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ABSTRACT

Numerous mathematical nutrition models have been developed in the last sixty years to predict the diet-
ary supply and requirement of farm animals’ energy and protein. Although these models, usually devel-
oped by different groups, share similar concepts and data, their calculation routines (i.e., submodels) have
rarely been combined into generalized models. This lack of mixing submodels is partly because different
models have different attributes, including paradigms, structural decisions, inputs/outputs, and parame-
terization processes that could render them incompatible for merging. Another reason is that predictabil-
ity might increase due to offsetting errors that cannot be thoroughly studied. Alternatively, combining
concepts might be more accessible and safer than combining models’ calculation routines because con-
cepts can be incorporated into existing models without changing the modeling structure and calculation
logic, though additional inputs might be needed. Instead of developing new models, improving the merg-
ing of extant models’ concepts might curtail the time and effort needed to develop models capable of
evaluating aspects of sustainability. Two areas of beef production research that are needed to ensure ade-
quate diet formulation include accurate energy requirements of grazing animals (decrease methane
emissions) and efficiency of energy use (reduce carcass waste and resource use) by growing cattle. A
revised model for energy expenditure of grazing animals was proposed to incorporate the energy needed
for physical activity, as the British feeding system recommended, and eating and rumination (HjE,,) into
the total energy requirement. Unfortunately, the proposed equation can only be solved iteratively
through optimization because H;E., requires metabolizable energy (ME) intake. The other revised model
expanded an existing model to estimate the partial efficiency of using ME for growth (kg) from protein
proportion in the retained energy by including an animal degree of maturity and average daily gain
(ADG) as used in the Australian feeding system. The revised k; model uses carcass composition, and it
is less dependent on dietary ME content, but still requires an accurate assessment of the degree of matu-
rity and ADG, which in turn depends on the k,. Therefore, it needs to be solved iteratively or using one-
step delayed continuous calculation (i.e., use the previous day’s ADG to compute the current day’s kg). We
believe that generalized models developed by merging different models’ concepts might improve our
understanding of the relationships of existing variables that were known for their importance but not

included in extant models because of the lack of proper information or confidence at that time.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Implications

parameterization processes that could render the merging under-
taking infeasible. Another reason is that the predictability of the

The development of mathematical animal models to assist sus-
tainable development in agriculture-related businesses might ben-
efit drastically by merging existing animal models, more
specifically those related to nutrition, given the amount of avail-
able data already collected worldwide and many different well-
throughout concepts. However, problems in merging existing
models include different paradigms, structural decisions, and
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merged model might increase due to offsetting errors that cannot
be thoroughly studied, creating an invalid model. Combining con-
cepts rather than calculation routines might be more achievable
and promising.

Introduction

We live in a time where sustainability has dominated the con-
versation in every scientific field (Pretty, 1997), yet we barely
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understand its prerequisites and full potential in animal science
(Tedeschi et al., 2015). Sustainability comes in many shapes and
forms, given the needs of each country or region. Producing enough
food to prevent hunger and eradicate poverty might be a more
pressing issue than saving the environment in some places, though
both might need to walk side-by-side to be effective (Anonymous,
2022). The growing demand for sustainable agricultural produc-
tion systems presents complex problems that are best analyzed
using mathematical modeling to assist researchers in recommend-
ing solutions to policymakers. The notion of using mathematical
modeling to assist sustainable development in agriculture-related
businesses is not new (Sharma et al.,, 2006; Gouttenoire et al.,
2011; Tedeschi, 2020; Vlontzos et al., 2021).

Several mathematical animal nutrition models have been devel-
oped in the last sixty years to predict the dietary supply and ani-
mal’s requirements of energy, protein, and other nutrients
(Tedeschi and Fox, 2020a). These mathematical models share sim-
ilar purposes, ideas, concepts, and original data. Fig. 1 depicts the
chronological development and evolution of nutrition (Tedeschi
et al., 2014) and grazing models (Tedeschi et al., 2019) and their
derivative work (Tedeschi, 2019a). The development of animal
bioenergetics, energy partitioning and utilization, and protein
metabolism in the early days have been nicely documented in
the past by Brody (1945), Blaxter (1962), and Kleiber (1961), and
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many comprehensive reviews have been updated and expanded
these traditional publications (Van Es, 1978; Moe, 1981; Garrett
and Johnson, 1983; Johnson et al., 2003; Ferrell and Oltjen, 2008;
Tedeschi, 2019a). Fig. 1 indicates that the development of nutrition
models commenced in the mid-1960s and has since been refined
and expanded vertically (i.e., released versions/editions) and hori-
zontally (i.e., different models or schools of thoughts). These mod-
els have distinct objectives, depending on their intended
development purpose, but in the end, the primary goal has usually
been to improve their prediction accuracy and precision to increase
the efficiency of animal production.

As Garrett and Johnson (1983) pointed out, “one of the goals of
energy metabolism research with ruminants always has been the
development of an accurate means for evaluating feedstuffs and
stating animal requirements.” Despite intrinsic relationships and
dependencies among extant mathematical animal nutrition mod-
els, given their shared similarities, the supply prediction
approaches have evolved further and independently of the require-
ment prediction approaches. For instance, the Cornell Net Carbohy-
drate and Protein System (CNCPS)-based model (Fox et al., 2004)
developed by Tedeschi and Fox (2020a), Ruminant Nutrition Sys-
tem (RNS), has three levels of solution for predicting the supply
of energy and nutrients but a single common calculation logic for
predicting the energy and nutrient requirements. The overarching
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Fig. 1. Chronological evolution (older at the top to newer at the bottom) of key mathematical models whose primary goal lies within ruminant nutrition only (red squircles)
or pasture/grazing ruminants (green squircles) domains. The approximate year of publication or release is shown on the left. The solid line represents a direct relationship of
influence, and the dashed line represents that at least one other version or edition was released between the marks. The lack of lines connecting the same model does not
imply that the model has been phased out. AFRC is Agricultural and Food Research Council; ARC is Agricultural Research Council; CNCPS is Cornell Net Carbohydrate and
Protein System; LRNS is Large Ruminant Nutrition System; CSIRO is Commonwealth Scientific and Industrial Research Organisation; INRA is Institut National de la Recherche
Agronomique; NASEM is the National Academies of Sciences, Engineering, and Medicine; NRC is National Research Council; RNS is Ruminant Nutrition System; SRNS is Small
Ruminant Nutrition System; and TPS is Tropical Pasture Simulator. Key references (empty blue squircles) are: (A1) NRC (1945a and 1945b), (A2) Leroy (1954), (B1) (Blaxter,
1962), (B2) Van Soest (1963a) and Van Soest (1963b), (C1) Nehring et al. (1966), (C2) Lofgreen and Garrett (1968), (C3) Moe et al. (1970), (D1) Schiemann et al. (1971), (D2)
Waldo et al. (1972), (D3) Hoffmann et al. (1974), (D4) Ministry of Agriculture, Fisheries and Food (1975), (D5) Van Es (1975), (E1) Baldwin et al. (1977), (E2) Baldwin et al.
(1980), (E3) Loewer et al. (1980), (F1) France et al. (1982), (F2) Gill et al. (1984), (F3) Fox and Black (1984), (F4) Conrad et al. (1984), (F5) Loewer et al. (1981), (F6) Loewer et al.
(1983), (G1) Danfaer (1990), (G2) Mertens et al. (1985, 1987), (G3) Bridges et al. (1986), (H1) Illius and Gordon (1991), (H2) France et al. (1992), (H3) Russell et al. (1992),
Sniffen et al. (1992), and Fox et al. (1992), (H4) Dijkstra et al. (1992), Neal et al. (1992), and Dijkstra (1993), (H5) Tamminga et al. (1994), (I1) Riedo et al. (1998) based on the
Hurley Pasture Model (Thornley, 1998), (12) Loewer (1998), (I3) Freer et al. (1997), (J1) Nagorcka et al. (2000), (J2) Mills et al. (2001), (J3) Fox et al. (2004), (J4) Cannas et al.
(2004) and Tedeschi et al. (2010), (J5) Vazquez and Smith (2001), (J6) Heard et al. (2004), (J7) Baudracco et al. (2010), (J8) Herrero et al. (2000a, 2000b), (J9) Vetharaniam et al.
(2003), (K1) Bannink et al. (2006), (K2) Bannink et al. (2008), (K3) Jouven et al. (2006b and 2006a), (L1) Graux et al. (2011), (L2) Gregorini et al. (2013), (L3) Delagarde et al.
(2011a, 2011b) and Faverdin et al. (2011), (L4) Baudracco et al. (2012), and (L5) Friggens et al. (2004). The figure was replicated with permission from Tedeschi (2019a).
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goal of extant animal nutrition models was in line with agricul-
ture’s mode of action at that time: increasing productivity. In the
last two decades, however, agriculture’s mode of action has been
transitioning to a more sustainable perspective (environmental,
social, and economic), and animal production systems have been
placed at the forefront of the debate (Tedeschi, 2022a). Therefore,
mathematical nutrition models for sustainable animal agriculture
might have to be re-engineered to accommodate current needs.
It may include a complete overhauling of animal nutrition models
to fit the new expectations, but it may also need to harness specific
aspects of extant animal nutrition models and seamlessly combin-
ing them into an integrated platform to represent reality more
accurately and precisely.

The relative contribution of beef cattle production to the cli-
mate change phenomenon differs among countries, varying from
up to 4% (Dillon et al., 2021; Tedeschi, 2022a; Tedeschi and
Beauchemin, 2023) in the US to 10% in Australia (Henry et al.,
2012) to 21% in Brazil (Brazilian Ministry of Science, 2021), with
a perception to represent 14.5% of human-induced greenhouse
gas (GHG) emissions worldwide (Gerber et al., 2013). Such discrep-
ancies in beef cattle contribution to the anthropogenic GHG among
countries are primarily due to the relative sizes of their energy,
industrial, and transportation sectors (thus, diluting more or less
the beef cattle production contribution) but also due to (a) our
inability to accurately quantify methane (CH4) emissions given
the hurdles to applying existing methodologies to diverse produc-
tion systems and large-scale regions (Tedeschi et al., 2022) and (b)
controversies regarding the calculations of the global warming
potential of atmospheric CH,4 about its half-life and the time hori-
zon used in climate change models (Cain et al., 2019; Lynch et al.,
2020).

Nevertheless, the question remains, what are the advancements
and limitations in predicting farm animals’ energy and protein
requirements, specifically growing ruminants, that could improve
animal agriculture sustainability? The objective of this paper was
to spark discussions of two critical areas in beef cattle production
(energy requirements of grazing animals and efficiency of use of
energy) to ensure adequate diet formulation by borrowing con-
cepts used in different mathematical models. Tedeschi (2022b)
presented and documented the preliminary analyses of this study.

Improving the prediction of energy requirements for grazing
cattle

Grazing animals produce more methane per weight gain than
confined animals (Pelletier et al., 2010). In part, the discrepancy
arises because low-quality, high-fiber diets (e.g., forages) yield
about four times more methane than high-quality, low-fiber diets
(e.g., feedlot), respectively 0.23 vs 0.07 kg CH,/animal/day (Harper
et al., 1999). Furthermore, about 80% of total GHG emissions and
84% of methane emissions come from the cow-calf phase, whereas
only 20 and 16%, respectively, come from the feedlot phase
(Beauchemin et al., 2010). Therefore, accurately determining graz-
ing animals’ energy requirements is critical to ensure that strategic
energy and protein supplementation is delivered to optimize ani-
mal growth and development (Tedeschi et al., 2019).

Unfortunately, most recommendations for grazing animals’
energy and protein requirements were grounded on those deter-
mined for confined animals. Partly because determining energy,
protein, and other nutrients for grazing animals requires special
equipment and methodology, making it more challenging, expen-
sive, and laborious. Energy and protein requirements for confined
animals have been extensively studied and disseminated for over
117 years (Kellner, 1905). Digestion trials have been implemented
for a bit longer: since 1860 at the Weende Experiment Station at
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the University of Goettingen in Germany and since 1884 at the
University of Wisconsin Agricultural Experiment State in the Uni-
ted States (Schneider and Flatt, 1975). For beef cattle, currently rec-
ommended energy and protein requirements stemmed from pen-
fed animal studies using the comparative slaughter technique
and the California Net Energy System methodology (Oltjen,
2019), though discrepancies might exist (Tedeschi et al., 2017;
Tedeschi, 2019b).

Grazing animals have an additional energy requirement associ-
ated with grazing activity compared to confined animal require-
ments. It comprises the additional energy needed for body
movements (i.e., locomotion) and forage browsing, selection, and
prehension. The non-activity maintenance requirement of energy
between grazing and confined growing or finishing animals might
be identical on a metabolic weight basis as long as animals are at
the same degree of maturity (i.e., same composition of gain)
(Tedeschi and Fox, 2015). However, because the diet consumed
by grazing animals (i.e., essentially forage) has a lower partial effi-
ciency of energy use for growth (Kg), grazing animals would
require a greater DM intake (DMI) to achieve the same average
daily gain (ADG). This fact becomes a significant limitation for
grazing animals for two main reasons: (1) the distance traveled
to reach maximum voluntary intake within a 24-h period (daily
basis) may exceed the animal’s locomotion or eating time capaci-
ties, worsening its energy balance; and (2) because DMI is also a
function of rumen size (i.e., volume/space), low-quality forages,
i.e.,, forage containing a higher proportion of fibrous material,
may further restrict intake by triggering the negative effect of
rumen fill on voluntary feed intake (Tedeschi and Fox, 2015;
2020a). Both reasons impede grazing animals from having the
same ADG as confined animals. Although the energy cost of phys-
ical activities in cattle, sheep, and buffaloes has been extensively
documented worldwide, a comprehensive physical activity calcu-
lation logic does not exist because the lack of information on the
energy required for eating feed by the ruminant is considerably
more significant for grazing animals than for confined animals
(Tedeschi and Fox, 2015).

Assessing the nutritional value of the feeds consumed by the
animal is an essential step in determining the animal’s energy
and protein requirements, and it is not a trivial task. Tedeschi
and Fox (2015) and Tedeschi and Dias Batista (2021) discussed
existing techniques to determine feedstuffs’ nutritive value. Given
our inability to definitively and accurately assess the consumption
of digestible energy (DE) by grazing animals when a digestibility
trial cannot be carried out, some have proposed the use of mathe-
matical modeling or empirical predictions to predict DE or its
equivalent, total digestible nutrients (TDN), given the chemical
composition of the diet in addition to other factors (Tedeschi and
Fox, 2020a; 2020b), especially for those under grazing conditions
(Tedeschi et al., 2019; Woli et al., 2020). In part, the problem arises
not only because the DE content is unknown with a high degree of
certainty but because of inadequate predictions of feed intake and
selection. Additional problems exist when converting DE to metab-
olizable energy (ME) (Galyean et al., 2016; Seo et al., 2021) for
grazing animals given the highly variable contribution of energy
loss via methane production. Thus, the question remains, can the
intake of DE be accurately determined so energy partitioning can
be estimated to assess animals’ energy requirements under grazing
or confined conditions?

Predicting energy expenditure for grazing cattle
In the United States, comprehensive discussions about energy

and protein requirements, primarily based on confined animals
(Tedeschi, 2019a), have been published by the National Research
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Council (NRC) and National Academies of Sciences, Engineering,
and Medicine (NASEM) for beef cattle from 1945 (NRC, 1945a) to
2016 (NASEM, 2016), for dairy cattle from 1945 (NRC, 1945b) to
2021 (NASEM, 2021), and for sheep and goats from 1945 (NRC,
1945c¢) to 2007 (NRC, 2007). Other countries and regions around
the globe have followed suit and devised their own set of recom-
mendations to meet their needs and production conditions. Few
publications have meticulously addressed the grazing animal’s
energy expenditure (EE) as the Australian Nutrient Requirements
of Domesticated Ruminants published by the Commonwealth Sci-
entific and Industrial Research Organization (CSIRO, 1990; 2007).

The Agricultural Research Council (ARC, 1980) developed a fac-
torial approach to estimate the EE (kcal/d) (Eq. (1)) associated with
physical activities by assigning coefficients to the number of hours
animals spent standing (h/day), the number of daily body changes
(laying down and standing), and walking horizontal and ascent dis-
tances (km/day). Assuming the typical values for feedlot and con-
tinuous grazing of 12 and 18 h/d for standing, 6 daily position
changes, 0 and 2 km/d for horizontal distance, and no vertical dis-
tance, the EE values for animals’ physical activity with 300 kg of
BW, usually assumed to be shrunk BW (NASEM, 2016), are 471.6
and 1 024.6 kcal/d. If the required net energy (NE) required for
maintenance is assumed to be 70 kcal/kg®”> BW/d, these EE values
for physical activity become an additional 9.35 and 20.3%, respec-
tively. That means the daily required NE for maintenance becomes
1.0935 x (70 x BW®75) and 1.203 x (70 x BW®7%) for animals
under feedlot and continuous grazing conditions, respectively.
Fox and Tylutki (1998) proposed to change the basal metabolic
energy requirement from 77 kcal/kg®”® of BW, devised by
Lofgreen and Garrett (1968), to 70 kcal/kg®”> of BW because of
about 10% (i.e., 9.35%) needed for physical activity under typical
feedlot conditions in the United States.

0.1 x Standing + 0.062 x Position changes+

EEpy =
A < 0.621 x Distancepg + 6.69 x Distanceyeica

>xmw
(1)

where Distancer,; is the distance traveled by the animal on a hori-
zontal, flat surface, km/d; Distanceyeicq is the equivalent ascending
distance traveled by the animal, km/d; EEp4 is energy expenditure
for physical activity, kcal/d; FBW is full (unshrunk) BW, kg; Position
changes is the number of standing and lying changes per day; and
Standing is the number of hours standing, h.
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Horizontal vs sloped vs vertical distances

In practice, an animal’s locomotion is either on a leveled terrain
(i.e., horizontal, flat) or a sloped terrain (i.e., inclined) with a gradi-
ent or an inclination angle; animals do not “walk vertically.” The
main limitation of measuring the EE for sloped terrains is that
the inclination angle may differ between studies, making it chal-
lenging to compare the measured EE needed for sloped distances.
Thus, the EE of vertical or ascent distance removes the inclination
angle as it only assumes the differences in heights to estimate EE.
Because cows climbing a ladder is unheard of, the EE for “walking
vertically” has to be computed mathematically.

Fig. 2 shows the graphical relationships between these dis-
tances. An animal can go from point A to point B by walking the
slopped distance from A — B, or walking horizontally from
A — D and then “vertically” from D — B. Given the laws of thermo-
dynamics of conservation of energy, as shown in Eq. (2), it is
assumed that the amount of energy expended for s x EEp—p is
equal to the sum of the energy expended for h x EEx—p plus
v x EEp—p, assuming that the EE is expressed as energy per dis-
tance unit, and s, h, and v are distances.

EEs g x S =EEs_.p x h+ EEp g x v

(2)

where EE is energy expenditure, Mcal/km.

The h and v (dashed red lines in Fig. 2) can be computed from
the triangle A-B-D using trigonometric relationships, as shown in
Eq. (3).

cos(a) = h/s.-.h = cos(a) x s
sin(o) = v/s.-.v =sin(a) x §

3)

Replacing h and v in Eq. (2) with those from Eq. (3), simplifying
the equation, and re-arranging to estimate EEp—g, we obtain Eq.

(4).
EEs 5 xS =EE4 p x (cos(a) x S) + EEp_p x (sin(o) x §).-.

EEp g = (EEAﬁB —EE4 p x COS(OC))/ Sil‘l(fx) (4)

where cos is the cosine function; EE is energy expenditure, Mcal/
km; sin is the sine function; and « is the inclination angle, radians.

Because EE4_,p is the same as EEs_ ¢ as they are expressed as
energy per distance per kilogram of BW, we can substitute EEs_p
with EE5_ ¢ to obtain the final mathematical formulation to com-
pute EEp_p with known measurements expressed as energy per
distance, as shown in Eq. (5). Note that EEp_,p (i.e., uphill) might

Y
Vertical or Ascent distance (v)

S
Horizontal or flat distance (h)

>
Horizontal or flat distance (s)

Fig. 2. Relationships among horizontal (h), sloped (s), and vertical (v) locomotion.
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not be the same as EEg_p (i.e., downhill) (Miwa et al., 2015;
Mulvenna et al., 2022), given the EE required for maintaining equi-
librium and stability to prevent falling (Hunter et al., 2010).

EEp g = (EEa_p — EE4_c x cos(a))/ sin(o) (5)

where cos is the cosine function; EE is energy expenditure, Mcal/
km; sin is the sine function; and « is the inclination angle, radians.

Therefore, if an animal expends 0.62 kcal/km/kg of BW for
walking on a horizontal path and 1.32 kcal/km/kg of BW for walk-
ing on a 6° sloped path, the “vertical walking” EE would be
6.73 kcal/km/kg of BW, calculated using Eq. (6).

EEp_5 = (1.32 — 0.62 x cos(6 x 7/180))/ sin(6 x 7/180) (6)

where cos is the cosine function; EE is energy expenditure, Mcal/
km; sin is the sine function; and = is the Pi number.

For example, a 300-kg animal walking 2.5 km on a 6° sloped ter-
rain would require 990 kcal (300 kg x 2.5 km x 1.32 kcal/km/kg). It
is equivalent to a 300-kg animal walking 2.486 km horizontally
(cos(6° x m[180)) at 0.62 kcal/km/kg plus 0.261 km “vertically”
(sin(6° x 7/180)) at 6.73 kcal/km/kg: 300 kg x 2.486 km x 0.62
kcal/km/kg + 300 kg x 0.261 km x 6.73 kcal/km/kg ~ 990 kcal.

Revisiting the prediction of energy expenditure for grazing cattle

The CSIRO (2007) devised a different approach to compute the
EE of grazing animals by adding an assessment of animals’ DMI,
grazing density (animals per ha), DM digestibility, and availability
of the forage to the animals’ physical activity (horizontal locomo-
tion). While this is a more mechanistic approach to estimating
grazing animals’ EE, it requires additional information that might
be neither available nor measurable. Novel methods and tech-
niques to assess forage availability and quality (Gonzalez et al.,
2018) are promising, and their adoption in these situations might
help our understanding of grazing animals’ EE tremendously.

Table 1 has revised literature data published by Tedeschi and
Fox (2020a), which was initially reported by Tedeschi (2001) and
Tedeschi and Fox (2015), who provided a detailed description of
the studies. The dataset summarizes EE for different grazing rumi-
nant species, using different techniques from 18 studies, and a
summary of Israeli studies for grazing Simmental x Hereford beef
cows, using the heart rate technique and global positioning system
from four studies. The average EE values for sloped (1.37, 1.33, and
1.32 kcal/kg/km) and vertical (6.59 and 6.69 kcal/kg/km) locomo-
tions are nearly identical between the datasets (Table 1), but the
EE for horizontal locomotion differs considerably from the values

Table 1
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adopted by ARC (1980) and CSIRO (1990) by almost six times
(0.11 vs 0.62 kcal/kg/km). The variation among different tech-
niques assessing EE of grazing animals is high, partly because of
the differences in feed quality, the amount used, and types of ani-
mals under different environments in each experiment. Thus, a
direct comparison of the results is complicated.

Developing a holistic energy requirement for grazing animals

Besides the basal metabolism and physical activity for grazing
animals, one could include the EE for chewing (i.e., eating and
ruminating), given the digestibility of the diet. The idea would be
similar to CSIRO’s (2007) approach in which diet quality (i.e.,
digestibility) alters the EE of grazing animals. Tedeschi and Fox
(2015) and Tedeschi and Fox (2020a) proposed a holistic approach
to predict the increase in the NE required for maintenance due to
physical activities, eating, and ruminating forages of different
quality.

The prediction of EE for physical activities assumes an additive
model; in other words, physical activity expenses plus the heat
increment of feeding are added to basal metabolism (HeE)
(White, 1993). The heat increment due to feed type in grazing sys-
tems may be incorrectly attributed to physical activity, and the EE
attributed to physical activities may overlap the heat requirement
for thermoregulation in cold conditions (T, less than the lower crit-
ical temperature). Other factors, such as eating and ruminating,
may also influence the EE of grazing animals, which depends on
the biting size and rate. Di Marco et al. (1996) estimated the energy
cost of eating was 1.84 kcal/kg®”>/h for 59 bites/min (148 g DM/m?
for ryegrass pasture) and 0.55 kcal/kg®7>/h for 28 bites/min (228 g
DM/m? for oat). Osuji (1974) had previously reported the value of
7.06 cal/kg/min for eating, which is approximately 1.89 kcal/kg®7>/
h for a 400-kg animal, nearly identical to the value of 59 bites/min
measured by Di Marco et al. (1996).

A more holistic approach for partitioning the energy required
(i.e., EE) of different behavior patterns of grazing animals is neces-
sary to predict the maintenance energy needed to support physical
activities and the animal’s EE for eating and ruminating forages of
different quality. The submodel developed by Tedeschi and Fox
(2015) proposed to partition EE for eating (i.e., mastication and
ingestion of fresh feed) and ruminating (i.e., chewing the cud).
The NRC (1981) defined HE as the sum of heat for basal metabolism
(i.e., HeE); heat for muscular activity (H;E) required for standing,
walking, grazing, drinking, and lying down; the heat of enzymatic
digestion (H4E); the heat of fermentation as a result of ruminal

Summary of additional energy expenditure (kcal/kg of BW) for diverse physical activities in ruminants.’

Items Types of walked distances
Standing Horizontal Sloped Vertical
kcal/d/kg of BW kcal/km/kg of BW
Israeli’s dataset”
Average 2.59 0.11 1.37 -
SD 0.22 0.03 0.23 -
vV, % 8.4 28.1 16.9 -
Tedeschi’s (2001) dataset®
Average — 0.11 133 6.59
SD — 0.03 0.11 0.78
vV, % — 29.3 16.2 11.9
ARC (1980)
Average 2.39 0.62 1.32 6.69

1 Revised from Tedeschi and Fox (2020a).

2 References: Brosh et al. (2006), Aharoni et al. (2009), Brosh et al. (2010), Aharoni et al. (2013).
3 References: Corbett et al. (1969), Ribeiro et al. (1977), Lawrence and Richards (1980), Havstad and Malechek (1982), Sanchez and Morris (1984), Thomas and Pearson
(1986), Sahlu et al. (1988), Lawrence and Stibbards (1990), Nienaber et al. (1993), Méndez et al. (1996), Dijkman and Lawrence (1997), Fall et al. (1997), Prieto et al. (1997), Di

Marco and Aello (1998), Herselman et al. (1998), Susenbeth et al. (1998).
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microbial action (H¢E); the heat associated with the metabolic pro-
cesses of product formation from absorbed metabolites (H,E);
thermal regulation (HcE), and waste formation and excretion
(HwE). Heat increment (H;E) is the sum of H4E, H¢E, H.E, and
HwE. HE can be written as shown in Eq. (7) for an animal fed at
maintenance.

HE = H,E + HiE + H.E + HiE (7)

where H(E is the heat for thermal regulation, Mcal/d; HE is heat pro-
duction, Mcal/d; H.E is the heat for basal metabolism, Mcal/d; H;E is
the heat increment, Mcal/d; and HiE is the heat for muscular activ-
ity, Mcal/d.

For animals under no heat or cold stress, H.E is assumed to be 0.
Furthermore, for an animal fed at maintenance, retained energy
(RE) is zero; thus, the HE is equal to ME intake (MEI = HE + RE).
In the case of maintenance-level of intake, the MEI is the MEmr.
We further subdivided heat for muscular activities (i.e., H;E) into
an animal’s physical activity for locomotion or movement (H;Ea)
and eating and ruminating the digesta (H;Eer). After assuming
these simplifications, Eq. (7) yields Eq. (8).

MEI = MEmr = H.E + (HiEpq + HiEer) + HiE 8)

where H.E is the heat for basal metabolism, Mcal/d; HiE is the heat
increment, Mcal/d; H;E,, is the heat for eating and ruminating, Mcal/
d; HiEp, is the heat for physical activities, Mcal/d; MEI is metaboliz-
able energy intake, Mcal/d; and MEmr is ME required for mainte-
nance, Mcal/d.

Susenbeth et al. (1997 and 1998) reported that EE for eating
was 1.91 kcal/kg®”/h for 640-kg steers, with a literature review
mean of 1.78 kcal/kg®>/h from a range of 0.7 to 2.7 kcal/kg®”/h
(Susenbeth et al., 1997; 1998). These authors also reported that,
on average, animals expended 0.52 kcal/kg®’>/h on ruminating
but that the EE for eating and ruminating varied with feed quality,
from 0.19 Mcal/kg DM for high-quality forage to 0.57 Mcal/kg DM
for wheat straw, representing 8 and 33% of MEI, respectively
(Susenbeth et al., 1997; 1998). When we regressed the EE for eat-
ing and ruminating (Mcal/kg DM) on MEI (Mcal/d), using the data
reported by Susenbeth et al. (1998), we obtained Egs. (9) (power
equation) and (10) (decay equation) to predict H;E.,. For instance,
a 300-kg animal eating 7 kg DM/d of a diet or 16.9 Mcal ME/d
would have HjE, of 1.98 (Eq. (9)) Mcal ME/d, or about 11.7% of
its energy required for maintenance. Alternatively, 2.15 Mcal ME/
d is obtained with Eq. (10). Eq. (9) was adopted because it yielded
a lower residual sum of squares than Eq. (10) (0.00048546 vs
0.00292620).

HiEer = (4.2557 X MEI’°'95878> x DMI (9)

HiEer = (0.95166 x e~ 00670>xMEN) » DM (10)

where DMI is DM intake, kg/d; e is the exponential function (i.e., e is
the Napier’s constant of 2.7182); H;E,, is the heat for eating and
ruminating, Mcal/d; and MEI is metabolizable energy intake, Mcal/
d.

As shown in Eq. (11), the heat for basal metabolism (i.e., H¢E) is
computed using the equation developed by Lofgreen and Garrett
(1968) adjusted for the physical activity of pen-fed animals (Fox
and Tylutki, 1998) and for the energy cost of eating and ruminat-
ing, using Eq. (9). The animals in the low level of feed intake used
by Lofgreen and Garrett (1968) consumed about 3.3 kg DM/d and 8
Mcal ME/d. For these values, Eq. (9) yields HiE, of 1.9 Mcal/d. Con-
sequently, H.E (i.e., NEmr) adjusted for their animals’ physical
activity, eating, and ruminating EE is estimated as shown by Eq.
(11). The HiEp, (i.e., NEmrac) is computed with Eq. (1).

H.E = NEmrgge = 0.07 x SBW*” - 1.9 (11)
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where HeE is the heat for basal metabolism (i.e., NEmrg,sq), Mcal/d;
and SBW is the shrunk BW, kg.

Although the energy cost associated with physical activity is
included in the observed data of Lofgreen and Garrett (1968), the
physical activity adjustment proposed by Fox and Tylutki (1998)
might have introduced some degree of double accounting. The rea-
son is that physical activity cost likely varies with feed intake, and
extrapolating to zero feed intake might have already adjusted for
some portion of it automatically.

When animals have been starved (i.e., energy intake is zero) for
some time, yielding negligible amounts of energy from the digesta,
the NEmr is equal to the fasting heat of production (i.e., H.E or
basal metabolism). However, when animals resume feeding (i.e.,
energy intake is greater than zero), the heat associated with
obtaining feed (e.g., physical activity, eating, and ruminating) is
added to the NEmr (NRC, 1981). The physical activity (H;Epa) and
eating and ruminating (H;Ee;) heats are included in the NEmr as
represented in Egs. (12) and (13) when energy intake is greater
than zero.

MEmr = NEmr + HiE (12)
H.E E intake = 0

NEmr — { e nergy %n ake (13)
H.E + H;Ep, + HiE.r Energy intake >0

where H.E is the heat for basal metabolism, Mcal/d; HiE is the heat
increment, Mcal/d; H;E,, is the heat for eating and ruminating, Mcal/
d; H;E,q is the heat for physical activities, Mcal/d; and MEmr is the
metabolizable energy required for maintenance, Mcal/d.

Therefore, for an animal fed at maintenance (zero energy
intake), the NEmr is equal to MEmr x kg, in which ki, is the partial
efficiency of using ME to NE for maintenance. Consequently,
replacing NEmr with MEmr x ky, in Eq. (12) and solving for H;E
shows that HiE is MEmrx(1 - Kky,). Then, substituting H;E and NEmr
(Eq. (13)) into Eq. (12) results in Eq. (14). Expanding Eq. (14) by
replacing HeE with Eq. (11), H;Ep, with Eq. (1), and H;E.; with Eq.
(9) results in Eq. (15). Unfortunately, because HiE.; requires MEI
to be computed (i.e., MEmr for animals at maintenance), Eq. (15)
can only be solved iteratively through optimization, highlighting
the danger of adopting feedforward calculation only and ignoring
feedback loops.

MEmr:HeE+HjEpa +HjEer+MEmr>< (1 7km) (14)

MEmr — (0.07 x SBWO75 _ 1.9)

(0.1 x Standing + 0.062 x PositionChanges+> o
0.621 x Distancegq; + 6.69 x Distanceyetica )
1000

+(4.2557 X MEI’°‘95878> x DMI + MEmr x (1 — kp)
(15)

where Distancer,, is the distance traveled by the animal on a hori-
zontal, flat surface, km/d; Distanceyeicq is the equivalent ascending
distance traveled by the animal, km/d; DMI is DM intake, kg/d; FBW
is full (unshrunk) BW, kg; H.E is the heat for basal metabolism,
Mcal/d; HiE is the heat increment, Mcal/d; H;E., is the heat for eating
and ruminating, Mcal/d; H;Ep, is the heat for physical activities,
Mcal/d; k, is the partial efficiency of the use of metabolizable
energy for maintenance, Mcal/Mcal; MEI is metabolizable energy
intake, Mcal/d; MEmr is the metabolizable energy required for
maintenance, Mcal/d; Position changes is the number of standing
and lying changes per day; SBW is shrunk BW, kg; and Standing is
the number of hours standing, h.

An inconsistency that arises from the factorial approach to
determine HE, as shown in Eq. (7), is that the partial efficiency of
using ME to NE for maintenance (i.e., k) is only valid to estimate
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Fig. 3. (A) Metabolizable energy (ME) required for basal metabolism (H.E), physical activity (H;E,), eating and ruminating (H;Ee;), and heat increment (HiE) of grazing cattle
for different shrunk BWs and dietary ME contents calculated using Eq. (15). See Supplementary Video S1. (B) Total ME required for maintenance (purple) and predicted ME

intake. See Supplementary Video S2. Based on Tedeschi and Fox (2020a).

the ME,,,; from fasting heat production (HcE or basal metabolism at
zero energy intake). The reason is that ME,; = ki, x HeE, as shown
in Eqgs. (12) and (13) (Garrett, 1980b). If all HE components are
measured and summed up, using k;, will eventually result in dou-
ble accounting. In that case, k, needs to be “increased” to consider
the HE included in estimating NE,,;; in other words, k;, needs to
account for a smaller portion of the unaccounted HE.

Fig. 3A depicts the total daily ME required for a grazing animal,
partitioned into EE for basal metabolism, physical activity, eating
and ruminating, and heat increment, assuming dietary ME (1.5-
3.5 Mcal/kg) and SBW (100-550 kg). The horizontal and vertical
distances were assumed to vary (1 500-0 meters per day and
500-0 meters per day, respectively) for low- to high-quality diet-
ary ME (1.5-3.5 Mcal/kg, respectively). The variable horizontal
and vertical distances were used to mimic animals grazing farther
on low-quality forages to meet their energy requirements for
maintenance compared to those on high-quality forages (e.g., rota-
tional grazing systems or confinement conditions). The number of
hours standing was 12 h/d, and the number of body position
changes was 6 times/d regardless of the diet ME and animal
SBW. The proportion of MEI (i.e., MEmr) lost as heat (i.e., heat
increment) was identical among animals of different SBW because
the ky, was computed from dietary ME, which was identical for all
animals. The heat increment (H;E) was greater for heavier than
lighter animals, but the proportion of MEI that was expended for
eating and ruminating was greater for lighter than heavier animals
as it was a function of dietary ME. The EE for eating and ruminating
was greater for low-quality forage than grain-based finishing diets
(Fig. 3A). The proportion of physical activity (i.e., movement or
locomotion) was similar, ranging between 7 and 14%. As expected,
animals expended more energy on low-quality forage than on
high-quality forage (Fig. 3A). The EE for physical activity varied
from 0.16 to 0.61 Mcal/d for the 100-kg animal and 0.90 to 3.35
Mcal/d for the 550-kg animal. Animals consuming diets containing
less than approximately 1.9 Mcal ME/kg are predicted not to meet
their energy requirements as their MEI is below the ME required
for maintenance (Fig. 3B), and they would likely lose weight and
eventually succumb if dietary ME remains low. The 1.9 Mcal ME/
kg DM is approximately 53% TDN, confirming the minimum
threshold of forage digestibility, suggested by Van Soest (1994;
Figures 7.8 and 7.9), of approximately 50% to support cattle at
maintenance.

As shown in Fig. 3A, the EE for physical activity (H;E,.) and
chewing (HjEe;) accounts for nearly all the differences between
confined and grazing ruminants, and yet, our incomplete under-
standing of these components has delayed the development of a
more definitive solution. In part, data collection of plant and ani-
mal interaction (forage selection, grazing behavior, pasture
growth/regrowth, pasture quality, nutrient digestion and absorp-

tion, volatile fatty acids production and profile, and energy require-
ment) remains a critical bottleneck for adequate knowledge of
forage intake by ruminants (Tedeschi et al., 2019). Most of the data
on EE for ruminants crested in the early 1960s toward the mid-
1980s, boosted by many open-circuit, indirect calorimetry appara-
tuses and methods, but none could be decisively deemed ideal, and
the development and improvement of methodologies declined.
More recently, with the advancement of global positioning systems
(GPS) and heart rate monitoring systems, researchers have been
able to track grazing animals and estimate their EE (Brosh, 2007).
The adoption of these instruments to determine grazing animals’
EE was likely motivated by the desire to identify efficient animals
through the residual feed intake (RFI) technique (Asher et al.,
2018).

As new technologies and methodologies become available,
modeling the energy requirement of grazing and confined animals
will likely close the gap between model-predicted and observed
performance as more factors are considered in the predictive mod-
els. Nonetheless, caution should be exercised to avoid double
accounting or offsetting errors in calculating EE that could elicit
false improvements in predictability.

Improving the predictability of the efficiency of the energy use
for growing cattle

The second bottleneck in ensuring adequate diet formulation is
the accurate determination of the efficiency of ME use for growth.
There is no shortage of growth model development, but perhaps
combining the quintessence of extant growth models to improve
the predictability of the gain composition is warranted. Once the
gain composition is known, the energy and protein requirements
are straightforward calculations. The RE and ADG have been the
heartbeat of many theoretical growth models (Lofgreen and
Garrett, 1968; Garrett, 1980a; Loewer et al., 1983; Fox and Black,
1984; NRC, 1984; 2000; Fox et al., 1992), including stochastic mod-
els (Parks, 1973). Some growth models used ADG and specific char-
acteristics of animal growth (Keele et al., 1992; Williams et al.,
1992; Williams and Jenkins, 1998; Kilpatrick and Steen, 1999)
and combined mechanistic or dynamic modeling to predict body
composition (Hoch and Agabriel, 2004a; 2004b), or used DNA
(deoxyribonucleic acid) accretion curves and protein-to-DNA ratio
(Oltjen et al., 1986b; Bywater et al., 1988; Di Marco et al., 1989;
Oltjen et al., 2000). Primary biochemistry pathways associated
with the development and growth of different tissues (e.g., viscera,
muscle, and adipose) have been developed for sheep (Oddy et al.,
1997; Oddy et al., 2019). Most mechanistic and dynamic concep-
tual growth models are based on metabolic processes (Gill, 1984;
France et al., 1987; Gill et al., 1989; Gill, 1996), but such models
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rely heavily on the principle that substrate availability and satura-
tion enzyme kinetics control the distribution of nutrients in body
tissues (Baldwin, 1995).

Some growth models rely on empirical concepts and some ele-
ments of teleonomic behavior (Tedeschi and Fox, 2020a). Others
possess some elements of mechanistic modeling, and very few or
none adopted stochastic components (i.e., probabilistic theory).
Because of the different modeling approaches to predict energy
and protein requirements among existing growth models and their
different variables, some critical limitations arise when comparing
existing growth models. For instance, Arnold and Bennett (1991a
and 1991b) compared four growth models developed in the early
to mid-1980s: Roman L. Hruska US Meat Animal Research Center
(Notter et al., 1979a; Notter et al.,, 1979b; 1979c), Texas A&M
University (Sanders and Cartwright, 1979a; 1979b; Oltjen et al.,
1986a), BEEFS156 (Loewer et al., 1983; Loewer et al., 1987), and
UCDavis (Oltjen et al., 1986a; Oltjen et al., 1986b). They reported
that two problems caused these models to yield inconsistent
results: the definition of mature BW is different among growth
models and different predictions of DMI. When these two variables
were assigned independently within each model, the models sim-
ulated the animal’s BW successfully but failed to predict body com-
position. Similarly, Garcia et al. (2008) compared the growth model
developed by Institut National de la Recherche Agronomique
(Hoch and Agabriel, 2004a; 2004b) and UCDavis (Oltjen et al.,
1986a; Oltjen et al., 1986b), and reported that both models, devel-
oped with entirely different concepts and equations, could produce
similar predictions of body composition (protein accretion), but
they behaved differently under distinct growth trajectories. These
evaluations reinforced the hypothesis that each model has to be
evaluated within the purpose of its development, and intrinsic
errors may offset each other within each model. Therefore, model
comparisons should be carried out under various production con-
ditions to accommodate each model’s assumptions and purposes.
Consequently, a generalized growth model is still needed.

Such limitations may hinder the predictability of growth mod-
els when different production conditions exist other than those
established conditions in which the models were developed or cal-
ibrated (Tedeschi, 2022b). They may also prevent incorporating
different modeling concepts from one model to another. For
instance, for growing cattle, the partial efficiency of energy use
for growth (i.e,, kg) in the American systems (e.g., NRC, NASEM,
CNCPS, and RNS) is frequently computed based on an empirical
(cubic) equation that estimates the NE for growth (NEg, Mcal/kg)
based on the dietary concentration of the ME (Mcal/kg). Similarly,
in the British and Australian systems (e.g., ARC, Agricultural and
Food Research Council—-AFRC, and CSIRO), the k, also exclusively
depends on dietary energy through the metabolizability of the diet
(M/D), though a linear equation is applied. In addition to the diet
characteristics, more specifically its digestibility, CSIRO (2007) pro-
posed adjusting kg for the legume proportion relative to grass.

Predicting the partial efficiency of the use of energy for growth

Although the dietary ME is related to the dietary contents of
carbohydrates, fat, and protein and their digestibility, the efficiency
to which energy is deposited in the tissue depends on the tissue
gain composition (Reid et al., 1980; Tedeschi et al., 2004). Growth
models rarely acknowledge this fact and still use dietary character-
istics to estimate kg and NEg; thus, incorrectly rendering kg inde-
pendent of carcass composition. If the protein proportion of RE is
known, kg can be estimated using Eq. (16), and assuming fat and
protein deposition efficiencies of 75 and 20%, respectively, it yields
Eq. (17) (Tedeschi, 2001; Williams and Jenkins, 2003; Tedeschi
et al., 2004).
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kg = Kkr x kp/(kp + REp x (kF - kp)) (16)

kg =3/(4+ 11 x REp) (17)

where kg is the efficiency of fat deposition, Mcal/Mcal; kq is the par-
tial efficiency of converting metabolizable energy into net energy
for growth; kp is the efficiency of protein deposition, Mcal/Mcal;
and REp is the proportion of protein in the retained energy.

The impact of growth rate on the deposition efficiencies of fat and
protein

These deposition efficiencies are not fixed, however, Cannas
et al. (2006) and Tedeschi et al. (2010) reported values of 68 and
27% for fat and protein, respectively, for growing sheep, and
Chizzotti et al. (2008) reported different deposition efficiencies of
fat (79%) and protein (34%) for Nellore and Nellore x Bos taurus.
Marcondes et al. (2013) empirically derived a non-linear relation-
ship between k, and the proportion of RE as protein (REp), and
when solving their empirical equation, the deposition efficiencies
for fat and protein are 60.7 and 21.2%, respectively. These studies
suggest that deposition efficiencies of fat vary from 60.7 to 79%
and of protein vary from 21.1 to 34%. Perhaps the most exciting
finding elucidated by Marcondes et al. (2013) was that fat and pro-
tein deposition efficiencies are not constant; they increase linearly
with ADG (Eq. (18) had r? of 0.916 and Eq. (19) had r? of 0.951).
Their values suggested that fat and protein deposition efficiencies
increased by about 1.84 and 1.76% for each 100 g/d increase in
ADG, respectively. Interestingly, based on Egs. (18) and (19), fat
and protein deposition efficiencies are 69.1 and 19.8%, respectively,
when ADG (i.e., empty weight gain, EWG) is zero. These values are
close to their respective values reported above, suggesting these
efficiencies are only valid when ADG approximates zero: body
composition of low-gaining animals might be better estimated
than high-gaining animals.

ke = 0.1836 x EWG + 0.691 (18)

kp =0.1764 x EWG + 0.198 (19)

where EWG is empty weight gain, kg/d; kg is the efficiency of fat
deposition, Mcal/Mcal; and kp is the efficiency of protein deposition,
Mcal/Mcal.

Combining Eq. (16) with EWG-dependent fat (kg) and protein
(kp) deposition efficiencies (Eqs. (18) and (19)) yields Eq. (20),
which has the shape shown in Fig. 3A without restricting the max-
imum kg to 79%.

K — 19.0025 + EWG(21.9785 + 4.4982 x EWG)
€ 7 27.5+24.5 x EWG + RE(68.4722 + EWG)

(20)

where EWG is empty weight gain, kg/d; kg is the partial efficiency of
converting metabolizable energy into net energy for growth; and
REp is the proportion of protein in the retained energy.

Fig. 3A shows that the k, decreases exponentially with the pro-
tein proportion in the RE and increases linearly with EWG. The
direct correlation between EWG and k, was expected because
the rate of fat deposition increases as EWG increases (Owens
et al.,, 1995), and the fat deposition efficiency is greater than pro-
tein, as discussed above. The protein requirement for growing ani-
mals can be theoretically estimated from RE and ADG (Tedeschi,
2019b); thus, improving RE (and ADG) predictions will improve
the computation of protein needs.
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The impact of maturity stage rate on the deposition efficiencies of fat
and protein

The rate of fat accretion also increases with maturity (Owens
et al., 1995; Tedeschi, 2019b), assuming empty body fat as a proxy
for maturity. Thus, one would expect that kg should also increase
with maturity. Nevertheless, which variable (EWG or maturity)
impacts kg the most is unknown. The British and Australian sys-
tems (e.g., ARC, AFRC, CSIRO) developed non-linear equations to
compute the proportion of protein and fat in the gain as animals
mature. That means these feeding systems assumed correctly that
the animals’ maturity stage could be used to adjust changes in
body composition, i.e., fat content increases with maturity. These
feeding systems adopted the logistic (sigmoidal) function to esti-
mate fat or protein content in the gain for large lean breeds (Charo-
lais, Chianina, Blonde d’Aquitane, Limousin, Maine Anjou, and
Simmental) and other breeds, including crossbreds.

Therefore, combining such information (fat and protein in the
gain with partial efficiency of energy use for growth) is interesting
to enhance our ability to estimate the carcass composition of grow-
ing animals more accurately. Such enhancements would allow us
to estimate better their requirements of energy and protein (and
other nutrients), aiming to produce more resilient and sustainable
production systems (i.e., less use of the resource, lower environ-
mental pollution via an excess of nutrients, betterment of the qual-
ity of the animal product, fewer emissions of greenhouse gas due
to precise nutrition and days on feed to achieve profitability).

Egs. (21) and (22) developed by CSIRO (2007) are used to pre-
dict fat and protein retained energy in the empty body gain, using
the coefficients for non-large, lean animal breeds. These equations
use the intake level above maintenance (L) and degree of maturity
(Z), assuming that protein contains 5.7 Mcal/kg and fat contains 9.4
Mcal/kg to compute RE. Eq. (23) combined Eq. (17) with Egs. (21)
and (22).

601 —28 x (L—-2)
Er =0.94 x ((43 +28 x (L-2)) +W) (21)
140 - 120 x (L -2)
Ep =0.57 x ((212 +4x(L-2))+ 15 e 65z 04) ) (22)
K, > (23)

T4+ 11 x (Ep/(Er + Er))

where Ef is the retained energy as fat, Mcal/d; Ep is the retained
energy as protein, Mcal/d; k, is the partial efficiency of converting
metabolizable energy into net energy for growth; L is the level of
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Fig. 5. Relationship between empty weight gain (kg/d) and degree of maturity on
the partial efficiency of energy use for growth in cattle, assuming intake level of 2.5.
See Supplementary Video S5.

intake above maintenance, dimensionless; and Z is the degree of
maturity, dimensionless.

Fig. 4B depicts the predicted retained energy as fat and protein,
and k, for the degree of maturity (BW basis) varying from 0 (born)
to 1 (mature) and intake above maintenance varying from 2 to 4.
As the degree of maturity increases, the proportion of fat and pro-
tein in the gain increases and decreases, respectively, as expected,
given the shape of the non-linear logistic curve adopted by the
CSIRO (2007). The kg also increased from approximately 0.30 to
0.58 as maturity increased. The k, values are within acceptable
limits (Reid et al., 1980). However, Fig. 4B provides additional
information regarding the interactions between the degree of
maturity and level of feed intake above maintenance.

When we combined Egs. (18) and (19) (growth rate effect) with
Egs. (21) and (22) (maturity stage effect) to estimate kg (Eq. (16)), it
became evident that kg increases faster with increases in EWG
(same degree of maturity) than with increases in the degree of
maturity (same growth rate). Furthermore, kg seems to increase
slowly as the degree of maturity increases for animals above 50%
maturity compared to those animals below 50% maturity (Fig. 5).

Combining different mathematical models

Combining submodels (i.e., model routines) obtained from dis-
tinct mathematical models, usually developed by different groups,
might improve our intuition and understanding of the relation-
ships of existing variables that were known for their importance
but not included in the original models because of the lack of
proper information or confidence during the development phase.
The first mistake occurred by not including an essential variable
in the model whose only infeasible value was zero (Tedeschi,

(B) [ Fatin the gain, % [l Protein in the gain, %
[l Partial efficiency of metabolizable energy use for growth, %

Level of intake
above maintenance
25 T

30
35 __ o

04 - -
06 -
Maturity degree . 1.0

Fat or protein content, % empty body gain, and
partial efficiency of energy use for growth, %

Fig. 4. (A) Relationship between empty weight gain (kg/d) and protein proportion in the retained energy on the partial efficiency of energy use for growth in cattle. Adapted
from Tedeschi (2019b). See Supplementary Video S3. (B) Relationship between fat (orange plane) or protein (green plane) content in the empty body gain (g/100 g) and the
partial efficiency of use of metabolizable energy for growth (x100) (purple plane) vs degree of maturity. See Supplementary Video S4. Replicated with permission from
Tedeschi (2022b).
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2023). The second mistake might happen when submodels are
combined without judicious planning and evaluation. In this case,
it might backfire because the revised model may improve the pre-
dictability; however, for the wrong reasons (e.g., offsetting errors,
ill-conditioned or biased dataset)—hence no new knowledge is
obtained. For instance, under specific conditions, model A overpre-
dicts a variable of interest, whereas model B underpredicts it. Com-
bining these models’ calculation routines (i.e., submodels) may not
improve the predictability because the submodels would yield dif-
ferent responses when changing the universe of acceptable inputs
(i.e., inputs expected by a given submodel), thus, twisting or wors-
ening the outcome by introducing systematic or slope biases. Dif-
ferent models have different attributes, such as paradigms
(Tedeschi, 2019a, 2023), structural decisions, inputs/outputs, pro-
gramming language and notation, and parameterization processes
that could render them incompatible for merging into a functional
model. Combining partial information from several models into a
single one is known as model merging, and several factors make
model merging a complex mission (Brunet et al., 2006), if not
impractical in some situations. For instance, the many mathemat-
ical models developed recently to understand the COVID-19 pan-
demic are examples of such anomalies in model merging (James
et al, 2021). Model merging is not to be confused with model inte-
gration, which combines different models into a whole-system
approach (Ascough et al., 2019).

On the other hand, combining concepts and ideas is usually
safer than combining models’ routines. The two examples dis-
cussed above (EE of grazing animals and efficiency of energy use
for growth) combined existing knowledge, concepts, and ideas to
develop generalized or holistic predictive functional models.
Although no former evaluation was conducted (lack of appropriate
data), the goal was to discuss integrating existing information on
these topics. Nonetheless, specific and global evaluations are nec-
essary to establish confidence in the revised models.

Ensemble models

Another field in data analytics that has received greater atten-
tion lately is the development of ensemble models. Ensemble mod-
eling is often adopted for artificial intelligence (e.g., machine
learning) models to increase prediction accuracy, and it combines
the outputs of unrelated models developed using different meth-
ods or algorithms but with similar scopes and purposes. Ensemble
techniques include bagging (e.g., random forest, bootstrapping,
decision trees), boosting (e.g., gradient boosting, adaptive boost-
ing), stacking, and blending (Kyriakides and Margaritis, 2019).
The prediction errors are expected to decrease when an ensemble
approach is utilized despite contradicting the principle that the
simplest solution is often the best (Elder, 2018). In the case of
ensemble modeling, models (or submodels) per se are not combined
or merged; their outputs are exploited. Examples of ensemble mod-
eling exist for the impact of climate-related issues on crop (corn,
wheat, soybean, and rice) yield (Jagermeyr et al., 2021), detection
and management of emergent disease by integrating outputs from
multiple models (Webb et al., 2017), and classification of cattle
behavior (grazing, ruminating, resting, walking) using different
machine learning techniques (Dutta et al., 2015) to list a few.

Summary

Because of our constant search for ways to increase the resili-
ence and sustainability of livestock production systems, especially
beef cattle production, combining different modeling concepts and
ideas might help solve existing problems or limitations of modern
feeding systems and meet our needs. The examples described
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above showed ways to expand our knowledge, concepts, and ideas
by merging extant submodels in developing generalized or holistic
predictive functional models. The EE of grazing animals can incor-
porate the energy needed for physical activity, eating, and rumina-
tion into the energy requirement for basal metabolism. The partial
efficiency of using metabolizable energy for growth could be
improved by including carcass composition rather than diet char-
acteristics alone, and the interaction between the degree of matu-
rity and average daily gain affects the partial efficiency differently.
The proposed approaches might improve our assessment of the
energy requirements of growing cattle, but before implementing
them into other models, they still require further evaluation to
refine the inconsistencies discussed.
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