, in the
atmosphere would increase the atmospheric temperature by 5 °C
(Arrhenius, 1896) to the latest development by Syukuro Manabe’s
laboratory in the 1980s of three-dimensional modeling to study
the anthropogenic influence on climate changes (Stouffer and
Manabe, 2017), stochasticity has been critical to understanding cli-
matic variability caused by internal forces (Hasselmann, 1976;
Frankignoul and Hasselmann, 1977). A crucial limiting factor in
stochastic modeling is that the computational challenge increases
drastically as finer resolutions (smaller scale or shorter timesteps)
are needed to capture extreme events (or variables) that can
tremendously influence the outcome. In modern climate models,
the resolution is somewhat flexible/variable, which means a smal-
ler resolution is used when needed for certain aspects or processes,
but a larger resolution remains for other less critical modeling
aspects or processes with minor importance (Latif, 2022). A similar
strategy could be adopted in biological sciences, especially animal
science modeling. For instance, finer resolutions such as cell-level
processes and minute-span timesteps could be used for hor-
monal/endocrinological modeling, tissue-level processes and day-
span timesteps for production modeling, or region-level processes
and year-span timesteps for epidemiological modeling.

Essential elements in building mathematical models

A good modeling praxis is consistently identifying the research
problem before selecting the best model paradigm/method to solve
it. Regardless of the chosen modeling paradigm, to build a mathe-
matical model, the source of knowledge is the most critical step.
Forrester (1980) discussed the necessary expertise to build a
model. The foremost expertise is possessing adequate mental con-
cepts that might have been acquired in different ways (e.g., obser-
vation, experience) and will provide the structure and behavior of
the model (Forrester, 1980). A clear definition of the problem being
investigated and its boundaries (spatial and temporal) are critical
to assist in identifying vital variables and planning for possible
relationships among them. The expected reference modes of vital
variables (i.e., their trajectory over time) are valuable to help iden-
tify existing archetypes (exemplified later) to be used as the foun-
dational blocks of the mathematical model. The type of data and
expertise needed will assist in organizing meetings with experts
or other stakeholders who have invested interest in the mathemat-
ical model to gather information and learn more about unknown
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specifics of the mental model. The second most essential expertise
is identifying published material highlighting existing concepts
and abstractions about reality (Forrester, 1980). The written mate-
rial is critical because it provides different thoughts about concepts
and relationships of interest that will guide the modeler in select-
ing the variables and essential parameters in the modeling and
simulation processes. The third essential expertise is acquiring
numerical data, which is the least essential element in building a
mathematical model (Forrester, 1980), but helpful in performing
data analytics, including descriptive and advanced statistical anal-
yses. Different approaches exist to describe the modeling process
(Haefner, 1996). Fig. 2 depicts a generalized representation of a
model-building process, including the model formulation, develop-
ment, calibration, evaluation, validation, documentation, and
deployment phases. Additional descriptions for each phase are dis-
cussed by Fishman (2001), Hannon and Ruth (2001), Dym (2004),
Haefner (2005), and Law (2007), among many others.

Discrete-events modeling

Discrete-events modeling (DEM) depends on the change of the
value or state of variables of interest at discrete points rather than
continuously with time (Fishman, 2001; Law, 2007). The simula-
tion is on pause until an event occurs; however, when multiple
threads are being modeled, some parts of the model might be on
pause, waiting for a specific change to occur while other parts of
the model are being executed. A typical example of DEM is the cus-
tomers queueing at a cashier in a grocery store or at a teller in a
bank until they are helped. Similarly, the time it takes for animals
to drink water at a water trough depends on water availability,
water drinking speed, how many animals drank before, and water
valve refilling speed, to list a few. Others might be interested in
knowing the mean waiting time to drink water, the probability
of waiting in the queue, the probability of waiting more than
twenty minutes, or the probability of an arriving animal not wait-
ing in the queue. DEM has been adopted to model complex systems
in many fields, including engineering, health, management, math-
ematics, military, social, telecommunications, and transportation
(Fishman, 2001). Although DE and AB modeling is based on
stochasticity and event-driven processes, they differ in many
aspects, as highlighted by Siebers et al. (2010): (a) DEM is a
process-oriented (top-down approach) focusing on the system,
whereas AB modeling is an individual-based (bottom-up approach)
focusing on the entities and their interactions; (b) DEM has cen-
tralized thread control of the events, whereas, in AB models, the
entities control the thread of events (decentralized); (c) DEM uses
a queue, whereas AB models have no concept of a queue; and (d)
DEM entities flow through a system (macro behavior is sought),
whereas AB modeling entities do not have a flow, and the micro-
behavior of each entity creates the system behavior of the system
at a macro level.

Dynamic systems modeling

Dynamic systems modeling (DSM) consists of a set of equations
(usually ordinary differential equations) that are evaluated.
Borshchev and Filippov (2004) indicated that DSM, which is heav-
ily adopted by mechanical, electrical, and chemical engineering
disciplines, is the ancestor of SD modeling. Many publications have
documented DSM exhaustively (Hannon and Ruth, 1997; Ruth and
Hannon, 1997; West and Harrison, 1997; Hargrove, 1998; Feurzeig
and Roberts, 1999; Deaton and Winebrake, 2000; Robinson, 2001;
Costanza and Voinov, 2004; Ellner, 2006; Hannon and Ruth, 2009).
In animal science, it is typical to use DSM for compartmental
modeling (Dhanoa et al., 1985; France et al., 2005; Crompton
et al, 2008). In essence, DS and SD modeling uses the same
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Fig. 2. A general sketch showing the essential elements and phases (model formulation, development, calibration, evaluation, validation, and documentation and

deployment) during a model-building process.

mathematical formulation, notation, and even identical sketches of
boxes to denominate state, level, or stock variables (unit) and
arrows to represent rate or flow variables (unit/time). The critical
difference between DS and SD is the methodology used in building
the model: DS is usually based on known and acceptable mathemat-
ical preformulations such as Michaelis-Menten for enzymatic satu-
ration kinetics, whereas the SD society advocates building models
based on feedback loop structures that represent patterns (or
behaviors) of variables of interest observed over time. Dynamic
systems are more concerned with numerical precision, whereas
SD endorses the overall pattern, though numerical precision can
be modified using different mathematical formulations and meth-
ods for numerical integration (Runge-Kutta vs Euler).

System dynamics modeling

Jay Forrester initially conceived SD in the 1960s (Forrester,
1961, 1971, and 1973) to understand complex behaviors brought
about circular, non-linear relationships in complex systems. Sys-
tem dynamics is a modeling paradigm deeply rooted in the sys-
tems thinking theory (Kramer and de Smit, 1977; Flood, 1990;
Bawden, 1991; Senge, 2006). It is used to recognize that complex
systems are integrated through feedback loops in which modifica-
tions made to a specific variable at a given time will ripple through
the system (i.e., model), affecting other variables, but will eventu-
ally impact back the same variable over time because of feedback
processes. The systems thinking theory has been applied to solve
problems in ecology by Bernard Patten, sociology by Niklas Luh-
mann, architecture by Christopher Alexander, and business man-
agement by Jay Forrester (Fath, 2014).

Collectively, feedback processes, model structure (i.e., how vari-
ables are connected), delays (i.e., often caused by sequential state
or stock variables), and intrinsic non-linearities dictate the dynam-
ics of the system (i.e., model behavior) (Sterman, 2000). The basics
of the SD methodology have been covered in several different
ways, with many examples in animal science (Tedeschi et al.,
2011; Nicholson et al.,, 2019; Stephens, 2021). The principles of
SD methodology (problem boundary, dynamic hypothesis, feed-

back loop processes) facilitate its adoption for pragmatic and holis-
tic applications, such as those found in social, managerial,
ecological, and business systems with “dynamic complexity”
(Senge, 2006). But, it does not exclude SD from being used in other
science fields that seek to understand the dynamic changes of vari-
ables through time within systems characterized by interdepen-
dence, interaction, information feedback, and circular causality
(Richardson, 1991). The SD literature is vast and still growing,
and many articles about SD applications in animal agriculture have
been published (Guimardes et al., 2009a, 2009b, and 2009c;
Tedeschi et al., 2013; Turner et al, 2017; Menendez Il and
Tedeschi, 2020; Wanyoike et al., 2023). Typical applications of SD
in biological sciences include the Lotka-Volterra equations for
modeling predator-prey relationships (Lotka, 1956), the Bass diffu-
sion model (Bass, 1969), and the susceptible-infectious-recovered
for epidemiological model (Kermack and McKendrick, 1927),
healthcare (Homer et al., 2004; Homer and Hirsch, 2006; Homer
et al.,, 2007) and antimicrobial resistance (Homer et al., 2000;
Stephens, 2021), among many others based in business and man-
agement strategies (Sterman, 2000; Morecroft, 2007).

Graphical representation of the mental model

An integral part of the model-building process is a graphical
representation of the critical variables, their inter-relationships,
and the feedback loops that can (a) capture the dynamic hypothe-
sis, (b) stimulate the systems thinking process of mental models,
and (c) exemplify the circular (i.e., feedback loops) and straight
(i.e., feedforward) characteristics of the model structure that cre-
ates the causality being attributed to the system or problem. The
causal loop diagram (CLD) represents the first sketch of the mental
model because it contains idiosyncratic elements that can quickly
convey the model’s ideas (Sterman, 2000). It is essential to high-
light that the goal of the CLD is to convey the main idea (i.e., mental
model and perception of how variables are connected) and not all
the variables required to model it, numerically speaking, effec-
tively. The CLD is necessary to underpin the feedback loops respon-
sible for complex dynamics. For instance, Fig. 3 depicts a CLD of a
mental model showing the critical variables related to cattle
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production and its impact on global warming. The dynamic
hypothesis is that the cattle herd (population) will achieve a stable
but lower number under a global warming situation, and the posed
question is how long it would take to stabilize at different intensi-
ties of global warming. Fig. 3 depicts six feedback loops: beef con-
sumption (B1: cattle herd and beef consumption), global warming
(B2: cattle herd, methane emissions, and global warming), climate
policies (B3: global warming, climate policies, and methane emis-
sions), resource erosion (B4: cattle herd, methane emissions, global
warming, resources, available resources, and production incen-
tives), production incentives (B5: cattle herd, required resources,
available resources, and production incentives), and cattle growth
(R1: cattle herd and calves).

As shown in Fig. 3, a positive sign in the arrowhead means that
if the independent variable increases, the dependent variable
would increase above what it would have been otherwise. If the
independent variable decreases, the dependent variable would
decrease below what it would have been otherwise. The negative
sign follows the same notation, except the change direction of
the dependent variable is opposite to the change direction of the
independent variable. For instance, in the resource erosion feed-
back loop (B4) in Fig. 3, as global warming increases, one expects re-
sources to decrease below the value that they would have been if
global warming had been kept constant. In contrast, as available
resources increase, one expects production incentives to increase
above their value if available resources are kept constant. The men-
tal model shown in Fig. 3 captures the impact of cattle’s methane
emission on global warming (B2) and the impact of climate policies
(B3) to mitigate methane (e.g., feed additives, low methane emitter
animals). The CLD does not imply that cattle are solely responsible
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for global warming; it implies that cattle contribute to global
warming to a certain degree. Cattle’s contribution to methane
emission (on a CO, equivalent basis) is estimated to be less than
4% in the United States (Dillon et al.,, 2021; Tedeschi, 2022c;
Tedeschi and Beauchemin, 2023), but adequate quantification is
lacking (Tedeschi et al., 2022). The feedback loops R, B1, and B5
in Fig. 3 reconstruct the Limits to Growth archetype (Meadows
et al, 1972; Meadows et al, 1992; Meadows et al, 2004;
Meadows, 2009) but with an added feedback loop (B4) that erodes
resources given the perceived impact of global warming on feedstuff
production required to feed the cattle. Indeed, additional feedback
loops can be added, but the question should be whether the exist-
ing structure is enough to mimic the observed and perceived
behaviors.

Once the CLD is deemed sufficient and acceptable, the modeler
can start developing the stock and flow diagram, i.e., the variables
and structure needed to perform simulations (Sterman, 2000).
Although the CLD is not intended for numerical simulations, it tells
the story behind the model-building process by capturing the
essential variables and their relationships. Often the modeler cre-
ates a CLD with variables that have not been measured (or cannot
be measured for one reason or another) or do not have accurate
enough values. This inconvenience should not prevent the modeler
from building the CLD because, sooner or later, the unconventional
variables will be researched, and values will be uncovered. After
all, ditching a critical variable from a model because it has not been
measured or its value is inaccurate is the most frequent incorrect
way to acknowledge its importance. Sterman (1991) believes that
assigning zero to a variable in the model, thus, omitting it, is the
only invalid value the variable can take. There is no limitation on
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Fig. 3. A graphical representation of the mental model of some feedback loops in cattle production and its environmental impact, causing global warming. The arrows denote
causal influences between two variables; the positive (+) or negative (—) sign indicates the dependent variable changes when the independent variable changes. Feedback
loops can self-reinforce (R) or self-balance (B) the change of the variables in the loop. Self-reinforcing (tending to amplify changes) and self-correcting (tending to counteract
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a model’s number of variables; therefore, handicapping a model by
limiting the number of variables is usually perceived as a weakness
in the model development phase. Mental concepts only need the
ideas of how variables are connected because data will be gathered
in one way or another if the concept is sound. Tedeschi (2022a)
acknowledges that removing vital variables from a model because
of the perception that data do not exist will undoubtedly narrow
the scientific knowledge and likely beacon the scientific commu-
nity in the wrong direction of science, which might lead to an even
worse situation than adding unmeasured, uncertified, non-zero
values to critical variables.

Additionally, this approach pressures the scientific community
to certify the essentiality of variables and validate their values. A
practical example was the inclusion of fractional degradation rates
to carbohydrate and protein fractions of a handful of feedstuffs to
ruminant nutrition models by Sniffen et al. (1992), who initially
used measured ranges for 27 grains, 21 proteinaceous feeds, and
12 forages from digestibility trials conducted before the 1990s
(Tedeschi and Fox, 2020), and then radiated out to all feedstuffs
in the feed library of the Cornell Net Carbohydrate and Protein Sys-
tem (Chalupa and Boston, 2003). Therefore, developing CLD to doc-
ument the scientific knowledge of the time is desirable as a
preliminary step toward building stock and flow diagrams.
Tedeschi et al. (2014) documented the possible impacts of con-
densed tannins on ruminant production and built a comprehensive
CLD depicting the essential variables and how they could interact
within the scope of the modeling exercise. A common way to elicit
CLD is to use the group model-building technique.

Group model building (Vennix, 1999; Andersen et al., 2007) is a
practical approach to foster stakeholder engagement in developing
interventions and policy design for sustainable management of
ecological resources and socio-economical conflicts. Group model
building relies heavily on building CLD through participatory dis-
cussions for data-gathering and understanding complex problems.
Several studies have used CLD to develop qualitative SD models
using the group model-building approach (Turner et al., 2013;
Inam et al., 2015; Perrone et al., 2020; Asif et al., 2023).

Agent-based modeling

Agent-based modeling (ABM) is also known as multi-agent sys-
tems/modeling or individual-based modeling. Agents are autono-
mous computational individuals or objects with particular
properties and actions built from probability distribution functions
and relationships among variables of interest. The system’s general
behavior emerges from the agent’s properties, rules, and interac-
tions with other agents, which, in turn, influence their behaviors
bounded by a context or environment (Macal and North, 2005
and 2010; Siebers et al., 2010). In essence, the individual dynamics
of agents through stochastic modeling create the system'’s overall
behavior. Therefore, by design, ABM uses mechanistic and stochas-
tic elements, i.e., agents are confined at a micro-scale (e.g., level 0),
and, through their [random] interaction, complex patterns and
behaviors are expressed at a macro-scale (e.g., level 1). Thus,
multi-level mechanistic simulations are possible if a hierarchical
modeling approach is adopted (e.g., from molecules to cells to
organs to the body). Macal and North (2009) list the following typ-
ical characteristics of an agent: (a) being self-contained, modular
(i.e., has boundaries), and uniquely identifiable individual; (b)
being autonomous and self-directed, i.e., functions independently
in its environment and its interactions with other agents; (c) vari-
able state over time, i.e., attributes change along with the state of
the environment; and (d) being social, i.e., must interact with other
agents that will alter its attributes; thus, its behavior as the simu-
lation progresses. Examples of applications of ABM in animal agri-
culture include microbial growth dynamics (Ginovart et al., 2002;
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Hellweger and Bucci, 2009) and epidemiological modeling
(Manjoo-Docrat, 2022).

The ABM is a powerful tool for computer simulation because its
ontology is analogous to agricultural systems (Railsback and
Grimm, 2011; Wilensky and Rand, 2015), making ABM a natural
approach for complex systems. Additional benefits of ABM over
other modeling paradigms include capturing emergent phenom-
ena arising from the interaction among entities, providing a natural
description of the system because agents are related to entities in
real life, and having the flexibility to define agents programmati-
cally (Bonabeau, 2002). The ABM allows us to develop mathemat-
ical representations from empirical observations of behavior; thus,
one can conjecture about explanations of the behavior and under-
stand the underlying principles of how these mechanisms interact.
For example, understanding that behavior patterns emerge from
individual interactions is a fundamental part of the ABM approach.
Wilensky and Rand (2015) believe that complex systems’ behavior
patterns are not deterministic and derived from a central con-
troller. For example, the goose in the front of the “V”-shape forma-
tion of goose flocks is not always the same, and this position
depends on the independent behavior of each bird (i.e., agents)
as there is neither a master bird that choreographs the “V”-shape
formation nor such a thing as “group mind” (Macy and Willer,
2002). The “V”-shape formation emerges from the random interac-
tion among independent geese reacting to the behavior of their
closest neighbor goose. For grazing animal production situations,
different combinations of forage types, management systems,
and animal breeds may result in different supplementation strate-
gies during the four seasons that might lead to more or less
methane emissions and resource use, given their independent
and non-mutually exclusive interactions. ABM has shined in four
real-world common problems: (a) flow simulation and manage-
ment such as traffic dynamics, (b) organizational simulation based
on the emergent collective behavior within a particular context or
level of description, (c) simulation of stock market dynamics
resulting from the behavior of interacting agents, leading to emer-
gent phenomena, and (d) diffusion simulation brought the influ-
ence people exert over others around them through social
networking (Bonabeau, 2002).

Although mathematically speaking, EBM and ABM can make the
exact predictions for the system’s behavior, ABM can resolve con-
troversies surrounding deterministic EBM because only ABM can
also make inferences about the individual agents of the system
using the stochastic approach within the same simulation run.
ABM simulations can surpass dynamic EBM expectations because
the agents can be programmed to change or alternate their distri-
bution within runs, given the occurrence of specific events. For
instance, animals may alter their grazing behavior within the same
simulation when a forage species becomes dominant in a pasture
for different reasons (e.g., climate or management). Dynamic
deterministic modeling such as DS and SD rarely reflects this
change at the end of the simulation, whereas ABM can incorporate
it. A subterfuge for EBM is to incorporate conditional statements,
such as if-then-elseif-else, to emulate changes during a simulation
run. There are cases in which ABM is a better tool than EBM, such
as when significant discrepancies exist among problem compo-
nents, such as modeling two or more forage types (e.g., grass and
legumes) and cows and calves sharing the same environment. In
this case, while the forage types have similar properties (e.g.,
growth, death, nutritive quality), they are different as they behave
differently depending on their interaction with climatic factors
(e.g., rain, temperature, sunlight) and the level of predation by
the cow and calves.

For life cycle assessment (LCA) analysis, ABM might be a better
approach than DS or SD modeling because ABM allows tracking
each agent, facilitating the collection of inputs and outputs for
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the LCA analysis. For instance, although cows have similar proper-
ties and actions, they differ on many variables like calf birth
weight, milk yield necessary to nurture the calf, and reproduction
aspects, to list a few. Each agent has a distribution for each prop-
erty and action to guide their behavior, which is entirely stochastic,
but the distribution parameters can be changed. Micolier et al.
(2019) highlighted additional benefits of using ABM at each LCA
phase, including scenario exploration, foreground inventory data
collection (essential for LCA), temporal or spatial simulation
dynamics, and data interpretation and communication. Only four
studies out of 18 reviewed by Micolier et al. (2019) were related
to agriculture, specifically the bioenergy sector. Few studies have
assessed the use of ABM toward behavior-driven modeling for
LCA analysis despite its innate propensity to solve the impact of
agriculture products on the environment.

Another exciting feature of ABM is that it can incorporate com-
putational advancements such as low aggregated programming lan-
guage (e.g., python, java) and data storage to improve the modeling
of complex problems. Moreover, agents can be added as needed to
mimic the “real condition” closely. Nonetheless, computational
capacity might become a limitation in simulating complex, large
ABM models with many agents. In this case, a supercomputer might
be required to perform the simulation, or meta-modeling (i.e.,
model simulation outputs used to develop another model) can be
an alternative to solve the computational problem in which a group
agent can be created to mimic the behavior of multiple agents, thus,
reducing the number of agents of the final ABM system.

There are other limitations of ABM that modelers must be
aware of before investing too much time in developing AB models.
As Daly et al. (2022) discussed, the mathematical formulation,
implementation, and analysis of AB models can be obscure, and
lack transparency as the equations are not readily available. Such
obfuscation might limit critical assessment and re-
implementation of AB models, impairing reproducibility by a third
party. Therefore, there is a trade-off between flexibility and stan-
dardization of the ABM methodology, which might be why AB
models have not been disseminated as expected. Open-science
practices (Mufioz-Tamayo et al., 2022) could help with the
advancements and deployment of AB models, given the high levels
of detail needed to program the agents.

Paradigm hybridization

Integrating different modeling paradigms (i.e., hybridization)
can potentially assist in building more accurate and computation-
ally efficient models for simulation and predictive needs.

Discrete-events modeling

Some DEM applications have been developed alone or in combi-
nation with other modeling paradigms (e.g., AB modeling) to assist
animal production. The hybrid DE + AB modeling is more likely to
exist because both paradigms are based on stochasticity to drive
the simulation process. Such an example is the DE + AB model
developed to simulate productive parameters and management
of grazing sheep for meat production (Reijers et al., 2019) and
the DEM + EBM for grassland-based beef cattle management
(Martin et al., 2011).

System dynamics and agent-based modeling

The SD methodology, for instance, uses a “top-down” approach
with a higher level of aggregation (Macal, 2010), though critical
variables are necessary to mimic the intended relationships
between variables and their reference mode over time. The AB
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methodology is preferred for building models to study problems,
systems, or processes that lack central coordination (Macy and
Willer, 2002). Thus, it uses a “bottom-up” approach (Macal,
2010), though more abstract simulations can also be conducted if
agents are broad enough and few details are used to discover their
collective behavior patterns. There is a clear separation between
these paradigms in terms of model construction, but their applica-
tion may overlap. AB modeling can yield similar behavior to SD
models as long as the granularity increases, i.e.,, many more agents
are added to the environmental modeling. However, this would
exponentially increase its computational costs, which might limit
other operational analyses of the model, such as sensitivity.

The issue is not whether an AB model can be converted to an SD
model or vice-versa. The differences between SD and AB modeling
are inherently rooted in how to go about modeling, and these two
approaches have different concepts of building models. The SD
methodology is related to the model structure (i.e., which variables
are important and how they are interconnected) that creates the
observed pattern, and it is also strongly connected to the feedback
information that creates the dynamism in the model. On the other
hand, the AB methodology stems from the idea that random rela-
tionships among agents can trigger specific responses that will
generate behaviors. A critical difference is that SD uses behavior
as a critical step in determining the model structure, whereas AB
uses agent characteristics to create the behavior. SD uses the
behavior as a cue to what lies beneath the model equations, and
it must know the behavior, whereas AB does not; it is built from
properties and relationships among agents without necessarily
knowing the intended behavior.

The epistemology of AB and SD modeling requires a profound
understanding of the differences between complexity theory and
systems theory, and their heritage comprises an extensive body of
literature. System theorists typically use SD modeling to identify
relationships between variables within a boundary and optimize
the system’s output, whereas complexity theorists base their belief
that complex behavior arises from many agents and their [random]
interactions within the systems (Phelan, 1999). SD modeling can
create complex, detailed models though this is not the main scope
of its methodology, which clearly states the simplest structure that
can represent/mimic the observed behavior. The question becomes,
would the gain in understanding the system’s behavior (or prob-
lem) offset the acquired complexity? Despite their intrinsic and
profound differences, there has been an increasing consensus about
combining AB and SD modeling (Phelan, 1999). Nevertheless, the
question is how to draw the boundaries between systems theory
(SD modeling) and complexity theory (AB modeling). The hybrid
AB + SD modeling framework has been used in the energy and
transport system (Shafiei et al., 2013), health systems (Cassidy
et al., 2019), and many more fields (Nava Guerrero et al., 2016).

Hybrid intelligent and mechanistic or agent-based models

Although concept-driven (i.e.,, mechanistic) and data-driven
(i.e., machine learning) are far along on their own development
turf, hybrid intelligent and mechanistic model or intelligent mech-
anistic model and hybrid intelligent and AB model or intelligent AB
model (iABM) are in their infancy, and protocols and algorithms
are still being engineered to allow for their prime time release,
especially for practical applications within the sustainable devel-
opment context (Tedeschi, 2019; Tedeschi, 2022b; Vittadello and
Stumpf, 2022).

However, given the surge of sensors and other instruments or
technologies (e.g., Internet of Things) (Tedeschi et al., 2021), more
numerical data have been collected than we have had time to
develop mathematical models to connect them (in a sensible, con-
ceptual way). The delay between mathematical model develop-
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ment and big data gathering is likely one of the reasons that Al has
become a sensation. In some cases, scientists have not caught up
with data availability by developing mechanistic models to make
sense of the data. The question then becomes, are modelers and
data analysts delegating their job of creating applicable mathemat-
ical models to a computer algorithm to develop a “neural represen-
tation” of the data? (Tedeschi, 2022a). While Al technology
ploughs through piles and piles of data in developing models using
machine learning or deep learning algorithms (a kind of modern
data mining), mechanistic modeling depends on [dynamic]
hypotheses for causal relationships obtained through experimental
observations of the phenomenon of interest. Therefore, by design,
the model-building process using mechanistic modeling is inher-
ently more meticulous and slower than Al approaches, but it can
result in additional learning experiences stemming from the
model-building process.

In the fields of biomedical and clinical sciences, Baker et al.
(2018) reported that 90% of the world’s data were collected in
the last five years (2012-2017), and only a tiny fraction of the data
was used to develop causality-driven mathematical models, the
remaining, a much more significant fraction of the data was geared
toward supporting the development of Al-based models. Likewise,
this data gathering and usage between mechanistic- and Al-based
model development reflects the pattern of other fields of science,
including agriculture. As discussed above, the development pace
of Al-based models is much greater than that of causality-based
models. The question left unanswered is, why bother developing
causality-based models when Al-based models have adequate
(often superior) predictability (Baker et al., 2018)? Two viewpoints
seem relevant in helping to address this inquiry. The first view-
point is that Al does not explain the reasoning behind its predic-
tion; thus, no new knowledge is gained by using it directly,
except for improved predictability (Tedeschi, 2019). However,
through methodical and extensive simulation protocols, one might
be able to learn from Al simulations. Only mechanistic, i.e.,
causality-based models, through their building process, can spawn
new learning and understanding. The second viewpoint is the
incessant quest for more data when Al fails. This continuous gath-
ering of big data to satisfy Al's hunger for data creates a mutual
dependency between Al and big data that might be neither sustain-
able nor inconsequent (Tedeschi, 2022b), possibly leading to the
fracture (or even the demise) of Al technology as currently known.
Modelers should employ Al technology to help build better math-
ematical models using hybridization. Hybridization with Al seems
a natural way to move forward in building boundless and powerful
mathematical models, but describing the underlying mechanisms
is still critical for understanding the observed behaviors.

The ABM paradigm might be a natural way to incorporate
machine learning to help agents to make decisions under excep-
tional circumstances. Brearcliffe and Crooks (2021) combined
machine learning into an AB model to simulate the capture and
metabolism of renewable resources (e.g., sugar). Although
hybridization was possible, the hybrid model (i.e., iABM) did not
provide the best results. Such iABM might require further advance-
ments before it can be used for more holistic approaches, such as
animal-plant-soil interactions within diverse ecosystems
(Tedeschi, 2022b). Although progress has been made, more time
and additional work might be required to understand the ideal
applicability of intelligent systems to assist with sustainable ani-
mal production.

Reflections on building mathematical models

Upon reflecting on the usefulness of mathematical models as
powerful decision-support tools in animal agriculture (or in agri-
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cultural and biological sciences in general) and the many existing
modeling paradigms and classifications accessible in building
effective models, one could summarize the following. “Mathemat-
ical models can be useful tools for understanding and predicting
the environmental impacts of animal production systems. These
models allow us to make informed decisions about how to manage
resources and mitigate potential risks to the environment. One
major benefit of mathematical models in animal production is
their ability to provide insights into the relationships between dif-
ferent variables and how they may affect the environment. For
example, a model might be used to understand the relationship
between feed intake, manure production, and greenhouse gas
emissions in livestock. By inputting different values for these vari-
ables, we can better understand how they may interact and impact
the environment. Another advantage of mathematical models is
their ability to make predictions about the future. By using data
from past animal production systems, we can develop models that
can forecast future conditions and outcomes. This can help us
anticipate potential environmental impacts and take proactive
steps to mitigate them. In addition, mathematical models can help
us identify and optimize key factors that influence animal produc-
tion, such as feed efficiency and disease resistance, which can lead
to more sustainable and environmentally friendly production prac-
tices. Furthermore, by using mathematical models, we can better
understand the trade-offs and potential unintended consequences
of different management decisions. For example, a model might be
used to understand the potential impacts of changing from one
feed source to another on greenhouse gas emissions and animal
performance. In summary, mathematical models provide a power-
ful tool for understanding and predicting the environmental
impacts of animal production systems. By using these models,
we can make better decisions about resource management, antic-
ipate potential risks, and optimize production for environmental
sustainability, ultimately leading to more environmentally friendly
animal production practices.”.

On the other hand, “while mathematical models can be useful
tools for understanding and predicting the environmental impacts
of animal production systems, there are also some valid arguments
against their use. One potential disadvantage of mathematical
models is that they are based on assumptions and can only provide
estimates or predictions, rather than certainties. These models are
often developed using data from past animal production systems,
but the future is always uncertain and there may be variables that
the model does not account for. This can make the predictions of
these models less reliable. Another concern is that mathematical
models can oversimplify complex systems, reducing them to a
set of equations or variables that may not fully capture the nuances
and complexity of real-world situations. This can lead to oversim-
plified or incomplete conclusions, which may not accurately reflect
the reality of the animal production system being studied. Addi-
tionally, mathematical models can be time-consuming and costly
to develop and maintain, requiring specialized expertise and
resources. This can be a disadvantage for farmers and other animal
production professionals who may not have access to these
resources. Finally, there is the risk that relying too heavily on
mathematical models may lead to a narrow focus on certain vari-
ables or metrics, such as greenhouse gas emissions or feed effi-
ciency, at the expense of other important factors, such as animal
welfare or the health of local ecosystems. In summary, while math-
ematical models can be useful tools for understanding and predict-
ing the environmental impacts of animal production systems, they
also have some limitations and may not always provide reliable or
complete insights. It is important to consider these limitations
when using these models and to supplement them with other
sources of information and expertise, including a holistic and inte-
grated approach to environmental management.”.
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There is no doubt that both standpoints have solid and valid
arguments about developing and applying mathematical models
in animal production concerning the environment. In reality, both
arguments were produced by the OpenAl’s chatbot, GPT-3 released
on 30 November 2022 (https://chat.openai.com/chat), in response
to the request, “write an argument in favour [or against]| of using
mathematical models in animal production concerning the environ-
ment.” Chatbots are Al systems able to converse with humans
through text or voice and understand one or more human lan-
guages by natural language processing algorithms (Adamopoulou
and Moussiades, 2020b; 2020a). As discussed above, these two
contrasting viewpoints confirm why models differ: researchers
have unalike perceptions of reality and choose different modeling
approaches, though perceptions can converge over time as deeper
learning is pursued. Despite the increasing concerns about Al-
based chatbots, we can learn and likely achieve tremendous posi-
tive advancements in mathematical modeling to be used as
decision-support tools if we train Al to generate the correct model
code. For instance, the chatbot GPT-3, and its newer generation
GPT-4, released on 14 March 2023, are trained to recognize pat-
terns in publicly available texts and reply to the request accord-
ingly. It may provide completely wrong or non-sensical answers
because it does not possess self-correction or judgment attributes
to discern right from wrong; thus, the reasoning might be flawed. It
brings into the debate, as discussed above, the first reason that
models may not be effective because different researchers (bots,
in this case) would model the same problem differently because
the AI's response is still highly influenced by the framing of the
question (or task to be performed).

A better use of chatbot GPT-3 (and GPT-4) for developing math-
ematical models would be asking whether (and how, and when) a
variable of interest is related to another variable of interest rather
than asking if complete models are relevant. This approach might
lead to increased returns of excellence in building models by abet-
ting our learning process. Many impediments weaken the learning
process and reduce our ability to understand the structure of com-
plex systems, including imperfect information and reasoning about
the real-world, missed feedback loops and delays, confounding and
ambiguous variable selection, little scientific reasoning (Sterman,
2000), and erroneous preconceived understanding of reality.
Modelers often use pre-existing mathematical models to build
(perhaps, re-invent) new models. Progressively speaking, using
pre-established archetypes (i.e., structures that replicate known
behaviors) rather than pre-existing models would be preferable
because the human mind’s creativity and innovative talents will
likely result in improved models. In this case, Al chatbots (perhaps,
codebots) could be employed to execute the arduous task of writing
the computer code, though humans still have to validate the code.
There is nothing wrong with existing models, but they are crammed
with preconceived assumptions and, perhaps, relationships based
on limited data—perfectly acceptable and correct during the exist-
ing models’ conception period that could be frail for modern needs.
It is worth recalling the mid-1980s fallout of the release of chlo-
rofluorocarbon compounds into the atmosphere and the subse-
quent impact on the ozone layer (Farman et al., 1985). The now
well-known shortcomings of the US National Aeronautics and
Space Administration’s Nimbus 7 satellite in confirming the actual
thinning in the ozone layer due to a flaw in the computer program-
ming to reject very low ozone readings, given an assumption at that
time that instrument’s reading failure could cause it (Meadows
et al.,, 1992, pp. 151-152). By design, the US National Aeronautics
and Space Administration’s computer model often ignored (i.e.,
never reported) very low ozone concentrations. The mathematical
model was eventually dealt with after scientists addressed the
political ineptness and fixed misperceptions and incorrect concepts
in the computer program (Meadows et al., 2004).
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Mathematical models are great decision-support tools for bio-
logical systems because they help us to identify gaps in scientific
knowledge, and failures are part of the model-building process.
As a result, unintended consequences occur because modelers fail
to understand the limitations of the mathematical model and push
the boundaries, trying to solve unconventional problems (Tedeschi,
2019). How far can Al assist with model building, and, perhaps
more importantly, can Al be an integral part of the model? In other
words, can agents from an AB + SD hybrid model learn, make infer-
ences, and make decisions? The main limitation with making deci-
sions is how Al can assess the risk of being wrong and how Al can
be penalized for being wrong. In the non-virtual world, business
people and agriculture producers are penalized for making mis-
takes through financial means (i.e., profits). Nevertheless, how to
go about penalizing Al?

These are incredible times to learn about and improve our mod-
eling skills because Al could become the next technological wave in
mathematical modeling to enhance our predictive analytics
through hybrid data-centred and concept-centred modeling
(Tedeschi, 2019). As discussed above, on the one hand, Al can not
only be an integral part of mathematical modeling through
hybridization, either using SD or AB (Brearcliffe and Crooks,
2021; Tedeschi, 2022b; Vittadello and Stumpf, 2022), but on the
other hand, it can write its own code to solve specific problems
(Li et al., 2022). It is expected that in the beginning, it will likely
be simple programming codes for dedicated tasks, but it could
expand to more complicated codes, even including SD or AB (more
likely) modeling paradigms with many variables and relationships.
The exciting part is that it could even fix and re-generate its own
code after thorough evaluation, under supervision or unsupervised.
The breakthrough for making it happen has already been uncov-
ered for processing images, video, speech and audio through the
use of the backpropagation algorithm to instruct Al to change its
internal parameters of the layers (LeCun et al., 2015).

Summary

Existing modeling paradigms may share familiar developmental
programming contexts and styles, including optimization (linear vs
non-linear programming), application (descriptive or elucidative vs
predictive or prescriptive), time representation (static or steady-
state vs dynamic), time continuity (discrete vs continuous), calcu-
lation mode (deterministic vs stochastic or probabilistic), nature
(empirical vs mechanistic or theoretical or rational), or space (ho-
mogeneous vs heterogeneous). However, different problems (or
systems) might benefit from specific modeling paradigms besides
being easier to codify and simulate to gain knowledge. If a variable
is deemed necessary in a mental model, but its value (or unit) is
unknown, assigning zero; thus, omitting it from the model is the
only incorrect value it can assume. If there is no limitation on
the number of variables a model can have, handicapping a model
by limiting the number of variables is unacceptable, except for
computational limitations. Thus, scientific knowledge progress is
restrained when vital variables from a model are removed because
of the modeler’s perception that data do not exist. Furthermore,
such an act may not only delay scientific progress; it might even
act as a beacon to the scientific community in the wrong direction
of science, leading to an even worse position—further away from
sustainable development goals. Moreover, the delay in developing
mathematical models to use big data is likely the main reason that
some scientists prefer delegating their job of creating applicable
mathematical models to a computer algorithm to develop a “neu-
ral representation” of the data when in reality, modelers should be
making better use of the Al technology to help build better math-
ematical models through hybridization. Some modelers prefer
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ABM because its ontology is more analogous to agricultural sys-
tems, making it a natural approach for complex systems, but com-
bining different paradigms (including Al) is also possible and
sometimes recommended. Hybridization with Al is believed to be
boundless and powerful, but mental models are still needed to
understand the underlying mechanisms of many animal produc-
tion systems. Mathematical models will more likely help us
achieve sustainable development goals if we combine concept-
driven (scientific knowledge about a subject) with data-driven
approaches.
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