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Abstract

This study addresses the challenge of limited data availability in animal science, particularly in modeling complex biological processes such as
methane emissions from ruminants. We propose a novel rank-based method for generating synthetic databases with correlated non-normal mul-
tivariate distributions aimed at enhancing the accuracy and reliability of predictive modeling tools. Our rank-based approach involves a fourstep
process: 1) fitting distributions to variables using normal or best-fit non-normal distributions, 2) generating synthetic databases, 3) preserving
relationships among variables using Spearman correlations, and 4) cleaning datasets to ensure biological plausibility. We compare this method
with copula-based approaches to maintain a preestablished correlation structure. The rank-based method demonstrated superior performance
in preserving original distribution moments (mean, variance, skewness, kurtosis) and correlation structures compared to copula-based methods.
We generated two synthetic databases (normal and non-normal distributions) and applied random forest (RF) and multiple linear model (LM)
regression analyses. RF regression outperformed LM in predicting methane emissions, showing higher A? values (0.927 vs. 0.622) and lower
standard errors. However, cross-testing revealed that RF regressions exhibit high specificity to distribution types, underperforming when applied
to data with differing distributions. In contrast, LM regressions showed robustness across different distribution types. Our findings highlight the
importance of understanding distributional assumptions in regression techniques when generating synthetic databases. The study also under
scores the potential of synthetic data in augmenting limited samples, addressing class imbalances, and simulating rare scenarios. While our
method effectively preserves descriptive statistical properties, we acknowledge the possibility of introducing artificial (unknown) relationships
within subsets of the synthetic database. This research uncovered a practical solution for creating realistic, statistically sound datasets when
original data is scarce or sensitive. Its application in predicting methane emissions demonstrates the potential to enhance modeling accuracy in
animal science. Future research directions include integrating this approach with deep learning, exploring real-world applications, and developing
adaptive machine-learning models for diverse data distributions.

Lay Summary

Scientists often need large amounts of data to develop accurate models and make predictions. However, in many fields, such as animal science,
collecting extensive data can be challenging due to cost, time, or privacy concerns. This study introduces a new method to create synthetic
data that closely mimics real-world information, particularly for complex situations where data does not follow simple patterns. The researchers
tested their method using a case study on methane emissions from beef cattle, an important factor in climate change. They showed that their
approach could create artificial datasets that preserved the key characteristics and relationships found in the original data. When comparing
different prediction methods using this synthetic data, they found that a technique called random forest regression was generally more accurate
than traditional linear regression. However, the linear regression method was more flexible when dealing with different types of data distri-
butions. This new approach to creating synthetic data could be especially valuable in fields where actual data is limited or sensitive. It offers
researchers a way to develop and test models more effectively, potentially leading to better predictions and insights in areas such as agricultural
science, environmental studies, and beyond.
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independently to capture the unique data-driven insights they
offer and subsequently integrated with mechanistic models,
yielding hybrid, intelligent mechanistic models that describe
the underlying principles of outcomes while handling massive
amounts of data (Tedeschi, 2022b, 2023).

However, the vast amounts of curated data on which
Al-oriented models rely, encompassing numerous variables
and extensive records, may not always be available for spe-
cific needs and simulations, particularly in animal science
production (Tedeschi, 2022b). This scarcity of big data is not
unique to animal science. It is also prevalent in the medical
field due to privacy regulations and the rarity of certain dis-
eases (Abedi et al., 2022), in environmental science, where
data quality, measurement, and accessibility pose significant
challenges (Miller and Goodchild, 2015; Tedeschi et al.,
2022), in building construction energy use (Baasch et al.,
2021), and in economics due to privacy and proprietary data
concerns (Einav and Levin, 2014), to name a few. Further-
more, the need for reliable and curated data, coupled with
the challenges of proper data integration, adds another layer
of complexity to an already strenuous situation. The limita-
tions of real-world datasets necessitate innovative synthetic
data generation methods across fields. These techniques aim
to augment limited samples, safeguard sensitive information,
rectify class imbalances, and simulate rare or hypothetical
scenarios. Crucially, they strive to preserve the intricate rela-
tionships among variables, maintain statistical fidelity, and
avoid introducing spurious correlations, thereby enhancing
the robustness and applicability of data-driven models and
analyses. In particular, the agricultural sector faces unique
challenges in modeling complex biological processes, such as
methane (CH,) emissions from ruminants, where comprehen-
sive datasets are often limited given the difficulties associated
with their measurement in the field (Tedeschi et al., 2022).

Although the definition of synthetic data continues to
evolve, the concept of using computer-generated data to
address specific tasks is well established. This approach traces
back to the pioneering work of Stanislaw Ulam and John
von Neumann in the 1940s, who developed Monte Carlo
simulation methods to model complex systems during World
War II (Metropolis and Ulam, 1949; Ulam, 1950; Beyer et
al., 1985). Today, the landscape of synthetic data generation
has expanded significantly, encompassing a wide array of
advanced techniques. Deep learning (DL) architectures like
generative adversarial networks (GAN) have revolutionized
the production of highly realistic synthetic images, text, and
medical data (Goodfellow et al., 2020). Variational autoen-
coders (VAE) provide a probabilistic approach to generating
new data points with applications in image processing and
anomaly detection (Kingma and Welling, 2019, 2022). In
addition to these techniques, diffusion models have recently
emerged as powerful tools for generating high-quality syn-
thetic data, particularly in complex domains (Zhu, 2024).
These models offer new possibilities for creating realistic
datasets while preserving the statistical properties of the orig-
inal data. Other methods, such as agent-based econometric
models (Bonabeau, 2002) and stochastic differential equa-
tions used to simulate physical or economic systems (Car-
mona and Delarue, 2018a,b), also generate synthetic data.
More recent advancements include the synthetic data vault
(SDV), which uses probabilistic graphical models to gener-
ate multitable relational data (Patki et al., 2016), and differ-
ential privacy (DP) techniques that add controlled noise to
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preserve individual privacy while maintaining statistical util-
ity (Dwork and Roth, 2014). Notably, Dwork et al. (2015)
introduced the concept of the reusable holdout. This method
allows multiple analyses on the same dataset while prevent-
ing overfitting and maintaining the validity of results, which
is particularly valuable when working with limited or sensi-
tive data. These sophisticated algorithms create realistic and
high-quality datasets applicable across various fields, particu-
larly medicine (Giuffré and Shung, 2023). In finance, synthetic
data plays a crucial role in overcoming data-sharing limita-
tions due to regulatory requirements and privacy concerns. It
can help simulate market conditions, test trading algorithms
without financial risk, and enable cross-departmental collab-
oration within financial institutions. In crop science, Akkem
et al. (2024) provided a comprehensive review of synthetic
data generation in smart farming using GAN and VAE, high-
lighting the potential of these techniques in addressing data
scarcity issues. As Assefa et al. (2021) highlighted, synthetic
financial data generation faces unique challenges in creating
realistic datasets, measuring similarities with actual data, and
ensuring privacy compliance, all while navigating the com-
plex regulatory landscape of the financial services industry.
However, this approach not only facilitates internal data
sharing but also opens up possibilities for broader research
collaborations in the financial domain. For autonomous vehi-
cle development, synthetic datasets are crucial in training
and validating Al models, fostering safer and more efficient
transportation solutions (Giuffré and Shung, 2023). While
these tools excel in image processing and data imputation,
there remains a pressing need to develop datasets that accu-
rately capture existing relationships among variables to serve
diverse applications better, such as in environmental science,
social policy modeling (Nikolenko, 2022), and agricultural
sciences when data is limited.

Several methods have been developed to generate syn-
thetic databases using correlated, non-normally distributed
data, addressing the limitations of traditional approaches
that often assume normality. Qu et al. (2020) described an
approach based on the work of Vale and Maurelli (1983),
which generates data based on the first four moments (means,
variances, skewness, and kurtosis) while considering the
correlation among the independent variables. This method
extends the multivariate normal distribution to accommodate
non-normal data. However, it requires detailed information
on the four moments for each independent variable, which
can be challenging when the variables have distinct distri-
butions (e.g., triangular, log-logistic, B-general). Ruscio and
Kaczetow (2008) proposed an iterative, trial-and-error pro-
cess to sample from non-normal distributions while maintain-
ing the desired correlation matrix to address these limitations.
This approach offers more flexibility but can be computation-
ally intensive for large datasets. Auerswald and Moshagen
(2015) introduced a nonlinear structural equation modeling
(SEM) approach that uses nonlinear linking functions and
covariance corrections to generate synthetic data with spec-
ified moments and correlation structures, providing a more
flexible and robust solution. More recent advancements
include the work of Xu and Veeramachaneni (2018), who
proposed a method using Gaussian copulas to model com-
plex dependencies between variables while preserving their
distributions. This approach can handle mixed data types
and capture nonlinear relationships more effectively. Despite
these advancements, there remains a need for approaches that
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effectively generate synthetic datasets by leveraging existing
relational dependencies among variables, particularly when
these variables deviate from the normal distribution assump-
tions. Furthermore, maintaining utility while ensuring privacy
in synthetic data generation remains a critical challenge, espe-
cially in domains with sensitive information, such as health
care and finance (Hittmeir et al., 2019; Murtaza et al., 2023).
Such methods would not only preserve the inherent relation-
ships among variables but also enhance the applicability and
accuracy of synthetic datasets in various machine learning
(ML) and simulation tasks.

The need for robust synthetic data generation methods is
particularly evident in the field of agricultural science, where
modeling complex biological processes often relies on limited
datasets. A prime example of this challenge is in the study and
prediction of CH, emissions from ruminants. Methane emis-
sions from ruminants are a significant contributor to green-
house gases, impacting global climate change. According to
Tedeschi and Beauchemin (2023), U.S. beef cattle alone emit-
ted 22.6% of total agricultural emissions, representing about
2.2% of total anthropogenic emissions of CO, equivalent.
Developing accurate predictive models for CH, production
is crucial for devising effective mitigation strategies in animal
agriculture. However, the complexity of the biological pro-
cesses involved and the limitations in data collection (Hristov
et al., 2018; Tedeschi et al., 2022) often result in datasets that
are insufficient for modern Al modeling approaches.

The objective of this article is to address this challenge by
proposing a robust synthetic data generation method that
accommodates the complexities of multivariate non-normal
distributions, which are commonly found in agricultural
datasets but often neglected. We present a simple yet effec-
tive method for creating synthetic databases, enhancing the
accuracy and reliability of predictive modeling tools such as
random forest (RF) regression and simple linear multivari-
ate regressions. To illustrate the practical application of this
method, an existing CH, production database from beef cat-
tle is used as a case study, demonstrating how synthetic data
can improve model predictions and provide deeper insights
into CH, emissions from ruminants. Tedeschi (2022a) and
Tedeschi (2024) published a preliminary version of this study.
Building upon this initial work, we have developed a web-
based application of this technology at https://www.nutri-
tionmodels.com/methane.html. This interactive web tool
serves as a practical interface for researchers, nutritionists,
and livestock managers to apply our CH, prediction model to
their specific scenarios.

Materials and Methods

Original database

The original database was compiled from studies gathered
by Galyean et al. (2016), supplemented with additional
published research listed in Supplementary Table S1. The
comprehensive dataset comprises 63 studies (34 initial and
29 additional), totaling 263 records. To ensure a general-
ized database with broad variability, reflecting the original
non-normal distribution of the variables of interest, no spe-
cific selection criteria were applied. The dataset includes eight
independent variables, mainly diet attributes, as follows: body
weight (BW, kg), dry matter (DM) intake (DMI, kg/d), crude
protein (CP, %DM), neutral detergent fiber (NDF, %DM),
ether extract (EE, %DM), starch (%DM), acid detergent fiber

(ADF, %DM), and ash (%DM), with CH, production (g/d),
or emission, as the dependent variable. Figure 1 has the his-
togram and density plots and best-fit nonlinear distribution
for CH,, while Supplementary Figure S1 presents the same
graphical information for the independent variables. It is
crucial to note that the reported values are averages of mea-
sured values, representing estimated true population means.
Consequently, the actual variability in the population may
be greater than depicted, as the averaging process tends to
smooth out extreme values and natural variations. This lim-
itation should be considered when interpreting results and
extrapolating findings to broader contexts.

Synthetic databases

The gamlss package (Stasinopoulos et al., 2017; Rigby et al.,
2019) of R v. 4.4.1 (R Core Team, 2019) was used to create
synthetic databases. The process involved the following four
steps. Step 1: For each variable in the dataset, distributions
were fitted using either a normal distribution assumption or
the best-fit distribution selected from over 100 different types
available in the fitDist function of the gamlss package. It was
implemented as shown in Supplementary Material S1. Step
2: This fitting process resulted in two synthetic databases,
each containing 20,000 records. One database was generated
using only normal distributions for each variable. The other
database used the best-fit distributions for each variable,
which could include normal distributions as well as other
types. Step 3: Spearman correlations of the original database
variables were calculated a priori using the cor function of R
to preserve the relationships among variables. It was imple-
mented as shown in Supplementary Material S2. Step 4: The
synthetic datasets were cleaned to ensure consistency and bio-
logical plausibility based on the following criteria: 1) CP, EE,
starch, NDF, ADF, and ash had to be greater than zero and
less than 100; 2) ADF values had to be less than NDF values;
and 3) the sum of CP, EE, ash, NDF, and starch had to be
less than 100. The Spearman correlations from the original
database variables were then applied to the cleaned synthetic
datasets to ensure that the original variable relationships were
maintained. These steps ensured that the synthetic datasets
closely mirrored the characteristics of the original data while
maintaining the necessary statistical relationships and realis-
tic constraints.

Correlation for non-normally distributed variables
The Cholesky decomposition, first introduced by André-
Louis Cholesky in the early 20th century (Higham, 2002),
is a mathematical technique primarily used for decompos-
ing positive-definite matrices. It is commonly employed to
generate correlated normal random variables in the context
of multivariate normal distributions (Gentle, 2009). How-
ever, for non-normal distributions, the direct application of
Cholesky decomposition alone is insufficient to maintain the
desired correlation structure. This limitation arises because
the decomposition assumes normality, and directly applying
it to non-normal distributed variables may lead to distorted
correlations. To address this issue and effectively generate
correlated non-normal variables, two alternative methods
were compared in this study.

Rank-based method

This method is based on four steps: normal data generation, cor-
relation imposition, ranking maps, and allocation assignment. It
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Best-fit distribution: rBCPEo(n=20000, u=123.0394, 0=0.4132, v=0.4856, 7=2.9209)
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Figure 1. Histogram and density plots of methane (CH,, g/d) from the literature-gathered database. The blue bars represent the histogram, the orange
shade indicates the density plot of the original data, the green line illustrates the density plot of the fitted data using the best-fit distribution shown at
the top of the plot, and the vertical lines from left to right denote the minimum (min), mean—1 SD, mean, mean + 1 SD, and maximum (max) values in

the literature-gathered database.

starts by generating uncorrelated, normally distributed variables,
and the Cholesky decomposition is applied to these variables to
achieve the desired correlation. Then, the ranks of the values
in each normally distributed variable are obtained. Finally, the
original non-normally distributed variables are reorganized (i.e.,
sorted) according to the ranks of the corresponding normally
distributed variables that have undergone the Cholesky decom-
position. Supplementary Material S2 contains the R script code
used to obtain the Cholesky decomposition for non-normally
distributed variables in our simulations. This simple and compu-
tationally efficient approach aims to have non-normal variables
retain their original distributions while achieving the desired cor-
relation. However, there may be limited flexibility in controlling
the degree of non-normality, and this method may not fully
retain the original Spearman correlation. Additionally, it is nec-
essary to investigate whether the Cholesky decomposition and
reranking process accurately replicate the desired correlation
and distribution moments, including mean, variance, skewness,
and kurtosis.

Copula and SEM methods

Various methods exist to correlate multivariate non-normal
distributions, including copulas and nonlinear SEM. The

copula method, widely used for modeling dependencies
between variables (Genest and MacKay, 1986; Nelsen, 2006),
involves a multistep process: 1) generating synthetic data
for each variable using best-fit non-normal distributions,
2) converting these to uniform distributions via the empir-
ical cumulative distribution function, 3) transforming them
to normally distributed marginals using the inverse normal
cumulative distribution function, 4) adjusting the correlation
structure iteratively to match the desired correlation matrix
using Cholesky decomposition, 5) matching the ranks of the
adjusted data to the ranks of the original non-normal data,
and 6) iteratively checking to confirm convergence. This pro-
cess aims to ensure that the data retains the original distribu-
tions while achieving the desired correlations. The nonlinear
SEM method (Auerswald and Moshagen, 2015) generates
synthetic data with specified moments using a different
approach: 1) utilizing nonlinear linking functions and covari-
ance corrections to adjust initial data, 2) achieving the desired
correlation structure, including specific higher moments like
skewness and kurtosis, and 3) iteratively adjusting to ensure
the final synthetic data closely match the target distributions
and correlations specified in the model. Both methods aim to
preserve the complex relationships and distributions of the
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original data while generating synthetic datasets that accu-
rately reflect these characteristics. For the sake of compari-
son with the rank-based method, Supplementary Material S2
shows the R script code of an application of the copula-based
method.

Evaluation of distribution moments and correlations

To evaluate the preservation of the original non-normal dis-
tributions, including skewness and kurtosis, while imposing a
desired correlation structure using the rank-based and copula
methods, we generated synthetic databases comprising three
variables, each following a distinct non-normal distribution
(chi-square, beta, and log-normal), with 5,000 samples across
100 iterations. These distributions are independent of the pro-
cess used to generate the synthetic databases, which contained
20,000 samples. The evaluation of distribution moments and
correlations with 5,000 samples and 100 iterations was a
separate analysis designed to assess the performance of the
rank-based and copula methods under specific distributional
assumptions (chi-square, beta, and log-normal). The 100 iter-
ations refer to repeating this analysis to ensure the robust-
ness of the correlation preservation method. Supplementary
Material S3 has the R script code, showing a predefined
positive-definite correlation matrix used for this simulation.
Specifically, var1l was generated from a chi-square distribu-
tion with two degrees of freedom, var2 was generated from
a beta distribution with shape parameters a=2 and b=35,
and var3 was generated from a log-normal distribution with
a mean of zero and a SD of one. Furthermore, we compared
the preestablished Spearman correlation with the Spearman
correlation of these distributions after reranking them using
our method across all 100 iterations.

Regression fitting, cross-testing, and adequacy
Predictive regressions

RF and multiple linear model (LM) regression analyses were
performed on the synthetic databases to evaluate their pre-
dictive capabilities for CH, emissions. The RF regression
was implemented using the randomForest package (Breiman,
2001) in R v. 4.4.1 (R Core Team, 2019), with 150 trees and
four randomly sampled variables as candidates at each split.
This configuration was chosen based on preliminary analy-
ses that showed optimal performance with these parameters.
For the LM, we employed the ordinary least-squares method
using the /m function in R v. 4.4.1 (R Core Team, 2019).

Cross-testing

To assess the robustness and generalizability of the models,
we conducted a cross-testing analysis. This involved applying
regressions developed on the normally distributed synthetic
database to the non-normally distributed synthetic database
and vice versa. This cross-testing approach allows for a more
comprehensive evaluation of model performance across dif-
ferent data distributions.

Gini importance plots

To assess the relative importance of predictor variables in
the RF model, we utilized two key indices: predictive accu-
racy score (PAS) and square error reduction (SER). The PAS
measures a variable’s contribution to the model’s predictive
accuracy. It is calculated as the percentage increase in mean
squared error (MSE) when the variable’s values are randomly

permuted. A higher PAS indicates that the variable is more
crucial for maintaining the model’s predictive accuracy. The
PAS is also known as the mean decrease in accuracy in clas-
sification tasks to measure how much the model’s accuracy
decreases when a variable is excluded, with higher values
indicating greater importance (Breiman, 2001). The SER
is analogous to the mean decrease in Gini for classification
tasks, and it quantifies the total decrease in node impurity
from splits over a given variable, averaged across all trees. In
regression contexts, SER (i.e., node impurity) is measured by
the residual sum of squares, so its unit is the square unit of the
dependent variable (i.e., daily CH, emission, g*/d?). Higher
SER values suggest a variable’s effectiveness in creating
homogeneous groups (i.e., high precision) within the decision
trees of the RF. These measures offer complementary insights:
PAS focuses on predictive accuracy, while SER reflects the
variable’s role in the tree structure (i.e., precision). Variables
with greater SER values are considered more important in the
model’s decision-making process, while variables with greater
PAS values increase the accuracy of the predictions. Strobl et
al. (2008) noted that correlations between predictor variables
and differences in variable scales can influence these impor-
tance measures. The Gini importance plot displays the PAS
and the SER values for each feature, and the variables are
typically sorted in descending order of SER. This allows for
a straightforward visual interpretation of feature importance,
where features at the top of the plot are the most influential
in the model’s predictions. However, it is essential to note that
while Gini importance provides valuable insights, it can be
biased towards high-cardinality features and does not indi-
cate the direction (positive or negative) of a feature’s influ-
ence (Strobl et al., 2007). Therefore, we interpret these plots
in conjunction with other model adequacy metrics (Tedeschi,
2006) to gain a comprehensive understanding of our RF mod-
el’s behavior and the underlying relationships in our data.

Prediction adequacy

The predictive accuracy of the CH, emission models was eval-
uated using a suite of statistical measures, as recommended
by Tedeschi (2006). These included mean bias (MB) to assess
systematic over- or underprediction; mean square error of pre-
diction (MSEP) and its root (RMSEP) to quantify overall pre-
diction error; MSEP further decomposed into MB, slope bias
(i.e., systematic deviation in the predicted slope from the true
slope, indicating how well the model captures the relationship
between input and output variables), and random errors (i.e.,
uncontrolled inherent variability or noise in the data) to pro-
vide insights into the sources of prediction error; concordance
correlation coefficient and its accuracy estimate (C,) to eval-
uate the agreement between predicted and observed values;
and Akaike’s Information Criterion (AIC) to compare model
fit while accounting for model complexity. This comprehen-
sive set of statistical measures provides a robust framework
for assessing and comparing the performance of the RF and
LM regressions across different synthetic data distributions.

Results and Discussion
Distribution moments and correlations
Distribution moments

Based on our evaluation of the distribution moments and cor-
relation across the 100 iterations (Supplementary Material
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S3; data not shown) for the rank-based method, the mean of
the original and correlated data was preserved for each distri-
bution (chi-square, beta, and log-normal), indicating that the
rank-based method effectively maintains the mean. The vari-
ance of the original and correlated data also remained con-
sistent, showing that the method did not distort the spread of
the data. The skewness values of the original and correlated
data were very similar, indicating that the method preserves
the asymmetry of the distributions. The kurtosis values of the
original and correlated data matched closely, demonstrating
that the method retains both the tail behavior and the cen-
tral peak characteristics (i.e., peakedness) of the distributions.
Over the 100 iterations, the differences between the original
correlation (i.e., the preestablished matrix) and the effec-
tive correlation using the rank-based method varied from
-0.0271 to 0.0428 for varl-var2, -0.174 to 0.0455 for varl-
var3, and -0.0219 to 0.0419 for var2-var3. Our rank-based
method (Supplementary Material S2) to correlate multivari-
ate non-normal distributions effectively maintained the mean,
variance, skewness, and kurtosis of the original non-normal
distributions while imposing the desired correlation struc-
ture. Similarly, the copula-based approach (Supplementary
Material S2) maintained the moments of the original and
correlated data. However, the copula-based approach showed
more variability and less precision in maintaining the desired
Spearman correlations. The differences between the original
correlation (i.e., the preestablished matrix) and the effec-
tive correlation using the copula-based method varied from
-0.488 to 1 for varl-var2,-0.689 to 0.464 for varl-var3, and
-0.599 to 0.357 for var2-var3. This method might be more
suited for maintaining Pearson correlations than Spearman
correlations, mainly when applied to non-normal data. The
large discrepancies in the Spearman correlations between the
original and correlated data are intriguing and cast doubt on
the ability of copula-based methods to yield preestablished,
correlated, non-normally distributed variables adequately.
It is also likely that the implementation in Supplementary
Material S2 needs further refinement. When using a variable
correlation matrix instead of the preestablished matrix, the
discrepancies increased further. This finding confirms that
the rank-based method provides reasonable control over the
higher moments of the distributions beyond just rank cor-
relation.

Spearman correlation matrix

The original Spearman correlation matrix (COR1) of the
literature-gathered database to predict CH, emissions in beef
cattle (7 =263 records; Supplementary Table S1) is shown
in equation 1. Similarly, the Spearman correlation matrix
(COR2) of the cleaned synthetic database (n = 9,484 after the
removal of outliers and nonconforming data points) is shown
in equation 2. The removal of outliers and nonconforming
data points was based on biological plausibility criteria to
ensure that the synthetic dataset adhered to realistic dietary
constraints. Nonconforming data points included cases
where the sum of dietary components exceeded 100% and
values where ADF was higher than NDF, among others, as
detailed earlier. Outliers were identified using a combination
of statistical techniques, such as Z-scores and interquartile
range (Tedeschi, 2022b), to flag data points that significantly
deviated from the distribution of the original dataset. It
is acknowledged that generating synthetic data requires
simulating almost twice the amount of data to achieve a

Journal of Animal Science, 2025, Vol. 103

biologically plausible and usable dataset, which is a limitation
of the approach. While this process ensured that the synthetic
data maintained realistic constraints, it reflects the narrow
range of parameters present in the original dataset of fewer
than 300 data points. Therefore, the limitation is not only the
small size of the real dataset but also its representativeness of
a larger latent set of data. The actual data were not edited or
modified beyond standard data cleaning steps, but the limited
scope of the actual data highlights the need for expanding real-
world datasets in future studies. The synthetic database was
developed using the best-fit non-normal distributions (getDist
shown in Supplementary Material S2) for each variable, and
their values were ranked using the methodology outlined in

Supplementary Material S2 (correlate_using_ranks function).

ADF Ash BW CH, cpP DMI EE NDF Starch
ADF 1.00 058 -0.18 039 055 0.00 -0.12 091 -0.79
Ash 058 100 -—0.02 041 048 016 —044 061 —0.65

BW -0.18 -0.02 1.00 035 -010 065 -034 -0.17 036
cor1 = CHa 039 041 035 1.00 039 063 -036 035 -039
cp 055 048 —0.10 039 1.00 024 -0.14 048 —0.67
DMI 0.00 016 065 063 024 100 -024 0.04 -0.03
EE -0.12 -044 -034 -036 -0.14 -024 1.00 -0.24 0.11
NDF 091 061 -—017 035 048 004 -024 1.00 -0.80
Starch  \-0.79 -0.65 036 —039 -0.67 -0.03 011 -0.80 1.00 (1)

ADF Ash BW CHy cp DMI EE NDF Starch
ADF 1.00 056 -0.16 038 053 001 -0.12 090 -0.78
Ash 056 100 000 040 046 016 -043 059 -0.63

BW | -016 000 100 035 —0.06 064 —034 —0.15 032
corz— CH: | 038 040 035 100 038 062 -036 034 —038
cP | 053 046 —006 038 100 025 —0.15 046 —0.64
pMi | 001 016 064 062 025 100 —023 004 —0.03
FE | -012 —043 —034 —036 —0.15 —0.23 100 —023 0.1
NDF | 090 059 —0.15 034 046 004 —023 100 —0.80
Starch \-078 —063 032 —-038 —0.64 —0.03 011 —0.80 1.00 (2)

where ADF is acid detergent fiber, % DM; Ash is % DM;
BW is body weight, kg; CP is crude protein, % DM; DMI is
DM intake, kg/d; EE is ether extract, % DM; NDF is neutral
detergent fiber, % DM; and Starch is % DM.

As noted by Akkem et al. (2024), a fundamental challenge
in generating synthetic crop data lies in accurately captur-
ing the intricate temporal and spatial dependencies inherent
in crop growth and environmental factors. This challenge
underscores the critical importance of ensuring that the syn-
thetic data generation process preserves existing relationships
among variables while avoiding the introduction of spurious
correlations or artificial patterns. In the context of generat-
ing synthetic databases, maintaining this delicate balance is
crucial because the effectiveness of these systems relies heav-
ily on the authenticity and representativeness of the under-
lying data. In some instances, the synthetic data retained
small, nonzero correlations, for example, between certain
diet attributes and BW. These nonzero correlations, however,
are statistical artifacts necessary to maintain a stable and
mathematically valid correlation matrix. Technically, these
correlations are not significantly different from zero and are
not biologically meaningful. The observed values reflect the
structure of the original data, but the expected value for these
relationships would be zero. As such, these artifacts should
not impact the overall interpretation of the results or the pre-
dictive performance of the models. In our case, both matrices
exhibit similar overall structures, indicating that the synthetic
data generation method has successfully preserved the general
pattern of correlations without adding patterns (i.e., correla-
tion matrices are very similar). The majority of the differences
between COR1 and COR2 are minor, suggesting that the
method effectively maintains the original correlation struc-
ture. A few correlations exhibit moderate differences, such as
those involving CP with BW), starch with NDF, and ash with
BW. These differences, while noticeable, are not significant
enough to drastically impact the overall distribution structure.
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Several correlations show negligible differences, suggesting
that the synthetic data closely approximates the original
data’s correlation structure in many instances. The minor and
negligible differences indicate that the synthetic data gener-
ation method is robust and does not significantly alter the
distribution’s structure. The preservation of correlation, along
with mean, variance, skewness, and kurtosis, indicates that
the synthetic data maintains the statistical properties of the
original data. While moderate differences in some correla-
tions might slightly affect specific relationships between vari-
ables, these are not widespread, and the overall impact on the
distribution is likely minor.

When evaluating the Spearman correlations between the
original and synthetic data generated over 100 iterations
for chi-square, beta, and log-normal distributions (data not
shown), we observed a difference of around 0.25 between
the chi-square and beta distributions, while the differences
between chi-square and log-normal, as well as beta and
log-normal, were less than 0.1 for the rank-based method.
The histograms of the differences in Spearman correlations
between the original and correlated data are centered around
zero, indicating that the rank-based method closely pre-
serves the correlation structure. Conversely, the copula-based
method showed more significant and inconsistent differences.
The histograms of the differences in Spearman correlations
for the copula-based method displayed more significant vari-
ability, indicating less precision in maintaining the desired
correlation structure (data not shown).

However, it is crucial to note that our analyses, while com-
prehensive in examining overall statistical properties and
correlations, do not preclude the possibility of inadvertently
creating artificial relationships within subsets of the synthetic
database. This limitation arises from the inherent complexity
of multivariate datasets and the potential for subtle interac-
tions that broader statistical measures may not capture. When
working on modeling tabular data using Conditional GAN,
Xu et al. (2019) highlighted the difficulties in generating syn-
thetic data that faithfully preserved the statistical properties
of the original dataset. Future work should involve more
granular analyses of variable interactions, possibly employing
techniques such as partial correlation analysis or advanced
ML methods for detecting complex, nonlinear relationships.
Additionally, field experts could provide valuable insights
into the practical implications of any artificial relationships
that may have been introduced during the synthetic data gen-
eration process.

Predicting methane emissions

Figure 2 shows scatter plots comparing the observed CH4
values from the synthetic dataset with the predicted CH,
emissions using LM and RF regressions. Figure 2A presents
the results under the assumption that all key variables follow
a normal distribution, while Figure 2B presents the results
without this assumption. Note that some variables might
follow a normal distribution naturally. The RF regression
yielded a higher R? (0.927) compared to the LM (0.622 and
0.618), regardless of the assumed distributions of the critical
variables. Additionally, the RF regression had approximately
half the SE of the LM regressions for both normal (Figure 2A)
and non-normal (Figure 2B) distributions. The AIC was also
lower for the RF than for the LM regressions. Table 1 provides
further adequacy statistics, reinforcing the finding that the
RF regression outperformed the LM regression in predicting

CH, emissions from the synthetic database. Because these
are fitting regressions, one would expect the means of the
observed and predicted independent variables (i.e., CH,) to
be nearly identical, resulting in an MB close to zero, which is
confirmed by the results (Table 1). However, the MSE for the
RF regressions was approximately 19% of that for the LM
regressions under both conditions (normal and non-normal
distributions). Furthermore, while 100% of the MSE for the
LM regressions was due to random errors, the RF regressions
had about 19% of the MSE attributable to slope bias.

Figure 3 depicts the Gini importance plots for RF regres-
sions under the assumption that all key variables follow a
normal distribution (Figure 3A) or without this assumption
(Figure 3B). In both distribution scenarios, DMI emerged as
the most influential predictor based on PAS (normal: 39.80%,
non-normal: 38.89%), meaning that randomly shuffling DMI
values while keeping other variables unchanged increased
the model’s MSE by 39.80% in the normal distribution sce-
nario and 38.89% in the non-normal distribution scenario,
decreasing the model’s accuracy. This result aligns with the
findings by Hristov et al. (2018), who identified DMI as a
primary driver of enteric CH, emissions in cattle. The EE
showed consistent importance across both distributions (nor-
mal: 32.05%, non-normal: 32.80%), supporting Grainger
and Beauchemin’s (2011) observations on the impact of
dietary lipids on CH, production. Interestingly, the impor-
tance of fiber components differed between the two distri-
butions. In the non-normal distribution model, ADF showed
increased importance (PAS: 31.42% vs. 28.56% in the nor-
mal distribution), while NDF importance also increased (PAS:
23.53% vs. 16.13%). This shift suggests that accounting for
non-normality may better capture the complex relationship
between fiber content and CH4 emissions. This finding aligns
with those from Appuhamy et al. (2016), who noted that
dietary NDF concentration was one of the most frequently
appearing feed variables in evaluated CH4 prediction models.
Van Soest (1994) also emphasized the critical role of fiber in
ruminant nutrition and its impact on CH, production. The
SER values provide a complementary perspective. In both
distributions, NDF and ADF showed the highest SER values,
underscoring the critical role of fiber in determining node
purity in the RF model. However, the relative importance
of these variables shifted, with ADF showing higher SER
in the non-normal model (5,733,672 vs. 4,770,052 in nor-
mal), while NDF’s SER decreased (3,023,372 vs. 5,381,872).
The CP and starch showed reduced importance in the non-
normal model based on PAS (CP: 15.96% vs. 20.66 %; starch:
26.51% vs. 32.79%). This suggests that assuming normal-
ity might overestimate the impact of these nutrients on CH4
emissions. These findings align with Dijkstra et al. (2011),
who noted that increasing dietary CP content generally has
little effect on CH4 production. The variable importance of
starch across our models suggests a complex relationship
with CH, emissions. While Hatew et al. (2015) reported that
the effect of starch source on CH, production was not consis-
tent, our results indicate that the importance of starch may be
overestimated when assuming normal distribution. The BW
maintained relatively consistent importance across both mod-
els in terms of PAS (normal: 21.85%, non-normal: 18.49%),
supporting its inclusion as a stable predictor in CH, emission
models (Moraes et al., 2014), likely because the relationship
between DMI and BW is represented by a linear relationship
(i.e., power of 1) (Van Soest, 1994) though Ketelaars and
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Figure 2. Relationship between observed (y-axis) and predicted (x-axis)
methane (g/d) using multiple linear regression and RF regression,

assuming (A) normal and (B) non-normal distributions of the independent
variables.

Tolkamp (1992) showed evidence that DMI increases propor-
tionally to the maintenance requirement (i.e., to the metabolic
BW; power of 0.75).

The discrepancies in variable importance between the two
distribution assumptions highlight the sensitivity of RF mod-
els to underlying data distributions. This underscores the
importance of carefully considering data distribution when
interpreting model results, particularly in complex biological
systems like ruminant CH, production. Our findings suggest
that models assuming non-normal distributions may provide
a more nuanced understanding of the factors influencing CH4
emissions, especially concerning dietary fiber content. These
results emphasize the critical need to consider data distribution
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when developing predictive models for CH4 emissions.
Assuming normality may lead to misinterpretation of the rel-
ative importance of specific dietary components, potentially
impacting the accuracy of CH4 prediction models and subse-
quent mitigation strategies in ruminant production systems.

Cross-testing analysis

Table 1 also has the adequacy statistics for the cross-testing
analysis. In this analysis, LM and RF regressions developed
under non-normal distribution conditions were used to pre-
dict CH, using a synthetic database created under normal
distribution conditions of the independent and dependent
variables, and vice versa. In the first scenario (non-normal
regressions with normal distribution database), the RF
regression underperformed compared to the LM regression.
Although the MSE was similar between the RF (1130.5) and
LM (1030.3) regressions, the RF regression had an MB of
-1.05 g/d compared to 0.11 g/d for the LM regression. Sim-
ilarly, in the second scenario (normal regressions with non-
normal distribution database), the MSE was similar between
RF (1091.2) and LM (1015.9) regressions, but the MB was
greater for the RF (1.91 g/d) than for the LM (-1.22 g/d)
regressions. Notably, there was a sign exchange in the MB
during these cross-testing analyses. The cross-testing results in
Table 1 suggest that the adequacy statistics for the LM regres-
sions are independent of the nature of the distribution of the
independent and dependent variables. In contrast, the RF
regressions exhibit high specificity: RF regressions developed
using normal distribution are only suitable for normal dis-
tribution predictions, and those developed using non-normal
distributions are only suitable for predictions with synthetic
databases generated from non-normal distributions of the
independent and dependent variables. The LM regressions
appeared to be robust to the distribution type of the synthetic
database used for both development and evaluation purposes.
Conversely, the RF regressions underperformed (as indicated
by MB values far from zero, higher MSE, higher AIC, and
lower R%; Table 1) when the distribution type of the develop-
ment and evaluation of synthetic databases differed.

These findings highlight the importance of understanding
the distributional assumptions behind different regression
techniques when generating synthetic databases. Multiple
linear regression models showed robustness across different
distribution types, making them a more flexible choice when
the distribution of data may vary. In contrast, RF regressions,
while generally more accurate within the same distribution
type, exhibited significant performance drops when applied
to data with differing distributions. Various techniques exist
for generating synthetic databases, each with its strengths and
limitations. Methods such as GAN (Goodfellow et al., 2020)
and VAE (Kingma and Welling, 2022) have gained popularity
for creating high-fidelity synthetic data, particularly in fields
like image processing and anomaly detection.

These DL approaches have shown a remarkable ability
to capture complex data distributions and generate realistic
synthetic samples. For instance, Esteban et al. (2017) demon-
strated the use of GAN in generating synthetic electronic
health records that preserved the statistical properties of the
original data while ensuring patient privacy. However, these
methods often require large amounts of data and computa-
tional resources, which might not be practical for all applica-
tions, especially in fields with limited data availability, such as
animal science.
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Table 1. Diverse fitting and predictive statistics of 2 x 2 combination for data generation and regression fitting using normal and non-normal distributions
for LM or RF regressions

Items' Normal distributions Non-normal distributions
Normal regressions Non-normal regressions Normal regressions Non-normal regressions
RF LM RF LM RF LM RF LM
N 8,542 8,542 8,542 8,542 9,484 9,484 9,484 9,484
Mean
Predicted 128.5 128.6 129.7 128.5 126.4 129.6 128.5 128.4
Observed 128.6 128.6 128.6 128.6 128.4 128.4 128.4 128.4
MB 0.07 0.00 -1.05 0.11 1.91 -1.22 -0.17 0.00
SD
Predicted 44.1 40.8 39.4 41.1 38.7 39.9 43.2 39.9
Observed 51.7 51.7 51.7 51.7 50.8 50.8 50.8 50.8
RMSE? 14.0 31.8 33.6 32.1 33.0 31.9 13.7 31.4
r? 0.93 0.62 0.58 0.61 0.58 0.61 0.93 0.62
CCC 0.96 0.77 0.73 0.76 0.73 0.76 0.96 0.76
C, 0.99 0.97 0.96 0.97 0.96 0.97 0.99 0.97
MSE? 195.5 1,011.0 1,130.5 1,030.3 1,091.2 1,015.9 188.7 984.7
MB, % 0.0 0.0 0.1 0.0 0.3 0.1 0.0 0.0
Slope, % 18.9 0.0 0.0 0.0 0.0 0.0 19.3 0.0
Random,% 81.1 100.0 99.9 100.0 99.7 99.8 80.7 100.0
AIC 70,505 83,361 85,495 92,301 94,456 83,361 77,813 92,301

'AIC = Akaike’s Information Criterion, CCC = concordance correlation coefficient, C, = accuracy, MB = mean bias, MSE = mean square error, #* = coefficient
of determination adjusted to number of variables, and RMSE = root of the mean square error.
2For statistical models with large databases, the MSEP and MSE tend to yield similar values as MSE = MSEP x n/(n - p); where p is the number of
parameters. The ratio n/(n - p) is close to 1 for 7z = 10,000 and p = 9.
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Figure 3. The Gini importance plot shows the increase in mean square error if the variable is removed from the model (PAS, %; line length) and how
effectively a variable reduces residual square error when used for splitting in the RF's decision trees (SER, (g/d)2; point size), assuming (A) normal and
(B) non-normal distributions of the variables.

Another common approach involves copula-based meth-
ods, which can model dependencies between variables with-
out assuming a specific marginal distribution (Nelsen, 2006).
This approach can be advantageous when dealing with

non-normal data because it provides flexibility in maintain-
ing the original data structure. Patki et al. (2016) utilized
copula-based methods in their SDV framework, demonstrating
its effectiveness in generating synthetic relational databases that
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preserve statistical properties and relationships across multiple
tables. However, the complexity of copula models and the com-
putational burden they impose can be challenging to manage,
especially for high-dimensional datasets. Furthermore, our pre-
liminary analysis of the copula-based method (Supplementary
Material S2) showed that it was not as good as other methods.
It had more variability in preserving the original distribution
moments compared to the rank-based method. The histograms
of the differences in Spearman correlations between the origi-
nal and correlated data for the copula-based method showed
more spread, indicating less precision in maintaining the desired
correlation structure. Finally, though the copula method pro-
vides flexibility in modeling dependencies between variables, it
is more complex and computationally intensive than the rank-
based method. Interestingly and somewhat unexpectedly, the
copula-based method did not perform as well as the rank-based
method in terms of preserving the correlations of the original
data, suggesting that while the copula-based approach is theoret-
ically robust and flexible, in practice, it may introduce more vari-
ability and requires substantial computational resources, making
the rank-based method a more efficient and reliable choice for
applications with constraints similar to ours.

In our study, the rank-based method used to generate
synthetic data ensured that the non-normal characteristics
of the original data were preserved. This method demon-
strated a balance between simplicity and effectiveness,
especially when the goal is to maintain the relational struc-
ture of the variables. Ruscio and Kaczetow (2008) pro-
posed a similar approach, with an iterative algorithm for
generating multivariate, non-normal data with specified
intercorrelations, which has shown good performance in
preserving both univariate distributions and correlations.
The performance of RF regressions, although highly specific
to the distribution type, underscores the potential need for
hybrid approaches that combine the robustness of LM with
the precision of RF under specific conditions. This finding
aligns with recent trends in ensemble methods and hybrid
models. For example, Zhang and Mahadevan (2019) pro-
posed a hybrid approach combining copula-based model-
ing with ML techniques for uncertainty quantification in
engineering applications, demonstrating improved perfor-
mance over traditional methods.

Future research could explore integrating these techniques
to leverage their respective strengths, potentially developing
more versatile models capable of handling diverse data dis-
tributions. For instance, combining the rank-based method
with elements of DL architectures could potentially yield a
more robust and flexible synthetic data generation frame-
work. Additionally, investigating the application of these
methods in real-world scenarios beyond synthetic datasets
would provide deeper insights into their practical utility and
limitations. Furthermore, the field of DP (Dwork and Roth,
2014) offers promising avenues for generating synthetic data
that not only preserves statistical properties but also provides
strong privacy guarantees. Integrating DP techniques with
our rank-based method could enhance the utility of synthetic
data for sensitive applications, such as those involving med-
ical or financial data. Lastly, the specificity of RF regressions
to distribution types observed in our study suggests a need
for adaptive ML models that can automatically adjust to dif-
ferent data distributions. Recent advancements in transfer
learning and domain adaptation techniques (Wang and Deng,
2018) could potentially be applied to develop more flexible
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RF models that maintain high performance across varying
data distributions.

Considerations of sample size on overfitting and
overconfidence

Another important consideration is the sample size of the
synthetic database. We initially generated a 20,000-record
synthetic database but ended up with approximately 10,000
usable records (Table 1) after removing spurious and nonbi-
ological data that were generated randomly. This reduction
occurred due to the strict biological constraints we imposed
to ensure the synthetic data accurately reflected real-world
scenarios. For instance, we removed records where the sum
of dietary components exceeded 100% or where ADF val-
ues were higher than NDF values, which are technically
possible in real life due to limitations in the methodology of
these fiber components (Van Soest, 1994; Tedeschi and Fox,
2020) but theoretically and biologically flawed. The use of
percentage-based dietary features (e.g., nutrient components
summing to 100%) might have notably contributed to this
data reduction, as these features impose strict biological lim-
its on the synthetic data. While such reductions might not
constantly occur in other datasets or contexts, they were nec-
essary here to maintain the biological plausibility of the syn-
thetic data. The final sample size of around 10,000 records is
particularly relevant in the context of our regression analyses.
For RF models, this sample size is generally considered suffi-
cient to achieve stable and reliable results (Oshiro et al., 2012;
Probst and Boulesteix, 2017). Oshiro et al. (2012) found that
the performance of RF models tends to stabilize after about
128 trees, and our use of 150 trees aligns well with this find-
ing. For the LM, the sample size is more than adequate, as
the rule of thumb suggests a minimum of 10-20 observations
per predictor variable (Toutenburg and Shalabh, 2009; Har-
rell, 2015). Our cross-testing approach, where we applied
models developed on normally distributed data to non-
normally distributed data and vice versa, further validates
the robustness of our sample size. This method allows us to
assess how well the models generalize across different data
distributions, which is crucial given the potential variability
in real-world data. While the reduction in sample size from
20,000 to 10,000 records might seem substantial, it actually
demonstrates the rigor of our data-cleaning process (Tedes-
chi, 2022b) and ensures that our synthetic data closely mimics
the biological constraints of real-world systems.

On the other hand, a point of concern is that a large sample
size (i.e., 10,000 data points) used in our synthetic database
for both LM and RF regressions can provide robust statisti-
cal power, but it may also lead to potential issues in model
interpretation and performance evaluation. In the context of
linear regression, it can lead to an inflation of goodness-of-fit
measures and potentially misleading interpretations of model
performance. As sample size increases, even minor effects can
become statistically significant, potentially leading to overint-
erpretation of weak relationships (Lin et al., 2013; Wasserstein
and Lazar, 2016). Similarly, as sample size increases, the coef-
ficient of determination (R? or 7?) tends to stabilize around the
population value; it may appear impressively high even when
the predictive power of the model is limited (Malek et al.,
2007). This phenomenon is particularly relevant in our study,
where the LM regression showed consistent performance
across different data distributions. For large samples, tradi-
tional goodness-of-fit measures may become less informative,
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and alternative metrics focusing on predictive performance
should be considered, even when considering the regressor
variables as random (Buja et al., 2019).

To prevent overfitting issues (Hawkins, 2004) in large data-
bases, future evaluations should focus on the effect sizes and
practical significance rather than solely on statistical signifi-
cance (Sullivan and Feinn, 2012); adopt the use of adjusted
R? or other less sensitive sample-size metrics (Spiess and
Neumeyer, 2010), such as the robust R? (Tedeschi, 2006); and
consider the use of regularization techniques (Friedman et al.,
2010), such as lasso and ridge regressions. Similarly, for RF
models, the risk of overfitting with large datasets is a signifi-
cant concern. While RF is generally robust against overfitting
due to its ensemble nature, the use of a large synthetic dataset
may still lead to models that capture noise rather than true
underlying patterns. Oshiro et al. (2012) reported that while
increasing the number of trees would generally improve per-
formance, there is a point of diminishing returns, typically
around 128 trees. In our study, the high R? values (0.927)
observed for RF models, while indicative of good perfor-
mance, could potentially be a result of overfitting to the syn-
thetic data. Overfitting in RF might be mitigated by utilizing
pruning techniques to reduce complexity in individual trees
(Breiman et al., 1984) or employing k-fold cross-validation or
out-of-bag error estimates to provide a more realistic assess-
ment of model performance (Breiman, 2001).

In fact, adding more data may backfire because RF may
make incorrect predictions with a high degree of confidence
(i.e., high R?), mainly if the distribution structure is differ-
ent from that used to generate the RF model, stemming
from model uncertainty or calibration issues. This phenom-
enon is rooted in the nature of ensemble methods like RE,
which can lead to overfitting and overconfidence in predic-
tions (Grushka-Cockayne et al., 2016), especially when faced
with out-of-distribution data. The issue of model calibration
in ML, including RF, has been extensively studied. While
RF regression is generally well-calibrated for in-distribution
data, it can become miscalibrated when faced with data from
different distributions (Niculescu-Mizil and Caruana, 2005).
Furthermore, Kull et al. (2017) proposed methods to improve
the calibration of RF regressions, acknowledging that they
can become overconfident if not calibrated adequately. Their
work highlights the need for careful consideration of model
calibration, especially when working with large datasets or
when applying models to data with potentially different dis-
tributions. The high R? values observed in our study, despite
poor generalization in cross-testing, exemplify this issue. As
Probst and Boulesteix (2017) point out, “the out-of-bag error
estimate, commonly used in Random Forests, can be overly
optimistic,” which may contribute to overconfidence in model
performance.

It is well established that some Al methods, specifically
supervised ML, heavily depend on the quality of data used
to train their structures, and ill-conditioned data inevitably
leads to biased ML predictions. While the need for substan-
tial data in ML is undeniable, we must be cautious of falling
into the lack-of-data trap when attempting to increase the
predictability of regression models. Although ML requires
big data and big data often necessitates ML for analysis, the
failures in ML predictions cannot be attributed solely to data
scarcity, nor can they always be solved by simply demanding
more data. This mutual dependency between Al and big data
is not inconsequential. It may lead to a self-reinforcing cycle

1

without a clear resolution, potentially resulting in a death
spiral of ever-increasing data demands without proportional
improvements in prediction accuracy (Tedeschi, 2022b). Our
findings emphasize the critical importance of implementing
robust validation techniques and carefully interpreting model
performance metrics. This is particularly crucial when work-
ing with large synthetic datasets, which may not fully capture
the complexity and variability inherent in real-world data
distributions. The challenge lies not just in acquiring more
data but in ensuring that the data—whether natural or syn-
thetic—accurately represents the underlying phenomena we
aim to model.

Conclusion

The comparison between the rank-based method and the
copula-based method for generating synthetic datasets
revealed that the rank-based method more effectively pre-
served the original distribution moments (mean, variance,
skewness, and kurtosis) and the correlation structure. The
rank-based method was more straightforward to implement
and provided more consistent results, making it a robust
choice for maintaining relational dependencies in synthetic
datasets. Conversely, the copula-based method, while flexi-
ble and capable of modeling complex dependencies, showed
more variability in preserving the original data’s characteris-
tics and was more computationally intensive.

The differences between the original (COR1) and synthetic
(COR2) correlation matrices were mostly minor, with a few
moderate discrepancies. These differences are not significant
enough to drastically impact the overall distribution structure.
The synthetic data generation method effectively maintains
the correlation structure and distribution moments, making it
a reliable approach for creating synthetic datasets with sim-
ilar statistical properties to the original data. However, our
analyses do not guarantee that artificial relationships between
subsets of variables within the synthetic database have not
been introduced. These potential artificial relationships could
affect specific downstream analyses, and further scrutiny may
be necessary to ensure the integrity of the synthetic data for
specific applications. Our analyses also indicated that the
RF regression consistently outperformed the LM regression
with higher precision values, lower SE, and lower AIC val-
ues, regardless of whether the variables followed normal or
non-normal distributions. However, while both LM and RF
regressions perform well when the synthetic database and the
prediction model share the same distributional assumptions,
the LM regressions exhibit consistent predictability across
different distribution types.

In contrast, the RF regressions demonstrate high specific-
ity and significant performance degradation in cross-testing
scenarios where the distributional assumptions differ. Fur-
thermore, while key predictors like DMI and EE remain
consistently critical in predicting CH,, the assumption of
non-normal distribution reveals the presence of nuances in
the relationship between dietary components (particularly
fiber) and CH, emissions. This finding highlights the need
for distribution-aware modeling approaches in animal sci-
ence, especially animal nutrition, to ensure more accurate and
robust predictions of CH, emissions from ruminants. This
study provides insights into the comparative performance
of RF and LM; other techniques from the broader spectrum
of ML methods, such as ensemble boosting, artificial neural
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networks, or support vector machines, warrant further explo-
ration.

Supplementary Data

Supplementary data are available at Journal of Animal Science
online.
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