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Abstract 
This study addresses the challenge of limited data availability in animal science, particularly in modeling complex biological processes such as 
methane emissions from ruminants. We propose a novel rank-based method for generating synthetic databases with correlated non-normal mul-
tivariate distributions aimed at enhancing the accuracy and reliability of predictive modeling tools. Our rank-based approach involves a four-step 
process: 1) fitting distributions to variables using normal or best-fit non-normal distributions, 2) generating synthetic databases, 3) preserving 
relationships among variables using Spearman correlations, and 4) cleaning datasets to ensure biological plausibility. We compare this method 
with copula-based approaches to maintain a preestablished correlation structure. The rank-based method demonstrated superior performance 
in preserving original distribution moments (mean, variance, skewness, kurtosis) and correlation structures compared to copula-based methods. 
We generated two synthetic databases (normal and non-normal distributions) and applied random forest (RF) and multiple linear model (LM) 
regression analyses. RF regression outperformed LM in predicting methane emissions, showing higher R2 values (0.927 vs. 0.622) and lower 
standard errors. However, cross-testing revealed that RF regressions exhibit high specificity to distribution types, underperforming when applied 
to data with differing distributions. In contrast, LM regressions showed robustness across different distribution types. Our findings highlight the 
importance of understanding distributional assumptions in regression techniques when generating synthetic databases. The study also under-
scores the potential of synthetic data in augmenting limited samples, addressing class imbalances, and simulating rare scenarios. While our 
method effectively preserves descriptive statistical properties, we acknowledge the possibility of introducing artificial (unknown) relationships 
within subsets of the synthetic database. This research uncovered a practical solution for creating realistic, statistically sound datasets when 
original data is scarce or sensitive. Its application in predicting methane emissions demonstrates the potential to enhance modeling accuracy in 
animal science. Future research directions include integrating this approach with deep learning, exploring real-world applications, and developing 
adaptive machine-learning models for diverse data distributions.

Lay Summary 
Scientists often need large amounts of data to develop accurate models and make predictions. However, in many fields, such as animal science, 
collecting extensive data can be challenging due to cost, time, or privacy concerns. This study introduces a new method to create synthetic 
data that closely mimics real-world information, particularly for complex situations where data does not follow simple patterns. The researchers 
tested their method using a case study on methane emissions from beef cattle, an important factor in climate change. They showed that their 
approach could create artificial datasets that preserved the key characteristics and relationships found in the original data. When comparing 
different prediction methods using this synthetic data, they found that a technique called random forest regression was generally more accurate 
than traditional linear regression. However, the linear regression method was more flexible when dealing with different types of data distri-
butions. This new approach to creating synthetic data could be especially valuable in fields where actual data is limited or sensitive. It offers 
researchers a way to develop and test models more effectively, potentially leading to better predictions and insights in areas such as agricultural 
science, environmental studies, and beyond.
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Introduction
The adaption of traditional models (i.e., mechanistic,  
concept-based) to fit within a data-driven artificial intelli-

gence (AI) framework may not fully leverage the potential 
benefits of AI in agriculture (Tedeschi, 2019; Ellis et al., 
2020). Instead, AI-oriented models should be developed  
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independently to capture the unique data-driven insights they 
offer and subsequently integrated with mechanistic models, 
yielding hybrid, intelligent mechanistic models that describe 
the underlying principles of outcomes while handling massive 
amounts of data (Tedeschi, 2022b, 2023).

However, the vast amounts of curated data on which 
AI-oriented models rely, encompassing numerous variables 
and extensive records, may not always be available for spe-
cific needs and simulations, particularly in animal science 
production (Tedeschi, 2022b). This scarcity of big data is not 
unique to animal science. It is also prevalent in the medical 
field due to privacy regulations and the rarity of certain dis-
eases (Abedi et al., 2022), in environmental science, where 
data quality, measurement, and accessibility pose significant 
challenges (Miller and Goodchild, 2015; Tedeschi et al., 
2022), in building construction energy use (Baasch et al., 
2021), and in economics due to privacy and proprietary data 
concerns (Einav and Levin, 2014), to name a few. Further-
more, the need for reliable and curated data, coupled with 
the challenges of proper data integration, adds another layer 
of complexity to an already strenuous situation. The limita-
tions of real-world datasets necessitate innovative synthetic 
data generation methods across fields. These techniques aim 
to augment limited samples, safeguard sensitive information, 
rectify class imbalances, and simulate rare or hypothetical 
scenarios. Crucially, they strive to preserve the intricate rela-
tionships among variables, maintain statistical fidelity, and 
avoid introducing spurious correlations, thereby enhancing 
the robustness and applicability of data-driven models and 
analyses. In particular, the agricultural sector faces unique 
challenges in modeling complex biological processes, such as 
methane (CH4) emissions from ruminants, where comprehen-
sive datasets are often limited given the difficulties associated 
with their measurement in the field (Tedeschi et al., 2022).

Although the definition of synthetic data continues to 
evolve, the concept of using computer-generated data to 
address specific tasks is well established. This approach traces 
back to the pioneering work of Stanislaw Ulam and John 
von Neumann in the 1940s, who developed Monte Carlo 
simulation methods to model complex systems during World 
War II (Metropolis and Ulam, 1949; Ulam, 1950; Beyer et 
al., 1985). Today, the landscape of synthetic data generation 
has expanded significantly, encompassing a wide array of 
advanced techniques. Deep learning (DL) architectures like 
generative adversarial networks (GAN) have revolutionized 
the production of highly realistic synthetic images, text, and 
medical data (Goodfellow et al., 2020). Variational autoen-
coders (VAE) provide a probabilistic approach to generating 
new data points with applications in image processing and 
anomaly detection (Kingma and Welling, 2019, 2022). In 
addition to these techniques, diffusion models have recently 
emerged as powerful tools for generating high-quality syn-
thetic data, particularly in complex domains (Zhu, 2024). 
These models offer new possibilities for creating realistic 
datasets while preserving the statistical properties of the orig-
inal data. Other methods, such as agent-based econometric 
models (Bonabeau, 2002) and stochastic differential equa-
tions used to simulate physical or economic systems (Car-
mona and Delarue, 2018a,b), also generate synthetic data. 
More recent advancements include the synthetic data vault 
(SDV), which uses probabilistic graphical models to gener-
ate multitable relational data (Patki et al., 2016), and differ-
ential privacy (DP) techniques that add controlled noise to 

preserve individual privacy while maintaining statistical util-
ity (Dwork and Roth, 2014). Notably, Dwork et al. (2015) 
introduced the concept of the reusable holdout. This method 
allows multiple analyses on the same dataset while prevent-
ing overfitting and maintaining the validity of results, which 
is particularly valuable when working with limited or sensi-
tive data. These sophisticated algorithms create realistic and 
high-quality datasets applicable across various fields, particu-
larly medicine (Giuffrè and Shung, 2023). In finance, synthetic 
data plays a crucial role in overcoming data-sharing limita-
tions due to regulatory requirements and privacy concerns. It 
can help simulate market conditions, test trading algorithms 
without financial risk, and enable cross-departmental collab-
oration within financial institutions. In crop science, Akkem 
et al. (2024) provided a comprehensive review of synthetic 
data generation in smart farming using GAN and VAE, high-
lighting the potential of these techniques in addressing data 
scarcity issues. As Assefa et al. (2021) highlighted, synthetic 
financial data generation faces unique challenges in creating 
realistic datasets, measuring similarities with actual data, and 
ensuring privacy compliance, all while navigating the com-
plex regulatory landscape of the financial services industry. 
However, this approach not only facilitates internal data 
sharing but also opens up possibilities for broader research 
collaborations in the financial domain. For autonomous vehi-
cle development, synthetic datasets are crucial in training 
and validating AI models, fostering safer and more efficient 
transportation solutions (Giuffrè and Shung, 2023). While 
these tools excel in image processing and data imputation, 
there remains a pressing need to develop datasets that accu-
rately capture existing relationships among variables to serve 
diverse applications better, such as in environmental science, 
social policy modeling (Nikolenko, 2022), and agricultural 
sciences when data is limited.

Several methods have been developed to generate syn-
thetic databases using correlated, non-normally distributed 
data, addressing the limitations of traditional approaches 
that often assume normality. Qu et al. (2020) described an 
approach based on the work of Vale and Maurelli (1983), 
which generates data based on the first four moments (means, 
variances, skewness, and kurtosis) while considering the 
correlation among the independent variables. This method 
extends the multivariate normal distribution to accommodate 
non-normal data. However, it requires detailed information 
on the four moments for each independent variable, which 
can be challenging when the variables have distinct distri-
butions (e.g., triangular, log-logistic, β-general). Ruscio and 
Kaczetow (2008) proposed an iterative, trial-and-error pro-
cess to sample from non-normal distributions while maintain-
ing the desired correlation matrix to address these limitations. 
This approach offers more flexibility but can be computation-
ally intensive for large datasets. Auerswald and Moshagen 
(2015) introduced a nonlinear structural equation modeling 
(SEM) approach that uses nonlinear linking functions and 
covariance corrections to generate synthetic data with spec-
ified moments and correlation structures, providing a more 
flexible and robust solution. More recent advancements 
include the work of Xu and Veeramachaneni (2018), who 
proposed a method using Gaussian copulas to model com-
plex dependencies between variables while preserving their 
distributions. This approach can handle mixed data types 
and capture nonlinear relationships more effectively. Despite 
these advancements, there remains a need for approaches that 
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effectively generate synthetic datasets by leveraging existing 
relational dependencies among variables, particularly when 
these variables deviate from the normal distribution assump-
tions. Furthermore, maintaining utility while ensuring privacy 
in synthetic data generation remains a critical challenge, espe-
cially in domains with sensitive information, such as health 
care and finance (Hittmeir et al., 2019; Murtaza et al., 2023). 
Such methods would not only preserve the inherent relation-
ships among variables but also enhance the applicability and 
accuracy of synthetic datasets in various machine learning 
(ML) and simulation tasks.

The need for robust synthetic data generation methods is 
particularly evident in the field of agricultural science, where 
modeling complex biological processes often relies on limited 
datasets. A prime example of this challenge is in the study and 
prediction of CH4 emissions from ruminants. Methane emis-
sions from ruminants are a significant contributor to green-
house gases, impacting global climate change. According to 
Tedeschi and Beauchemin (2023), U.S. beef cattle alone emit-
ted 22.6% of total agricultural emissions, representing about 
2.2% of total anthropogenic emissions of CO2 equivalent. 
Developing accurate predictive models for CH4 production 
is crucial for devising effective mitigation strategies in animal 
agriculture. However, the complexity of the biological pro-
cesses involved and the limitations in data collection (Hristov 
et al., 2018; Tedeschi et al., 2022) often result in datasets that 
are insufficient for modern AI modeling approaches.

The objective of this article is to address this challenge by 
proposing a robust synthetic data generation method that 
accommodates the complexities of multivariate non-normal 
distributions, which are commonly found in agricultural 
datasets but often neglected. We present a simple yet effec-
tive method for creating synthetic databases, enhancing the 
accuracy and reliability of predictive modeling tools such as 
random forest (RF) regression and simple linear multivari-
ate regressions. To illustrate the practical application of this 
method, an existing CH4 production database from beef cat-
tle is used as a case study, demonstrating how synthetic data 
can improve model predictions and provide deeper insights 
into CH4 emissions from ruminants. Tedeschi (2022a) and 
Tedeschi (2024) published a preliminary version of this study. 
Building upon this initial work, we have developed a web-
based application of this technology at https://www.nutri-
tionmodels.com/methane.html. This interactive web tool 
serves as a practical interface for researchers, nutritionists, 
and livestock managers to apply our CH4 prediction model to 
their specific scenarios.

Materials and Methods
Original database
The original database was compiled from studies gathered 
by Galyean et al. (2016), supplemented with additional 
published research listed in Supplementary Table S1. The 
comprehensive dataset comprises 63 studies (34 initial and 
29 additional), totaling 263 records. To ensure a general-
ized database with broad variability, reflecting the original 
non-normal distribution of the variables of interest, no spe-
cific selection criteria were applied. The dataset includes eight 
independent variables, mainly diet attributes, as follows: body 
weight (BW, kg), dry matter (DM) intake (DMI, kg/d), crude 
protein (CP, %DM), neutral detergent fiber (NDF, %DM), 
ether extract (EE, %DM), starch (%DM), acid detergent fiber 

(ADF, %DM), and ash (%DM), with CH4 production (g/d), 
or emission, as the dependent variable. Figure 1 has the his-
togram and density plots and best-fit nonlinear distribution 
for CH4, while Supplementary Figure S1 presents the same 
graphical information for the independent variables. It is 
crucial to note that the reported values are averages of mea-
sured values, representing estimated true population means. 
Consequently, the actual variability in the population may 
be greater than depicted, as the averaging process tends to 
smooth out extreme values and natural variations. This lim-
itation should be considered when interpreting results and 
extrapolating findings to broader contexts.

Synthetic databases
The gamlss package (Stasinopoulos et al., 2017; Rigby et al., 
2019) of R v. 4.4.1 (R Core Team, 2019) was used to create 
synthetic databases. The process involved the following four 
steps. Step 1: For each variable in the dataset, distributions 
were fitted using either a normal distribution assumption or 
the best-fit distribution selected from over 100 different types 
available in the fitDist function of the gamlss package. It was 
implemented as shown in Supplementary Material S1. Step 
2: This fitting process resulted in two synthetic databases, 
each containing 20,000 records. One database was generated 
using only normal distributions for each variable. The other 
database used the best-fit distributions for each variable, 
which could include normal distributions as well as other 
types. Step 3: Spearman correlations of the original database 
variables were calculated a priori using the cor function of R 
to preserve the relationships among variables. It was imple-
mented as shown in Supplementary Material S2. Step 4: The 
synthetic datasets were cleaned to ensure consistency and bio-
logical plausibility based on the following criteria: 1) CP, EE, 
starch, NDF, ADF, and ash had to be greater than zero and 
less than 100; 2) ADF values had to be less than NDF values; 
and 3) the sum of CP, EE, ash, NDF, and starch had to be 
less than 100. The Spearman correlations from the original 
database variables were then applied to the cleaned synthetic 
datasets to ensure that the original variable relationships were 
maintained. These steps ensured that the synthetic datasets 
closely mirrored the characteristics of the original data while 
maintaining the necessary statistical relationships and realis-
tic constraints.

Correlation for non-normally distributed variables
The Cholesky decomposition, first introduced by André-
Louis Cholesky in the early 20th century (Higham, 2002), 
is a mathematical technique primarily used for decompos-
ing positive-definite matrices. It is commonly employed to 
generate correlated normal random variables in the context 
of multivariate normal distributions (Gentle, 2009). How-
ever, for non-normal distributions, the direct application of 
Cholesky decomposition alone is insufficient to maintain the 
desired correlation structure. This limitation arises because 
the decomposition assumes normality, and directly applying 
it to non-normal distributed variables may lead to distorted 
correlations. To address this issue and effectively generate 
correlated non-normal variables, two alternative methods 
were compared in this study.

Rank-based method
This method is based on four steps: normal data generation, cor-
relation imposition, ranking maps, and allocation assignment. It 
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starts by generating uncorrelated, normally distributed variables, 
and the Cholesky decomposition is applied to these variables to 
achieve the desired correlation. Then, the ranks of the values 
in each normally distributed variable are obtained. Finally, the 
original non-normally distributed variables are reorganized (i.e., 
sorted) according to the ranks of the corresponding normally 
distributed variables that have undergone the Cholesky decom-
position. Supplementary Material S2 contains the R script code 
used to obtain the Cholesky decomposition for non-normally 
distributed variables in our simulations. This simple and compu-
tationally efficient approach aims to have non-normal variables 
retain their original distributions while achieving the desired cor-
relation. However, there may be limited flexibility in controlling 
the degree of non-normality, and this method may not fully 
retain the original Spearman correlation. Additionally, it is nec-
essary to investigate whether the Cholesky decomposition and 
reranking process accurately replicate the desired correlation 
and distribution moments, including mean, variance, skewness, 
and kurtosis.

Copula and SEM methods
Various methods exist to correlate multivariate non-normal 
distributions, including copulas and nonlinear SEM. The 

copula method, widely used for modeling dependencies 
between variables (Genest and MacKay, 1986; Nelsen, 2006), 
involves a multistep process: 1) generating synthetic data 
for each variable using best-fit non-normal distributions, 
2) converting these to uniform distributions via the empir-
ical cumulative distribution function, 3) transforming them 
to normally distributed marginals using the inverse normal 
cumulative distribution function, 4) adjusting the correlation 
structure iteratively to match the desired correlation matrix 
using Cholesky decomposition, 5) matching the ranks of the 
adjusted data to the ranks of the original non-normal data, 
and 6) iteratively checking to confirm convergence. This pro-
cess aims to ensure that the data retains the original distribu-
tions while achieving the desired correlations. The nonlinear 
SEM method (Auerswald and Moshagen, 2015) generates 
synthetic data with specified moments using a different 
approach: 1) utilizing nonlinear linking functions and covari-
ance corrections to adjust initial data, 2) achieving the desired 
correlation structure, including specific higher moments like 
skewness and kurtosis, and 3) iteratively adjusting to ensure 
the final synthetic data closely match the target distributions 
and correlations specified in the model. Both methods aim to 
preserve the complex relationships and distributions of the 

Figure 1. Histogram and density plots of methane (CH4, g/d) from the literature-gathered database. The blue bars represent the histogram, the orange 
shade indicates the density plot of the original data, the green line illustrates the density plot of the fitted data using the best-fit distribution shown at 
the top of the plot, and the vertical lines from left to right denote the minimum (min), mean—1 SD, mean, mean + 1 SD, and maximum (max) values in 
the literature-gathered database.
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original data while generating synthetic datasets that accu-
rately reflect these characteristics. For the sake of compari-
son with the rank-based method, Supplementary Material S2 
shows the R script code of an application of the copula-based 
method.

Evaluation of distribution moments and correlations
To evaluate the preservation of the original non-normal dis-
tributions, including skewness and kurtosis, while imposing a 
desired correlation structure using the rank-based and copula 
methods, we generated synthetic databases comprising three 
variables, each following a distinct non-normal distribution 
(chi-square, beta, and log-normal), with 5,000 samples across 
100 iterations. These distributions are independent of the pro-
cess used to generate the synthetic databases, which contained 
20,000 samples. The evaluation of distribution moments and 
correlations with 5,000 samples and 100 iterations was a 
separate analysis designed to assess the performance of the 
rank-based and copula methods under specific distributional 
assumptions (chi-square, beta, and log-normal). The 100 iter-
ations refer to repeating this analysis to ensure the robust-
ness of the correlation preservation method. Supplementary 
Material S3 has the R script code, showing a predefined 
positive-definite correlation matrix used for this simulation. 
Specifically, var1 was generated from a chi-square distribu-
tion with two degrees of freedom, var2 was generated from 
a beta distribution with shape parameters a = 2 and b = 5, 
and var3 was generated from a log-normal distribution with 
a mean of zero and a SD of one. Furthermore, we compared 
the preestablished Spearman correlation with the Spearman 
correlation of these distributions after reranking them using 
our method across all 100 iterations.

Regression fitting, cross-testing, and adequacy
Predictive regressions
RF and multiple linear model (LM) regression analyses were 
performed on the synthetic databases to evaluate their pre-
dictive capabilities for CH4 emissions. The RF regression 
was implemented using the randomForest package (Breiman, 
2001) in R v. 4.4.1 (R Core Team, 2019), with 150 trees and 
four randomly sampled variables as candidates at each split. 
This configuration was chosen based on preliminary analy-
ses that showed optimal performance with these parameters. 
For the LM, we employed the ordinary least-squares method 
using the lm function in R v. 4.4.1 (R Core Team, 2019).

Cross-testing
To assess the robustness and generalizability of the models, 
we conducted a cross-testing analysis. This involved applying 
regressions developed on the normally distributed synthetic 
database to the non-normally distributed synthetic database 
and vice versa. This cross-testing approach allows for a more 
comprehensive evaluation of model performance across dif-
ferent data distributions.

Gini importance plots
To assess the relative importance of predictor variables in 
the RF model, we utilized two key indices: predictive accu-
racy score (PAS) and square error reduction (SER). The PAS 
measures a variable’s contribution to the model’s predictive 
accuracy. It is calculated as the percentage increase in mean 
squared error (MSE) when the variable’s values are randomly 

permuted. A higher PAS indicates that the variable is more 
crucial for maintaining the model’s predictive accuracy. The 
PAS is also known as the mean decrease in accuracy in clas-
sification tasks to measure how much the model’s accuracy 
decreases when a variable is excluded, with higher values 
indicating greater importance (Breiman, 2001). The SER 
is analogous to the mean decrease in Gini for classification 
tasks, and it quantifies the total decrease in node impurity 
from splits over a given variable, averaged across all trees. In 
regression contexts, SER (i.e., node impurity) is measured by 
the residual sum of squares, so its unit is the square unit of the 
dependent variable (i.e., daily CH4 emission, g2/d2). Higher 
SER values suggest a variable’s effectiveness in creating 
homogeneous groups (i.e., high precision) within the decision 
trees of the RF. These measures offer complementary insights: 
PAS focuses on predictive accuracy, while SER reflects the 
variable’s role in the tree structure (i.e., precision). Variables 
with greater SER values are considered more important in the 
model’s decision-making process, while variables with greater 
PAS values increase the accuracy of the predictions. Strobl et 
al. (2008) noted that correlations between predictor variables 
and differences in variable scales can influence these impor-
tance measures. The Gini importance plot displays the PAS 
and the SER values for each feature, and the variables are 
typically sorted in descending order of SER. This allows for 
a straightforward visual interpretation of feature importance, 
where features at the top of the plot are the most influential 
in the model’s predictions. However, it is essential to note that 
while Gini importance provides valuable insights, it can be 
biased towards high-cardinality features and does not indi-
cate the direction (positive or negative) of a feature’s influ-
ence (Strobl et al., 2007). Therefore, we interpret these plots 
in conjunction with other model adequacy metrics (Tedeschi, 
2006) to gain a comprehensive understanding of our RF mod-
el’s behavior and the underlying relationships in our data.

Prediction adequacy
The predictive accuracy of the CH4 emission models was eval-
uated using a suite of statistical measures, as recommended 
by Tedeschi (2006). These included mean bias (MB) to assess 
systematic over- or underprediction; mean square error of pre-
diction (MSEP) and its root (RMSEP) to quantify overall pre-
diction error; MSEP further decomposed into MB, slope bias 
(i.e., systematic deviation in the predicted slope from the true 
slope, indicating how well the model captures the relationship 
between input and output variables), and random errors (i.e., 
uncontrolled inherent variability or noise in the data) to pro-
vide insights into the sources of prediction error; concordance 
correlation coefficient and its accuracy estimate (Cb) to eval-
uate the agreement between predicted and observed values; 
and Akaike’s Information Criterion (AIC) to compare model 
fit while accounting for model complexity. This comprehen-
sive set of statistical measures provides a robust framework 
for assessing and comparing the performance of the RF and 
LM regressions across different synthetic data distributions.

Results and Discussion
Distribution moments and correlations
Distribution moments
Based on our evaluation of the distribution moments and cor-
relation across the 100 iterations (Supplementary Material 
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S3; data not shown) for the rank-based method, the mean of 
the original and correlated data was preserved for each distri-
bution (chi-square, beta, and log-normal), indicating that the 
rank-based method effectively maintains the mean. The vari-
ance of the original and correlated data also remained con-
sistent, showing that the method did not distort the spread of 
the data. The skewness values of the original and correlated 
data were very similar, indicating that the method preserves 
the asymmetry of the distributions. The kurtosis values of the 
original and correlated data matched closely, demonstrating 
that the method retains both the tail behavior and the cen-
tral peak characteristics (i.e., peakedness) of the distributions. 
Over the 100 iterations, the differences between the original 
correlation (i.e., the preestablished matrix) and the effec-
tive correlation using the rank-based method varied from 
−0.0271 to 0.0428 for var1-var2, −0.174 to 0.0455 for var1-
var3, and −0.0219 to 0.0419 for var2-var3. Our rank-based 
method (Supplementary Material S2) to correlate multivari-
ate non-normal distributions effectively maintained the mean, 
variance, skewness, and kurtosis of the original non-normal 
distributions while imposing the desired correlation struc-
ture. Similarly, the copula-based approach (Supplementary 
Material S2) maintained the moments of the original and 
correlated data. However, the copula-based approach showed 
more variability and less precision in maintaining the desired 
Spearman correlations. The differences between the original 
correlation (i.e., the preestablished matrix) and the effec-
tive correlation using the copula-based method varied from 
−0.488 to 1 for var1-var2, −0.689 to 0.464 for var1-var3, and 
−0.599 to 0.357 for var2-var3. This method might be more 
suited for maintaining Pearson correlations than Spearman 
correlations, mainly when applied to non-normal data. The 
large discrepancies in the Spearman correlations between the 
original and correlated data are intriguing and cast doubt on 
the ability of copula-based methods to yield preestablished, 
correlated, non-normally distributed variables adequately. 
It is also likely that the implementation in Supplementary 
Material S2 needs further refinement. When using a variable 
correlation matrix instead of the preestablished matrix, the 
discrepancies increased further. This finding confirms that 
the rank-based method provides reasonable control over the 
higher moments of the distributions beyond just rank cor-
relation.

Spearman correlation matrix
The original Spearman correlation matrix (COR1) of the  
literature-gathered database to predict CH

4 emissions in beef 
cattle (n = 263 records; Supplementary Table S1) is shown 
in equation 1. Similarly, the Spearman correlation matrix 
(COR2) of the cleaned synthetic database (n = 9,484 after the 
removal of outliers and nonconforming data points) is shown 
in equation 2. The removal of outliers and nonconforming 
data points was based on biological plausibility criteria to 
ensure that the synthetic dataset adhered to realistic dietary 
constraints. Nonconforming data points included cases 
where the sum of dietary components exceeded 100% and 
values where ADF was higher than NDF, among others, as 
detailed earlier. Outliers were identified using a combination 
of statistical techniques, such as Z-scores and interquartile 
range (Tedeschi, 2022b), to flag data points that significantly 
deviated from the distribution of the original dataset. It 
is acknowledged that generating synthetic data requires 
simulating almost twice the amount of data to achieve a  

biologically plausible and usable dataset, which is a limitation 
of the approach. While this process ensured that the synthetic 
data maintained realistic constraints, it reflects the narrow 
range of parameters present in the original dataset of fewer 
than 300 data points. Therefore, the limitation is not only the 
small size of the real dataset but also its representativeness of 
a larger latent set of data. The actual data were not edited or 
modified beyond standard data cleaning steps, but the limited 
scope of the actual data highlights the need for expanding real-
world datasets in future studies. The synthetic database was 
developed using the best-fit non-normal distributions (getDist 
shown in Supplementary Material S2) for each variable, and 
their values were ranked using the methodology outlined in 
Supplementary Material S2 (correlate_using_ranks function).

 � (1)

 � (2)

where ADF is acid detergent fiber, % DM; Ash is % DM; 
BW is body weight, kg; CP is crude protein, % DM; DMI is 
DM intake, kg/d; EE is ether extract, % DM; NDF is neutral 
detergent fiber, % DM; and Starch is % DM.

As noted by Akkem et al. (2024), a fundamental challenge 
in generating synthetic crop data lies in accurately captur-
ing the intricate temporal and spatial dependencies inherent 
in crop growth and environmental factors. This challenge 
underscores the critical importance of ensuring that the syn-
thetic data generation process preserves existing relationships 
among variables while avoiding the introduction of spurious 
correlations or artificial patterns. In the context of generat-
ing synthetic databases, maintaining this delicate balance is 
crucial because the effectiveness of these systems relies heav-
ily on the authenticity and representativeness of the under-
lying data. In some instances, the synthetic data retained 
small, nonzero correlations, for example, between certain 
diet attributes and BW. These nonzero correlations, however, 
are statistical artifacts necessary to maintain a stable and 
mathematically valid correlation matrix. Technically, these 
correlations are not significantly different from zero and are 
not biologically meaningful. The observed values reflect the 
structure of the original data, but the expected value for these 
relationships would be zero. As such, these artifacts should 
not impact the overall interpretation of the results or the pre-
dictive performance of the models. In our case, both matrices 
exhibit similar overall structures, indicating that the synthetic 
data generation method has successfully preserved the general 
pattern of correlations without adding patterns (i.e., correla-
tion matrices are very similar). The majority of the differences 
between COR1 and COR2 are minor, suggesting that the 
method effectively maintains the original correlation struc-
ture. A few correlations exhibit moderate differences, such as 
those involving CP with BW, starch with NDF, and ash with 
BW. These differences, while noticeable, are not significant 
enough to drastically impact the overall distribution structure.  

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article/doi/10.1093/jas/skaf136/8124704 by guest on 28 Septem

ber 2025

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaf136#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaf136#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaf136#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaf136#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaf136#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaf136#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaf136#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaf136#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaf136#supplementary-data


Tedeschi 7

Several correlations show negligible differences, suggesting 
that the synthetic data closely approximates the original 
data’s correlation structure in many instances. The minor and 
negligible differences indicate that the synthetic data gener-
ation method is robust and does not significantly alter the 
distribution’s structure. The preservation of correlation, along 
with mean, variance, skewness, and kurtosis, indicates that 
the synthetic data maintains the statistical properties of the 
original data. While moderate differences in some correla-
tions might slightly affect specific relationships between vari-
ables, these are not widespread, and the overall impact on the 
distribution is likely minor.

When evaluating the Spearman correlations between the 
original and synthetic data generated over 100 iterations 
for chi-square, beta, and log-normal distributions (data not 
shown), we observed a difference of around 0.25 between 
the chi-square and beta distributions, while the differences 
between chi-square and log-normal, as well as beta and 
log-normal, were less than 0.1 for the rank-based method. 
The histograms of the differences in Spearman correlations 
between the original and correlated data are centered around 
zero, indicating that the rank-based method closely pre-
serves the correlation structure. Conversely, the copula-based 
method showed more significant and inconsistent differences. 
The histograms of the differences in Spearman correlations 
for the copula-based method displayed more significant vari-
ability, indicating less precision in maintaining the desired 
correlation structure (data not shown).

However, it is crucial to note that our analyses, while com-
prehensive in examining overall statistical properties and 
correlations, do not preclude the possibility of inadvertently 
creating artificial relationships within subsets of the synthetic 
database. This limitation arises from the inherent complexity 
of multivariate datasets and the potential for subtle interac-
tions that broader statistical measures may not capture. When 
working on modeling tabular data using Conditional GAN, 
Xu et al. (2019) highlighted the difficulties in generating syn-
thetic data that faithfully preserved the statistical properties 
of the original dataset. Future work should involve more 
granular analyses of variable interactions, possibly employing 
techniques such as partial correlation analysis or advanced 
ML methods for detecting complex, nonlinear relationships. 
Additionally, field experts could provide valuable insights 
into the practical implications of any artificial relationships 
that may have been introduced during the synthetic data gen-
eration process.

Predicting methane emissions
Figure 2 shows scatter plots comparing the observed CH4 
values from the synthetic dataset with the predicted CH4 
emissions using LM and RF regressions. Figure 2A presents 
the results under the assumption that all key variables follow 
a normal distribution, while Figure 2B presents the results 
without this assumption. Note that some variables might 
follow a normal distribution naturally. The RF regression 
yielded a higher R2 (0.927) compared to the LM (0.622 and 
0.618), regardless of the assumed distributions of the critical 
variables. Additionally, the RF regression had approximately 
half the SE of the LM regressions for both normal (Figure 2A) 
and non-normal (Figure 2B) distributions. The AIC was also 
lower for the RF than for the LM regressions. Table 1 provides 
further adequacy statistics, reinforcing the finding that the 
RF regression outperformed the LM regression in predicting  

CH4 emissions from the synthetic database. Because these 
are fitting regressions, one would expect the means of the 
observed and predicted independent variables (i.e., CH4) to 
be nearly identical, resulting in an MB close to zero, which is 
confirmed by the results (Table 1). However, the MSE for the 
RF regressions was approximately 19% of that for the LM 
regressions under both conditions (normal and non-normal 
distributions). Furthermore, while 100% of the MSE for the 
LM regressions was due to random errors, the RF regressions 
had about 19% of the MSE attributable to slope bias.

Figure 3 depicts the Gini importance plots for RF regres-
sions under the assumption that all key variables follow a 
normal distribution (Figure 3A) or without this assumption 
(Figure 3B). In both distribution scenarios, DMI emerged as 
the most influential predictor based on PAS (normal: 39.80%, 
non-normal: 38.89%), meaning that randomly shuffling DMI 
values while keeping other variables unchanged increased 
the model’s MSE by 39.80% in the normal distribution sce-
nario and 38.89% in the non-normal distribution scenario, 
decreasing the model’s accuracy. This result aligns with the 
findings by Hristov et al. (2018), who identified DMI as a 
primary driver of enteric CH4 emissions in cattle. The EE 
showed consistent importance across both distributions (nor-
mal: 32.05%, non-normal: 32.80%), supporting Grainger 
and Beauchemin’s (2011) observations on the impact of 
dietary lipids on CH4 production. Interestingly, the impor-
tance of fiber components differed between the two distri-
butions. In the non-normal distribution model, ADF showed 
increased importance (PAS: 31.42% vs. 28.56% in the nor-
mal distribution), while NDF importance also increased (PAS: 
23.53% vs. 16.13%). This shift suggests that accounting for 
non-normality may better capture the complex relationship 
between fiber content and CH4 emissions. This finding aligns 
with those from Appuhamy et al. (2016), who noted that 
dietary NDF concentration was one of the most frequently 
appearing feed variables in evaluated CH4 prediction models. 
Van Soest (1994) also emphasized the critical role of fiber in 
ruminant nutrition and its impact on CH4 production. The 
SER values provide a complementary perspective. In both 
distributions, NDF and ADF showed the highest SER values, 
underscoring the critical role of fiber in determining node 
purity in the RF model. However, the relative importance 
of these variables shifted, with ADF showing higher SER 
in the non-normal model (5,733,672 vs. 4,770,052 in nor-
mal), while NDF’s SER decreased (3,023,372 vs. 5,381,872). 
The CP and starch showed reduced importance in the non-
normal model based on PAS (CP: 15.96% vs. 20.66%; starch: 
26.51% vs. 32.79%). This suggests that assuming normal-
ity might overestimate the impact of these nutrients on CH4 
emissions. These findings align with Dijkstra et al. (2011), 
who noted that increasing dietary CP content generally has 
little effect on CH4 production. The variable importance of 
starch across our models suggests a complex relationship 
with CH4 emissions. While Hatew et al. (2015) reported that 
the effect of starch source on CH4 production was not consis-
tent, our results indicate that the importance of starch may be 
overestimated when assuming normal distribution. The BW 
maintained relatively consistent importance across both mod-
els in terms of PAS (normal: 21.85%, non-normal: 18.49%), 
supporting its inclusion as a stable predictor in CH4 emission 
models (Moraes et al., 2014), likely because the relationship 
between DMI and BW is represented by a linear relationship 
(i.e., power of 1) (Van Soest, 1994) though Ketelaars and  
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Tolkamp (1992) showed evidence that DMI increases propor-
tionally to the maintenance requirement (i.e., to the metabolic 
BW; power of 0.75).

The discrepancies in variable importance between the two 
distribution assumptions highlight the sensitivity of RF mod-
els to underlying data distributions. This underscores the 
importance of carefully considering data distribution when 
interpreting model results, particularly in complex biological 
systems like ruminant CH4 production. Our findings suggest 
that models assuming non-normal distributions may provide 
a more nuanced understanding of the factors influencing CH4 
emissions, especially concerning dietary fiber content. These 
results emphasize the critical need to consider data distribution  

when developing predictive models for CH4 emissions. 
Assuming normality may lead to misinterpretation of the rel-
ative importance of specific dietary components, potentially 
impacting the accuracy of CH4 prediction models and subse-
quent mitigation strategies in ruminant production systems.

Cross-testing analysis
Table 1 also has the adequacy statistics for the cross-testing 
analysis. In this analysis, LM and RF regressions developed 
under non-normal distribution conditions were used to pre-
dict CH4 using a synthetic database created under normal 
distribution conditions of the independent and dependent 
variables, and vice versa. In the first scenario (non-normal 
regressions with normal distribution database), the RF 
regression underperformed compared to the LM regression. 
Although the MSE was similar between the RF (1130.5) and 
LM (1030.3) regressions, the RF regression had an MB of 
−1.05 g/d compared to 0.11 g/d for the LM regression. Sim-
ilarly, in the second scenario (normal regressions with non-
normal distribution database), the MSE was similar between 
RF (1091.2) and LM (1015.9) regressions, but the MB was 
greater for the RF (1.91 g/d) than for the LM (−1.22 g/d) 
regressions. Notably, there was a sign exchange in the MB 
during these cross-testing analyses. The cross-testing results in 
Table 1 suggest that the adequacy statistics for the LM regres-
sions are independent of the nature of the distribution of the 
independent and dependent variables. In contrast, the RF 
regressions exhibit high specificity: RF regressions developed 
using normal distribution are only suitable for normal dis-
tribution predictions, and those developed using non-normal 
distributions are only suitable for predictions with synthetic 
databases generated from non-normal distributions of the 
independent and dependent variables. The LM regressions 
appeared to be robust to the distribution type of the synthetic 
database used for both development and evaluation purposes. 
Conversely, the RF regressions underperformed (as indicated 
by MB values far from zero, higher MSE, higher AIC, and 
lower R2; Table 1) when the distribution type of the develop-
ment and evaluation of synthetic databases differed.

These findings highlight the importance of understanding 
the distributional assumptions behind different regression 
techniques when generating synthetic databases. Multiple 
linear regression models showed robustness across different 
distribution types, making them a more flexible choice when 
the distribution of data may vary. In contrast, RF regressions, 
while generally more accurate within the same distribution 
type, exhibited significant performance drops when applied 
to data with differing distributions. Various techniques exist 
for generating synthetic databases, each with its strengths and 
limitations. Methods such as GAN (Goodfellow et al., 2020) 
and VAE (Kingma and Welling, 2022) have gained popularity 
for creating high-fidelity synthetic data, particularly in fields 
like image processing and anomaly detection.

These DL approaches have shown a remarkable ability 
to capture complex data distributions and generate realistic 
synthetic samples. For instance, Esteban et al. (2017) demon-
strated the use of GAN in generating synthetic electronic 
health records that preserved the statistical properties of the 
original data while ensuring patient privacy. However, these 
methods often require large amounts of data and computa-
tional resources, which might not be practical for all applica-
tions, especially in fields with limited data availability, such as 
animal science.

Figure 2. Relationship between observed (y-axis) and predicted (x-axis) 
methane (g/d) using multiple linear regression and RF regression, 
assuming (A) normal and (B) non-normal distributions of the independent 
variables.
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Another common approach involves copula-based meth-
ods, which can model dependencies between variables with-
out assuming a specific marginal distribution (Nelsen, 2006). 
This approach can be advantageous when dealing with 

non-normal data because it provides flexibility in maintain-
ing the original data structure. Patki et al. (2016) utilized  
copula-based methods in their SDV framework, demonstrating 
its effectiveness in generating synthetic relational databases that 

Table 1. Diverse fitting and predictive statistics of 2 × 2 combination for data generation and regression fitting using normal and non-normal distributions 
for LM or RF regressions

Items1 Normal distributions Non-normal distributions

Normal regressions Non-normal regressions Normal regressions Non-normal regressions

RF LM RF LM RF LM RF LM

N 8,542 8,542 8,542 8,542 9,484 9,484 9,484 9,484

Mean

 � Predicted 128.5 128.6 129.7 128.5 126.4 129.6 128.5 128.4

 � Observed 128.6 128.6 128.6 128.6 128.4 128.4 128.4 128.4

 � MB 0.07 0.00 −1.05 0.11 1.91 −1.22 −0.17 0.00

SD

 � Predicted 44.1 40.8 39.4 41.1 38.7 39.9 43.2 39.9

 � Observed 51.7 51.7 51.7 51.7 50.8 50.8 50.8 50.8

 � RMSE2 14.0 31.8 33.6 32.1 33.0 31.9 13.7 31.4

r2 0.93 0.62 0.58 0.61 0.58 0.61 0.93 0.62

 � CCC 0.96 0.77 0.73 0.76 0.73 0.76 0.96 0.76

 � Cb 0.99 0.97 0.96 0.97 0.96 0.97 0.99 0.97

MSE2 195.5 1,011.0 1,130.5 1,030.3 1,091.2 1,015.9 188.7 984.7

 � MB,% 0.0 0.0 0.1 0.0 0.3 0.1 0.0 0.0

 � Slope,% 18.9 0.0 0.0 0.0 0.0 0.0 19.3 0.0

 � Random,% 81.1 100.0 99.9 100.0 99.7 99.8 80.7 100.0

AIC 70,505 83,361 85,495 92,301 94,456 83,361 77,813 92,301

1AIC = Akaike’s Information Criterion, CCC = concordance correlation coefficient, Cb = accuracy, MB = mean bias, MSE = mean square error, r2 = coefficient 
of determination adjusted to number of variables, and RMSE = root of the mean square error.
2For statistical models with large databases, the MSEP and MSE tend to yield similar values as MSE = MSEP × n/(n − p); where p is the number of 
parameters. The ratio n/(n − p) is close to 1 for n = 10,000 and p = 9.

Figure 3. The Gini importance plot shows the increase in mean square error if the variable is removed from the model (PAS, %; line length) and how 
effectively a variable reduces residual square error when used for splitting in the RF’s decision trees (SER, (g/d)2; point size), assuming (A) normal and 
(B) non-normal distributions of the variables.
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preserve statistical properties and relationships across multiple 
tables. However, the complexity of copula models and the com-
putational burden they impose can be challenging to manage, 
especially for high-dimensional datasets. Furthermore, our pre-
liminary analysis of the copula-based method (Supplementary 
Material S2) showed that it was not as good as other methods. 
It had more variability in preserving the original distribution 
moments compared to the rank-based method. The histograms 
of the differences in Spearman correlations between the origi-
nal and correlated data for the copula-based method showed 
more spread, indicating less precision in maintaining the desired 
correlation structure. Finally, though the copula method pro-
vides flexibility in modeling dependencies between variables, it 
is more complex and computationally intensive than the rank-
based method. Interestingly and somewhat unexpectedly, the 
copula-based method did not perform as well as the rank-based 
method in terms of preserving the correlations of the original 
data, suggesting that while the copula-based approach is theoret-
ically robust and flexible, in practice, it may introduce more vari-
ability and requires substantial computational resources, making 
the rank-based method a more efficient and reliable choice for 
applications with constraints similar to ours.

In our study, the rank-based method used to generate 
synthetic data ensured that the non-normal characteristics 
of the original data were preserved. This method demon-
strated a balance between simplicity and effectiveness, 
especially when the goal is to maintain the relational struc-
ture of the variables. Ruscio and Kaczetow (2008) pro-
posed a similar approach, with an iterative algorithm for 
generating multivariate, non-normal data with specified 
intercorrelations, which has shown good performance in 
preserving both univariate distributions and correlations. 
The performance of RF regressions, although highly specific 
to the distribution type, underscores the potential need for 
hybrid approaches that combine the robustness of LM with 
the precision of RF under specific conditions. This finding 
aligns with recent trends in ensemble methods and hybrid 
models. For example, Zhang and Mahadevan (2019) pro-
posed a hybrid approach combining copula-based model-
ing with ML techniques for uncertainty quantification in 
engineering applications, demonstrating improved perfor-
mance over traditional methods.

Future research could explore integrating these techniques 
to leverage their respective strengths, potentially developing 
more versatile models capable of handling diverse data dis-
tributions. For instance, combining the rank-based method 
with elements of DL architectures could potentially yield a 
more robust and flexible synthetic data generation frame-
work. Additionally, investigating the application of these 
methods in real-world scenarios beyond synthetic datasets 
would provide deeper insights into their practical utility and 
limitations. Furthermore, the field of DP (Dwork and Roth, 
2014) offers promising avenues for generating synthetic data 
that not only preserves statistical properties but also provides 
strong privacy guarantees. Integrating DP techniques with 
our rank-based method could enhance the utility of synthetic 
data for sensitive applications, such as those involving med-
ical or financial data. Lastly, the specificity of RF regressions 
to distribution types observed in our study suggests a need 
for adaptive ML models that can automatically adjust to dif-
ferent data distributions. Recent advancements in transfer 
learning and domain adaptation techniques (Wang and Deng, 
2018) could potentially be applied to develop more flexible 

RF models that maintain high performance across varying 
data distributions.

Considerations of sample size on overfitting and 
overconfidence
Another important consideration is the sample size of the 
synthetic database. We initially generated a 20,000-record 
synthetic database but ended up with approximately 10,000 
usable records (Table 1) after removing spurious and nonbi-
ological data that were generated randomly. This reduction 
occurred due to the strict biological constraints we imposed 
to ensure the synthetic data accurately reflected real-world 
scenarios. For instance, we removed records where the sum 
of dietary components exceeded 100% or where ADF val-
ues were higher than NDF values, which are technically 
possible in real life due to limitations in the methodology of 
these fiber components (Van Soest, 1994; Tedeschi and Fox, 
2020) but theoretically and biologically flawed. The use of 
percentage-based dietary features (e.g., nutrient components 
summing to 100%) might have notably contributed to this 
data reduction, as these features impose strict biological lim-
its on the synthetic data. While such reductions might not 
constantly occur in other datasets or contexts, they were nec-
essary here to maintain the biological plausibility of the syn-
thetic data. The final sample size of around 10,000 records is 
particularly relevant in the context of our regression analyses. 
For RF models, this sample size is generally considered suffi-
cient to achieve stable and reliable results (Oshiro et al., 2012; 
Probst and Boulesteix, 2017). Oshiro et al. (2012) found that 
the performance of RF models tends to stabilize after about 
128 trees, and our use of 150 trees aligns well with this find-
ing. For the LM, the sample size is more than adequate, as 
the rule of thumb suggests a minimum of 10–20 observations 
per predictor variable (Toutenburg and Shalabh, 2009; Har-
rell, 2015). Our cross-testing approach, where we applied 
models developed on normally distributed data to non-
normally distributed data and vice versa, further validates 
the robustness of our sample size. This method allows us to 
assess how well the models generalize across different data 
distributions, which is crucial given the potential variability 
in real-world data. While the reduction in sample size from 
20,000 to 10,000 records might seem substantial, it actually 
demonstrates the rigor of our data-cleaning process (Tedes-
chi, 2022b) and ensures that our synthetic data closely mimics 
the biological constraints of real-world systems.

On the other hand, a point of concern is that a large sample 
size (i.e., 10,000 data points) used in our synthetic database 
for both LM and RF regressions can provide robust statisti-
cal power, but it may also lead to potential issues in model 
interpretation and performance evaluation. In the context of 
linear regression, it can lead to an inflation of goodness-of-fit 
measures and potentially misleading interpretations of model 
performance. As sample size increases, even minor effects can 
become statistically significant, potentially leading to overint-
erpretation of weak relationships (Lin et al., 2013; Wasserstein 
and Lazar, 2016). Similarly, as sample size increases, the coef-
ficient of determination (R2 or r2) tends to stabilize around the 
population value; it may appear impressively high even when 
the predictive power of the model is limited (Malek et al., 
2007). This phenomenon is particularly relevant in our study, 
where the LM regression showed consistent performance 
across different data distributions. For large samples, tradi-
tional goodness-of-fit measures may become less informative, 
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and alternative metrics focusing on predictive performance 
should be considered, even when considering the regressor 
variables as random (Buja et al., 2019).

To prevent overfitting issues (Hawkins, 2004) in large data-
bases, future evaluations should focus on the effect sizes and 
practical significance rather than solely on statistical signifi-
cance (Sullivan and Feinn, 2012); adopt the use of adjusted 
R2 or other less sensitive sample-size metrics (Spiess and 
Neumeyer, 2010), such as the robust R2 (Tedeschi, 2006); and 
consider the use of regularization techniques (Friedman et al., 
2010), such as lasso and ridge regressions. Similarly, for RF 
models, the risk of overfitting with large datasets is a signifi-
cant concern. While RF is generally robust against overfitting 
due to its ensemble nature, the use of a large synthetic dataset 
may still lead to models that capture noise rather than true 
underlying patterns. Oshiro et al. (2012) reported that while 
increasing the number of trees would generally improve per-
formance, there is a point of diminishing returns, typically 
around 128 trees. In our study, the high R2 values (0.927) 
observed for RF models, while indicative of good perfor-
mance, could potentially be a result of overfitting to the syn-
thetic data. Overfitting in RF might be mitigated by utilizing 
pruning techniques to reduce complexity in individual trees 
(Breiman et al., 1984) or employing k-fold cross-validation or 
out-of-bag error estimates to provide a more realistic assess-
ment of model performance (Breiman, 2001).

In fact, adding more data may backfire because RF may 
make incorrect predictions with a high degree of confidence 
(i.e., high R2), mainly if the distribution structure is differ-
ent from that used to generate the RF model, stemming 
from model uncertainty or calibration issues. This phenom-
enon is rooted in the nature of ensemble methods like RF, 
which can lead to overfitting and overconfidence in predic-
tions (Grushka-Cockayne et al., 2016), especially when faced 
with out-of-distribution data. The issue of model calibration 
in ML, including RF, has been extensively studied. While 
RF regression is generally well-calibrated for in-distribution 
data, it can become miscalibrated when faced with data from 
different distributions (Niculescu-Mizil and Caruana, 2005). 
Furthermore, Kull et al. (2017) proposed methods to improve 
the calibration of RF regressions, acknowledging that they 
can become overconfident if not calibrated adequately. Their 
work highlights the need for careful consideration of model 
calibration, especially when working with large datasets or 
when applying models to data with potentially different dis-
tributions. The high R2 values observed in our study, despite 
poor generalization in cross-testing, exemplify this issue. As 
Probst and Boulesteix (2017) point out, “the out-of-bag error 
estimate, commonly used in Random Forests, can be overly 
optimistic,” which may contribute to overconfidence in model 
performance.

It is well established that some AI methods, specifically 
supervised ML, heavily depend on the quality of data used 
to train their structures, and ill-conditioned data inevitably 
leads to biased ML predictions. While the need for substan-
tial data in ML is undeniable, we must be cautious of falling 
into the lack-of-data trap when attempting to increase the 
predictability of regression models. Although ML requires 
big data and big data often necessitates ML for analysis, the 
failures in ML predictions cannot be attributed solely to data 
scarcity, nor can they always be solved by simply demanding 
more data. This mutual dependency between AI and big data 
is not inconsequential. It may lead to a self-reinforcing cycle 

without a clear resolution, potentially resulting in a death 
spiral of ever-increasing data demands without proportional 
improvements in prediction accuracy (Tedeschi, 2022b). Our 
findings emphasize the critical importance of implementing 
robust validation techniques and carefully interpreting model 
performance metrics. This is particularly crucial when work-
ing with large synthetic datasets, which may not fully capture 
the complexity and variability inherent in real-world data 
distributions. The challenge lies not just in acquiring more 
data but in ensuring that the data—whether natural or syn-
thetic—accurately represents the underlying phenomena we 
aim to model.

Conclusion
The comparison between the rank-based method and the  
copula-based method for generating synthetic datasets 
revealed that the rank-based method more effectively pre-
served the original distribution moments (mean, variance, 
skewness, and kurtosis) and the correlation structure. The 
rank-based method was more straightforward to implement 
and provided more consistent results, making it a robust 
choice for maintaining relational dependencies in synthetic 
datasets. Conversely, the copula-based method, while flexi-
ble and capable of modeling complex dependencies, showed 
more variability in preserving the original data’s characteris-
tics and was more computationally intensive.

The differences between the original (COR1) and synthetic 
(COR2) correlation matrices were mostly minor, with a few 
moderate discrepancies. These differences are not significant 
enough to drastically impact the overall distribution structure. 
The synthetic data generation method effectively maintains 
the correlation structure and distribution moments, making it 
a reliable approach for creating synthetic datasets with sim-
ilar statistical properties to the original data. However, our 
analyses do not guarantee that artificial relationships between 
subsets of variables within the synthetic database have not 
been introduced. These potential artificial relationships could 
affect specific downstream analyses, and further scrutiny may 
be necessary to ensure the integrity of the synthetic data for 
specific applications. Our analyses also indicated that the 
RF regression consistently outperformed the LM regression 
with higher precision values, lower SE, and lower AIC val-
ues, regardless of whether the variables followed normal or 
non-normal distributions. However, while both LM and RF 
regressions perform well when the synthetic database and the 
prediction model share the same distributional assumptions, 
the LM regressions exhibit consistent predictability across 
different distribution types.

In contrast, the RF regressions demonstrate high specific-
ity and significant performance degradation in cross-testing 
scenarios where the distributional assumptions differ. Fur-
thermore, while key predictors like DMI and EE remain 
consistently critical in predicting CH4, the assumption of 
non-normal distribution reveals the presence of nuances in 
the relationship between dietary components (particularly 
fiber) and CH4 emissions. This finding highlights the need 
for distribution-aware modeling approaches in animal sci-
ence, especially animal nutrition, to ensure more accurate and 
robust predictions of CH4 emissions from ruminants. This 
study provides insights into the comparative performance 
of RF and LM; other techniques from the broader spectrum 
of ML methods, such as ensemble boosting, artificial neural 
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networks, or support vector machines, warrant further explo-
ration.

Supplementary Data
Supplementary data are available at Journal of Animal Science 
online.
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