Open Access

Anim Biosci 2026;00(00):250289
https://doi.org/10.5713/ab.25.0289
pISSN 2765-0189 elSSN 2765-0235

/
/ I D BIOSCIENCE

Advancing precision livestock farming: integrating artificial
intelligence and emerging technologies for sustainable livestock
management: review

L. 0. Tedeschi'*, Pablo Guarnido-Lopez', Hector M. Menendez III?, and Seongwon Seo®

* Corresponding Author: L. O. Tedeschi
Tel: +1-979-845-5062,
E-mail: luis.tedeschi@tamu.edu

' Department of Animal Science, Texas A&M
University, College Station, TX, USA

?Department of Animal Science, South
Dakota State University, Rapid City, SD, USA

8Chungnam National University, Daejeon,
Korea

ORCID

L. O. Tedeschi
https://orcid.org/0000-0003-1883-4911
Pablo Guarnido-Lopez
https://orcid.org/0000-0002-5013-0888
Hector M. Menendez IlI
https://orcid.org/0000-0001-9092-7237
Seongwon Seo
https://orcid.org/0000-0002-4131-0545

Submitted Apr 24, 2025; Revised Jul 7, 2025;
Accepted Jul 17,2025

Abstract: Precision Livestock Farming (PLF) has evolved dramatically from basic moni-
toring systems to sophisticated artificial intelligence (AI)-driven decision support systems
that enhance livestock management efficiency, sustainability, and animal welfare. This re-
view examines the technological evolution of PLF since 2017, highlighting significant ad-
vancements in sensing technologies, computer vision, and Al. Non-invasive technologies,
including red-green-blue and depth cameras, 3D imaging systems, and Internet of Things-
enabled platforms, now capture detailed biometric and behavioral data in real time, while
Al algorithms enable early disease detection, optimize feeding strategies, and improve re-
productive management. Integrating these technologies with mechanistic models has cre-
ated hybrid intelligent frameworks that address longstanding challenges in precision nutri-
tion modeling. Future PLF development will likely focus on integrating large language
models, adopting federated learning approaches to address data privacy concerns, and de-
mocratizing technologies for small-scale producers. Despite technological progress, chal-
lenges remain regarding data standardization, connectivity in rural environments, high
implementation costs, and ethical considerations around increased animal monitoring. By
fostering interdisciplinary collaboration among animal scientists, engineers, computer sci-
entists, and social scientists, PLF can continue to drive sustainable and efficient practices in

livestock production while ensuring that technologies complement rather than replace tra-
ditional husbandry knowledge.

Keywords: Animal Monitoring; Decision Support Systems; Hybrid Intelligent Mechanistic
Models; Precision Nutrition; Smart Livestock Farming; Sustainable Livestock Management

INTRODUCTION

The concept of Precision Livestock Farming (PLF) emerged as a framework to enhance
livestock management through the use of advanced monitoring technologies, with early
contributions from researchers such as Daniel Berckmans [1]. PLF emphasizes a “per ani-
mal” approach, where sensor technologies, artificial intelligence (AI), and big data analytics
enable real-time monitoring and precise management of individual animals. This data-driv-
en approach optimizes health, welfare, and productivity, moving beyond traditional herd-
level management to tailor decision-making to each animal’s unique needs [2]. This foun-
dational work laid the groundwork for integrating PLF into broader frameworks such as
Smart Livestock Farming (SLF), which expands PLF’s capabilities by incorporating Internet
of Things (IoT)-enabled platforms, cloud computing, and machine learning (ML)-based
decision-support systems (DSS). While often discussed together in modern agricultural lit-
erature, PLF and SLF are distinct yet complementary approaches that share common goals,
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with SLF representing an evolution that incorporates PLF
methodologies within a broader and more automated techno-
logical ecosystem. Together, PLF and SLF are designed to en-
hance individual animal management while addressing press-
ing industry challenges such as environmental sustainability,
animal welfare, and resource-use efficiency [3,4].

The evolution of PLF has been extensively documented,
with Berckmans’ book Advances in PLF [5] providing a com-
prehensive review of recent progress. The transformative po-
tential of PLF technologies spans across many fields, enabling
the creation of climate-smart livestock systems that address
critical issues such as disease prevention, improved feed effi-
ciency, and reduced environmental impact. Key advance-
ments in on-animal sensors, thermal imaging, machine vi-
sion, and acoustic monitoring have enabled early detection of
health concerns such as mastitis, lameness, fertility disorders,
and metabolic diseases [6]. Additionally, automated feeding
systems, real-time grazing management, and Al-driven milk-
ing technologies have enhanced livestock productivity and
welfare, making modern PLF more scalable and accessible [7].
In particular, rumen biosensors, which use potentiometric
and ion-sensitive field-effect transistor (ISFET) technologies,
have allowed automated continuous monitoring of ruminal
pH, temperature, and possibly volatile fatty acid concentra-
tions, enabling precise metabolic tracking [8,9].

Since these foundational contributions, technological ad-
vancements have continued to reshape PLE A significant shift
has changed not only since the initial conceptualizations but
also since our literature review in 2017 [10]. The rise of Al,
particularly large language models (LLM), has made complex
data interpretation more accessible, transforming PLF from a
passive monitoring tool into an intelligent, predictive DSS. AI-
powered convolutional neural networks (CNN) and recurrent
neural networks (RNN) are now capable of detecting subtle
deviations in animal behavior, feeding patterns, and move-
ment through motion-tracking techniques (i.e., video), en-
abling early disease detection before clinical symptoms appear
[11,12]. Similarly, sensor technologies have become more pre-
cise, affordable, and diverse, enabling broader adoption across
different scales of livestock production. Integrating these tech-
nologies has elevated PLF and SLF into critical components of
modern livestock systems, enhancing productivity while ad-
dressing animal welfare and environmental sustainability.

While PLF and SLF represent significant advancements in
livestock management, their adoption does not inherently
guarantee sustainability across environmental, economic, or
social dimensions. Sustainability is a multifaceted concept re-
quiring careful consideration of the complex interactions
within production systems [13]. Implementing PLF may lead
to environmental benefits, such as improved resource effi-
ciency and reduced methane emissions, but it also entails sig-
nificant economic costs associated with technology adoption
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and maintenance. Moreover, integrating such advanced tech-
nologies could disrupt social sustainability, potentially mar-
ginalizing smallholder farmers or those unable to afford these
innovations. Thus, while PLF offers a promising pathway to-
ward sustainability, it must be coupled with strategies to en-
sure its benefits are equitably distributed, its costs are manage-
able, and its adoption does not inadvertently exacerbate exist-
ing disparities in the livestock sector. These considerations
underline the importance of a systems approach in evaluating
the broader implications of PLF within diverse production
contexts.

This review builds on our earlier work and incorporates
insights from recent developments in PLE, particularly in
sensing technologies, computer vision (CV), and AL We also
discuss the evolution of PLF technology, ethical consider-
ations, and limitations, provide context for linking these ad-
vancements with practical applications, and outline future re-
search directions to address ongoing challenges in livestock
production systems.

THE EVOLUTION OF PRECISION LIVE-
STOCK FARMING TECHNOLOGIES

The PLF has evolved from basic monitoring systems to so-
phisticated Al-driven DSS, enhancing livestock management
efficiency, sustainability, and animal welfare. Figure 1 presents
a comprehensive evolution of PLF technologies representing a
remarkable journey spanning three decades, with significant
transformations in capability, accessibility, and implementa-
tion. A comprehensive visualization of this evolution reveals
the interrelationship between three critical dimensions—ac-
curacy, user-friendliness, and cost—providing valuable in-
sights into adoption patterns and technological progression.

Historical development and technical evolution

Initially, PLF relied on electronic identification (EID), wear-
able sensors, and automated milking systems to track animal
health and productivity [2]. These foundational technologies
from the early 1990s established the first generation of preci-
sion management tools, with radio-frequency identification
(RFID) systems showing moderate accuracy (approximately
0.84) but high user-friendliness ratings, as indicated by their
widespread adoption. The mid-2000s marked a significant
advancement with the introduction of rumen bolus sensors
and automated milking systems, which improved data collec-
tion capabilities but required substantial investment. By the
2010s, the rise of Al, IoT-based remote monitoring, and CV-
enabled real-time detection of feeding behaviors, lameness,
and disease outbreaks [14]. This period also saw the emer-
gence of blockchain technology and advanced IoT applica-
tions, expanding the scope of PLF beyond individual animal
monitoring to encompass entire production systems. In 2017,
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Figure 1. Evolution of precision livestock farming technologies (1992-2025) regarding their perceived relative accuracy, user-friendliness, and
cost towards improving precision animal nutrition. EID, electronic identification; RFID, radio-frequency identification; BW, body weight; ML, ma-
chine learning; CV, computer vision; UAV, unpersoned aerial vehicle; Al, artificial intelligence; DSS, decision support systems.

PLF systems primarily relied on wearable sensors to measure
parameters such as body weight (BW), milk yield, and behav-
ioral metrics like feeding and rumination patterns. These sys-
tems laid the groundwork for precision management but were
often constrained by the need for manual data collection and
interpretation [15,16]. The graphical sketch in Figure 1 con-
firms this assessment, showing wearable technologies with
improved accuracy (0.85-0.90) compared to earlier systems
but with varying degrees of user-friendliness. While not di-
rectly comparable to earlier systems, such as RFID weight
scales, which serve different functions, wearable systems still
reflect an overall trend toward improved precision in sensor
technologies, albeit with varying degrees of user-friendliness.

Recent advancements and the current state

Over the past few years, non-invasive technologies have
emerged as the new standard. Red-green-blue and depth
(RGB-D) cameras and 3D imaging systems now capture de-
tailed biometric and behavioral data in real-time, eliminating
many of the limitations of earlier tools [6]. As depicted in Fig-
ure 1, CV systems show perceived high accuracy ratings
(0.93-0.94) with moderate user-friendliness (i.e., 3 thumbs-
up), representing a technological leap while maintaining ac-
cessibility. Advancements in rumen biosensors, such as poten-
tiometric and ISFET-based pH sensors [17], have significantly
improved the precision of monitoring key metabolic parame-
ters like pH and temperature [18]. Han et al [8] discuss how
these sensors leverage low-power, wide-range wireless com-

munication technologies, such as low-power, long-range wide
area network (LoRaWAN), to enable real-time data transmis-
sion, paving the way for more accessible and scalable PLF ap-
plications. Integrating IoT devices with cloud-based analytics
platforms has revolutionized data acquisition, making real-
time decision-making possible. This advancement is support-
ed by Al-powered ML or deep learning algorithms (e.g.,
CNN, RNN, YOLO-based) that can now forecast disease out-
breaks and detect subclinical health issues before they mani-
fest [19,20]. Our visualization shown in Figure 1 assigns these
technologies the highest accuracy ratings (0.95-0.99) in the
PLF domain [21-23], though with varying levels of user-
friendliness and implementation cost [24,25]. While CV sys-
tems exhibit high visual detection accuracy, integrated ML-
DSS leverage multimodal data, including CV, biosensor, and
environmental input, resulting in superior accuracy (0.95-
0.99) for complex predictive tasks such as early disease fore-
casting. When evaluating ML and Al-assisted DSS systems in
livestock management, several critical considerations must be
carefully weighed beyond the impressive accuracy metrics
displayed in the visualization. These systems often demon-
strate high performance within controlled evaluation environ-
ments using carefully curated datasets that may not fully rep-
resent real-world farm operations’ complex, dynamic condi-
tions. The black-box nature of many sophisticated ML models
creates a fundamental tension between accuracy and explain-
ability, potentially undermining farmer trust despite technical
excellence. Additionally, these systems exhibit significant data
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dependency, where performance can degrade substantially
when deployed in environments with characteristics different
from those of their training data. This highlights the impor-
tance of comprehensive validation across diverse operational
contexts and seasons before drawing definitive conclusions
about their superiority over other technologies like CV sys-
tems, which may offer better robustness despite slightly lower
benchmark accuracy scores.

Adoption considerations and barriers
Despite technological advancement, user-friendliness has not
necessarily improved at the same rate as accuracy, with some
newer technologies presenting significant learning curves for
farmers. Research by Silvi et al [26], who surveyed 378 Brazil-
ian dairy farms, found that farmers rated “user-friendliness”
as the third most important factor (4.39 out of 5) in technolo-
gy adoption decisions, following only “available technical sup-
port” (4.55) and “return on investment” (4.48). The visualiza-
tion’s color-coding for cost (green for affordable, yellow for
moderate, and red for expensive) in Figure 1 reveals that the
most advanced technologies generally entail higher imple-
mentation costs. Automated milking systems, blockchain ap-
plications, drone monitoring, and robotic herd management
fall into the expensive category, potentially limiting their
adoption despite their superior accuracy. Silvi et al [26] con-
firmed this cost barrier, finding that the most frequent reason
farmers cited for not investing in precision technologies was
“the need for investment in other sectors of the farm” (36%),
followed by “uncertainty of return-on-investment” (24%).
Practical implementations of PLF and SLF demonstrate
how these technologies can contribute to sustainability across
environmental, economic, and operational domains. Environ-
mentally, PLF has been shown to enhance resource efficiency,
optimize feeding strategies, and lower methane emissions
through improved monitoring and data-driven decision-
making [18]. In the feedlot, PLF can minimize environmental
impact while increasing profitability through real-time moni-
toring of livestock health, behavior, and performance while
supporting greenhouse gas reduction, resource optimization,
and improved animal welfare by implementing advanced feed
management, environmental monitoring, individualized feed-
ing protocols, early disease detection, and waste management
solutions—ultimately supporting more sustainable feedyard
operations [27]. In addition, satellite-integrated grazing sys-
tems, combined with on-ground IoT sensors, enable adaptive
grazing strategies, reducing overgrazing and soil degradation
[28-32]. However, according to the economic viability, tech-
nology adoption and maintenance costs pose challenges, par-
ticularly for smallholder farmers or operations with limited fi-
nancial resources [8]. Public-private partnerships and govern-
ment incentives have been proposed to lower economic barri-
ers to PLF adoption [33]. Therefore, one of the main points of
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improvement is the affordability of new technologies by small-
scale farmers and ranchers.

Regarding ethical and social implications, research sug-
gests that balancing real-time monitoring with animal well-
being is crucial. Automated behavior analysis, using Al-driven
metrics such as heart rate variability, lying time, and feeding
patterns, could ensure that PLF systems align with welfare
standards rather than disrupt natural behaviors [3]. The inte-
gration of Al-driven monitoring raises ethical concerns re-
garding constant surveillance. Continuous tracking of physio-
logical and behavioral parameters could potentially induce
stress in animals if not implemented with animal welfare con-
siderations in mind; therefore, all the new emergent technolo-
gies should consider this point, maybe replacing wearable
sensors (such as big collars) with other non-wearable or non-
invasive devices, such as cameras [34]. Also, some argue that
PLF adoption may weaken the human-animal bond, nega-
tively affecting animal welfare [35]. As farmers increasingly
rely on sensors and robots, opportunities to observe, touch,
and emotionally connect with animals inevitably decrease.
This may lead to a tendency to regard animals merely as com-
modities for food production. A lack of regular human inter-
action can make human presence a source of animal stress.
Conversely, for farmers, reduced contact with animals limits
their ability to understand animal physiology and behavior
better. Moreover, since PLF systems heavily depend on elec-
tronic devices, power outages or equipment malfunctions
could result in prolonged distress or harm to the animals.

APPLICATIONS OF PRECISION LIVE-
STOCK FARMING IN LIVESTOCK SYS-
TEMS

Predicting feed intake and feeding behavior

Feed intake is a critical variable for livestock management, in-
fluencing both productivity and environmental impact. Tradi-
tional methods of measuring dry matter intake (DMI) often
relied on manually weighing feed, which was labor-intensive,
prone to human error, and time-consuming. Recent advance-
ments in CV systems have transformed this process. RGB-D
cameras can now analyze feed mass and volume changes,
while AT models interpret behaviors such as chewing and bit-
ing patterns to estimate individual feed intake with remark-
able accuracy [11]. For example, studies using CNN have re-
ported mean absolute errors as low as 0.1 kg for DMI predic-
tions [36]. Most of the CV algorithms used to predict DMI
analyze feed disappearance rates by tracking changes in feed
volume and mass; however, new real-time algorithms can
track the individual feeding duration, bite rate, and rumina-
tion patterns [37] for personalized feeding programs tailored
to individual animal needs. In addition, these AI-powered
early warning systems alert producers to abnormal feeding
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behaviors, allowing rapid intervention in cases of illness or
stress [38].

The main issue with these algorithms is that they often rely
on estimated ingestion time, which can be misrepresented.
For instance, ingestion time is commonly recorded as the in-
terval between the animal’s arrival and departure from the
feeder, although animals may remain at the feeder without ac-
tively ingesting. While recent ML techniques aim to correct
this by detecting feeding activity based on weight changes in
the feeder, the accuracy of feed intake prediction still varies.
Davison et al [39] showed that despite corrections for BW and
dietary characteristics (e.g., moisture, energy, and fiber), pre-
diction performance remains modest for practical application.
However, a consensus is emerging that incorporating dietary
parameters into the models significantly enhances prediction
accuracy [40]. Feeding behavior traits—such as ingestion
time, bite rate, and jaw movement—also improve model per-
formance. For instance, Ding et al [41] estimated individual
feed intake based on jaw movement using a triaxial acceler-
ometer and reported high accuracy (R* = 0.97 with root mean
square error [RMSE] = 0.36). However, it is important to note
that many reported high-accuracy values are obtained under
controlled experimental conditions or with limited datasets,
and often fail to generalize to diverse commercial environ-
ments. As emphasized in some studies [42,43], the accuracy
of ML models depends heavily on the similarity between
training and testing data, underscoring the need for indepen-
dent validation across broader production systems.

Estimating body weight and body condition score
Accurate estimation of BW and body condition score (BCS) is
essential for evaluating animal health, productivity, and wel-
fare. Modern CV-based PLF solutions have made it possible
to non-invasively estimate BW and BCS with remarkable ac-
curacy [44]. Correlation coefficients exceeding 0.9 have been
reported in several studies [6]. These technologies allow pro-
ducers to monitor BW and BCS non-invasively, reducing ani-
mal stress and labor demands. This level of accuracy has been
possible thanks to the new advanced RGB-D cameras and ML
models extracting body contour data to accurately estimate
BCS without human intervention. In addition, IoT-connected
to AI models enable accurate real-time weight monitoring in
cattle [45]. Determining both the BW and the BCS of animals
was one of the first objectives of the new ML algorithms [46];
therefore, the performance acquired is already high, but there
is room for improvement. In this sense, the next step is to pre-
dict individual BW of non-confined animals. Some drone-
based or unpersonned aerial vehicles (UAV)-assisted works
have already been developed to estimate the BW of cattle in
the pasture [47-49]. This shows the vast emerging potential of
CV algorithms coupled with drones and other devices allow-
ing them to track animals on grazing conditions.

/
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Management of reproduction

Precision technologies have been used in reproduction for
livestock production to increase fertility by precise estrus de-
tection, execution of artificial insemination, assessment of
BCS before breeding, regulation of the voluntary waiting peri-
od, and monitoring of calving rates along with associated
complications [50-52]. Among all these actions where preci-
sion technologies have been used, efficient estrus detection is
a critical component of reproductive management in dairy
and beef cattle systems. It represents the first point before all
posterior reproductive treatments, such as synchronization or
artificial insemination [53]. The ability to accurately identify
cows in estrus directly influences conception rates, calving in-
tervals, and overall reproductive efficiency. Traditional meth-
ods, such as visual observation of estrus signs (e.g., standing
heat, increased activity, and vocalization), are labor-intensive
and have limited accuracy due to the increasing prevalence of
silent heat in high-yielding dairy cows [54]. As a result, PLF
technologies have emerged as reliable solutions for automat-
ing estrus detection through continuous and objective moni-
toring of animal behavior, physiological parameters, and hor-
monal changes.

One of the most widely used technologies for estrus detec-
tion involves wearable sensors that measure cow movement
and activity levels. Studies have demonstrated that cows in es-
trus exhibit a 2- to 4-fold increase in movement, including
restlessness, walking, and mounting behavior [55]. Devices
such as pedometers, accelerometers, and gyroscopes integrat-
ed into collars, ear tags, or leg-mounted sensors detect these
behavioral changes. Several studies demonstrated how collars
[56] and accelerometers [57] can be used to determine estrus
and link it with some nutritional aspects. Estrus affects physi-
cal activity and alters feeding and rumination patterns due to
increased restlessness. Studies show that cows reduce their ru-
mination time by 10% to 30% before estrus onset, which can
be detected using bolus sensors, jaw movement monitors, or
integrated smart collars [58].

Systems such as SCR tag (cSense Flex tag, SCR Engineers)
and CowManager (Agis Automatisering) analyze changes in
feeding behavior, improving estrus detection when combined
with activity data. ReithandHoy [57] found that integrating
rumination data with activity sensors increased estrus detec-
tion accuracy from 85% to 95%, while Pahl et al [58] showed
that a 30% drop in rumination was a strong predictor of estrus
when used in combination with motion-based estrus detec-
tion. Brehme et al [59] showed how temperature fluctuations
24 h pre-estrus measured through vaginal and intra-ruminal
temperature sensors were reliable predictors of ovulation, with
an accuracy exceeding 85%. Recent advances in CV and ML
are being integrated into estrus detection systems. Al-pow-
ered video analysis detects mounting behavior, tail-raising,
and vulvar swelling, improving estrus detection in large-scale

www.animbiosci.org 5



Anim Biosci 2026;00(00):250289

operations, but can also detect changes in vocalization fre-
quency during estrus when associated with ML-based sound
analysis [60,61].

Health monitoring and early disease detection
Health monitoring has also seen significant advancements,
mainly through integrating AT with thermal and RGB-D im-
aging systems. For instance, thermal imaging combined with
YOLO algorithms has achieved over 87% accuracy in detect-
ing mastitis [62]. Mastitis is one of the most common and
costly diseases in dairy cattle, and early detection through
thermal imaging helps reduce antibiotic usage, improve milk
quality, and enhance overall herd welfare. Multiple studies
have validated this method, such as Sejian et al [63], who
demonstrated how ML algorithms trained on infrared data
can distinguish infected udders with higher precision than
manual inspections. Furthermore, Al-based imaging can de-
tect other inflammatory conditions, such as foot rot and lame-
ness, providing a broader scope of disease prevention through
non-invasive temperature monitoring [64]. Regarding tem-
perature analysis, other studies utilized deep learning and
neural networks to prevent heat stress in livestock [65,66].
Another key development in AI-powered disease monitor-
ing is the detection of bovine respiratory disease (BRD), a
leading cause of morbidity and mortality in beef cattle. AI-
based thermal analysis of nasal temperatures and breathing
patterns has allowed researchers to identify abnormal respira-
tory rates that signal early-stage BRD, often days before clini-
cal symptoms appear [19]. A study by Ghassemi Nejad et al
[67] confirmed that thermal imaging cameras placed near
feeding areas can continuously track nasal heat fluctuations,
providing early warning alerts to farm managers. The ability
to diagnose subclinical respiratory issues before visible distress
develops significantly improves treatment outcomes, reduces
disease transmission, and lowers economic losses due to
BRD-related fatalities [68]. These tools are transforming ani-
mal health management by shifting the focus from reactive to
proactive care, minimizing the excessive use of antibiotics.
Beyond external imaging, wearable and ingestible sensor
technologies have transformed internal health monitoring in
cattle. Rumen sensors, particularly those designed for contin-
uous monitoring of ruminal pH and motility, have played a
crucial role in the early detection of digestive disorders, espe-
cially since incorporating new ML techniques to analyze the
output data [69]. The rumen is the central organ in cattle fer-
mentative processes, and imbalances in pH levels can indicate
conditions such as subacute ruminal acidosis (SARA), bloat,
and metabolic inefficiencies. Several studies [18,70] demon-
strated that wireless telemetry systems tracking pH fluctua-
tions provide real-time insights into rumen function, helping
farmers optimize feeding strategies and prevent metabolic
diseases. These systems are particularly effective in precision
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feeding, where AT models adjust dietary compositions based
on real-time pH fluctuations, ensuring optimal microbial fer-
mentation and nutrient absorption. Phillips et al [71] demon-
strated the effectiveness of wireless telemetry systems in track-
ing ruminal pH, highlighting their potential in monitoring
SARA over extended periods.

Nonetheless, ruminal pH boluses face several critical per-
formance limitations that might impair their reliability as di-
agnostic tools in ruminant nutrition. Electrochemical pH
sensors are particularly susceptible to biofouling from protein-
rich diets, as proteins readily adsorb to sensor surfaces
through hydrophobic interactions and electronic attraction,
creating interference layers that compromise signal detection
and accuracy [72]. This protein-induced biofouling might be
especially problematic in ruminants fed high-concentrate or
high-protein diets. Additionally, substantial sensor drift over
time presents another significant challenge, with observed
drift patterns requiring frequent recalibration to maintain
measurement accuracy [18,73]. Despite manufacturer claims
of extended operational lifespans, research consistently dem-
onstrates that these devices practical pH monitoring capabili-
ties typically deteriorate after approximately 80-90 days of de-
ployment, significantly shorter than the often advertised 150+
days of functionality [8]. Despite these limitations, ruminal
pH monitoring systems have shown transformative potential
for continuous rumen surveillance. Recent advancements in
wireless telemetry and sensor design, such as low-power elec-
tronics, improved coating materials, and more robust signal
calibration, could help mitigate issues like sensor drift and bi-
ofouling, while extending battery life and enhancing data
transmission. As such, these technologies remain a promising
tool for commercial livestock systems, provided that future it-
erations continue to address the practical challenges associat-
ed with long-term deployment under diverse dietary and en-
vironmental conditions.

Our research has extensively used rumen sensors to ana-
lyze the area and time above and under the curve to detect ab-
normal ruminal pH patterns that might lead to SARA [74-
78]. The area and time under the pH-time curve [130] and re-
dox potential can provide key insights into fermentation dy-
namics and microbial activity. Such metrics aid in the early
detection of SARA and enable precise adjustments in dietary
formulations to optimize microbial efficiency, supporting sus-
tainable livestock systems. However, one major challenge in
widely adopting ruminal pH sensors has been long-term cali-
bration accuracy and sensor costs. As mentioned above, Neu-
bauer et al [73] highlighted that indwelling pH sensors suffer
from signal drift, requiring frequent recalibration to maintain
precision. To address this issue, recent advancements (not re-
lated to livestock science) in self-calibrating sensor technolo-
gies have introduced AI-driven automatic recalibration
mechanisms, significantly improving data reliability for long-
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term applications [79].

While these Al-enabled adjustments improve technical
performance, they also introduce a new layer of complexity:
the raw pH data are often processed through proprietary al-
gorithms managed by third-party service providers. As a re-
sult, the end-user typically receives only interpreted outputs
rather than access to the raw sensor readings or the details of
the data transformation pipeline [80]. This “black box” sce-
nario limits transparency and prevents independent valida-
tion of physiologically meaningful patterns, raising concerns
about data ownership, reliability, and the long-term sustain-
ability of such systems. If commercial providers discontinue
services or restrict access through licensing models, the prac-
tical application of these technologies in both research and
production settings could be compromised [80].

Additionally, Han et al [8] emphasized the scalability of
LoRaWAN technology, which facilitates seamless data trans-
mission in both large-scale and smallholder farms. This inno-
vation significantly enhances the accessibility of advanced
sensor systems. Han et al [8] also highlighted the importance
of integrating rumen motility and temperature sensors with
pH sensors. These combined datasets improve diagnostic ac-
curacy and provide actionable insights for managing critical
conditions such as ruminal tympany, displaced abomasum,
and mastitis. By leveraging multiple sensor parameters, these
integrated systems empower producers to make timely, data-
driven decisions, improving both animal welfare and produc-
tion efficiency, as long as battery life is improved. The ad-
vancements in Al-driven cattle health monitoring extend be-
yond disease detection, influencing overall herd management
strategies. For instance, Al-based estrus detection systems
have enhanced reproductive efficiency by accurately identify-
ing heat cycles in cows through motion tracking, temperature
variations, and behavioral analysis [40]. These automated
monitoring tools eliminate the need for manual estrus detec-
tion, reducing missed breeding opportunities and optimizing
artificial insemination schedules. Similarly, CV algorithms
combined with wearable accelerometers are being used to de-
tect early signs of lameness and locomotion disorders, ensur-
ing timely intervention and reducing culling rates in dairy op-
erations [81].

Finally, as AI-powered biosensors, imaging tools, and deep
learning models continue to evolve, the future of precision
livestock health management is shifting toward fully autono-
mous, predictive healthcare systems. Al-driven platforms are
increasingly capable of analyzing multi-source sensor data,
forecasting disease risks, and recommending real-time pre-
ventative actions. Research by Fuentes-Penailillo et al [82]
suggests that integrating blockchain-based Al systems could
further enhance data security and traceability in livestock
health monitoring, ensuring greater transparency in disease
management and food safety regulations. The widespread
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adoption of Al-driven health monitoring systems transforms
modern cattle farming by providing earlier disease detection,
reducing reliance on antibiotics, enhancing overall herd pro-
ductivity, and making the veterinary profession in livestock
easier [83]. These innovations ensure a shift toward sustain-
able, efficient, and welfare-conscious livestock production,
paving the way for precision agriculture and data-driven ani-
mal health management.

PRECISION NUTRITION MODELING IN
LIVESTOCK SYSTEMS

Precision nutrition modeling represents a transformative ap-
proach to livestock management, leveraging advanced tech-
nologies and computational methods to optimize animal nu-
trition at the individual level. This section explores the evolu-
tion of nutrition modeling from population-based approaches
to personalized feeding strategies, examining the integration
of sensors with mechanistic models, hybrid modeling ap-
proaches, data-driven methodologies, DSS, and future direc-
tions in this rapidly evolving field.

Integration of mechanistic models with precision
livestock farming technologies

The incorporation of Al into PLF represents a paradigm shift
in livestock management. Neural networks, particularly CNN
and RNN, excel at extracting meaningful patterns from com-
plex datasets, making them invaluable for image classification,
object detection, and segmentation tasks. Some CV algo-
rithms have proven particularly effective in automating labor-
intensive processes, from tracking feeding behavior to identi-
tying early signs of disease [6]. Table 1 summarizes some of
the most relevant livestock-related work in AI. These Al capa-
bilities have particular relevance for precision nutrition mod-
eling, where individual animal feeding behavior and metabol-
ic responses must be accurately monitored and predicted.

Recent advances in miniaturized, low-power sensors have
dramatically expanded the physiological parameters that can
be monitored in real-time. Modern sensing technologies de-
ployed in livestock systems can monitor various parameters,
including feeding behavior, physiological status, and move-
ment patterns, through IoT devices that collect real-time data
[84,85]. When coupled with advanced nutrition models, these
sensors allow for real-time dietary adjustments that optimize
rumen function on an individual animal basis. Such continu-
ous monitoring capabilities represent a significant advance
over traditional methods that rely on periodic sampling and
population averages.

Traditional nutrition models, such as those published by
the National Academies of Sciences, Engineering, and Medi-
cine (NASEM), provide valuable frameworks but often rely on
population averages rather than individual animal character-
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Table 1. Summary table of artificial intelligence (Al) applications and key technologies utilized in cattle production

Al application Key technologies Purposes References
CV in livestock CNN (YOLO, ResNet), biometric facial recogni- ~ Automates tracking of feeding behavior, [6,121,122]
tion, loT-Based Monitoring weight estimation, and disease detection

Al and hybrid models for Hybrid Al+mechanistic models, predictive Al for Improvement of feed efficiency, prediction [93,123]
predictive analytics feed optimization, LSTM for disease detection  of disease onset, and reduction of nutrient

wastes
Al for livestock behavior anal- Attention-based deep learning, CNN+transform- Enhancement of stress detection, monitoring [124-126]
ysis er models for behavior tracking social interactions, and predicting behavioral

patterns
Al'in reproduction and preci- RNN-based estrus detection, Al+accelerometer Increase accuracy in estrus detection, im- [127,128]
sion breeding data for reproductive management prove calving intervals, and enhance breeding

success
Al for sustainable and auton-  Al-driven DSS, Al-powered drones for free-range Reduction of labor costs, optimization of [129]

omous PLF livestock monitoring

resource allocation, and enabling autonomous
farm management

CV, computer vision; CNN, convolutional neural network; loT, internet of things; LSTM, long short-term memory; RNN, recurrent neural network; PLF,

precision livestock farming; DSS, decision support systems.

istics. Integrating real-time data from PLF technologies with
mechanistic nutrition modeling [86-89] represents a signifi-
cant paradigm shift, moving from generalized recommenda-
tions toward individualized, dynamic nutritional manage-
ment that fuses data with pre-established concepts and viscer-
al understandings of scientific knowledge.

The advancement of Al has transformed nutrition model-
ing from passive monitoring into intelligent, predictive DSS.
Neural networks can detect subtle deviations in animal be-
havior, feeding patterns, and movement, enabling early detec-
tion of metabolic changes before clinical symptoms appear.
Alonso et al [84] developed an intelligent edge-IoT platform
for monitoring livestock and crops in a dairy farming scenario
that demonstrated how these technologies could be integrated
to provide real-time decision support. This real-time monitor-
ing capability has profound implications for precision nutri-
tion models, allowing for dynamic adjustment of feeding
strategies based on individual animal responses rather than
population averages. For instance, Pomar et al [90] developed
a system where some “smart” technologies measured the DMI
of growing pigs, calculating daily energy and protein require-
ments and predicting these requirements for the following
days (i.e., forecasting). After this, a smart feeder distributes the
ration according to individual needs daily, increasing feed ef-
ficiency by reducing feeding costs and decreasing nitrogen ex-
cretion [91]. Through new PLF technologies, such as the elec-
tronic weight scale and the smart feeders, it is possible to esti-
mate animal requirements and, posteriorly, considering ob-
served intake, estimate the energy and protein concentration
required in the diet (Figure 2). Like our concept shown in Fig-
ure 2, Awasthi et al [92] developed an ML simulation model
to predict average daily gain (ADG) in pasture-based beef cat-
tle using autonomously collected walk-over weights. An XG-
Boost model was trained on cleaned data incorporating age,
sex, breed, and weather conditions. The model successfully

simulated ADG, showing strong agreement with observed
values. The mean difference between simulated and measured
BW was —1.2 kg with a standard deviation of 27.3 kg. The
ADG patterns were realistically reproduced, supporting the
models utility for herd growth monitoring and management
decision-making. In summary, PLF technologies will be a key
part of providing individual on-farm data from animals, and
this data will feed the database, which through mechanistic
models will provide information (e.g., predictions, require-
ments, early warnings), helping the decision-making process
in animal production of cattle farmers and improve their effi-
ciency and sustainability.

Hybrid intelligent mechanistic models for nutrition

Developing hybrid intelligent mechanistic models (HIMM,
[93,97]) represents the cutting edge of precision nutrition
modeling. Combining AI with mechanistic models has
opened new frontiers in predictive analytics. While mechanis-
tic models excel at simulating livestock responses under con-
trolled conditions, they often lack the flexibility to account for
real-world variability. Hybrid models that integrate data-driv-
en insights from AI with mechanistic frameworks bridge this
gap, providing robust tools for optimizing livestock perfor-
mance and resource use. These hybrid approaches can address
longstanding challenges in nutrition modeling, such as the
difficult-to-measure parameters that have traditionally limited
model accuracy. Thus, combining AI with mathematical
models has led to hybrid frameworks capable of predicting
livestock responses to dietary changes, optimizing feed effi-
ciency while reducing nutrient waste [93]. For example, pas-
sage rate has been identified by Allen [94] as perhaps the most
significant limiting factor in predicting nutrient digestibility in
the rumen. HIMM can address this challenge through two
approaches: (1) embedding AI within mechanistic models to
predict variables such as passage rates that are affected by
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Figure 2. Diagram showing the integration of precision livestock farming technologies with artificial intelligence and mechanistic modeling to in-
crease feed efficiency through precision nutrition techniques. DMI, dry matter intake; BW, body weight; ADG, average daily gain.

multiple factors, or (2) embedding mechanistic models within
neural networks to strengthen Al predictions with bio-physi-
cochemical foundations.

The concept of “digital twins” for dairy cows has emerged
as an innovative application of hybrid modeling approaches.
Neethirajan and Kemp [95] describe digital twins as digital
replicas of real-world entities that simulate physical and bio-
logical states based on input data, helping with prediction, op-
timization, and decision-making. These virtual representa-
tions combine sensor data with mechanistic nutrition models
to simulate different dietary scenarios before implementation,
allowing for personalized feeding strategies that account for
individual variations in metabolism, production stage, and
health status. This approach demonstrates how hybrid models
can bridge the gap between theoretical nutrition science and
practical farm implementation.

Validation of HIMM presents unique challenges due to
their hybrid nature. Traditional statistical validation metrics
may not fully capture model performance across the condi-
tions encountered in commercial livestock operations. Fur-
thermore, with the increasing availability of big data, the as-
sumptions underpinning classical statistical inference may no
longer be valid [131]. In large datasets, even trivial effects can
become statistically significant, potentially leading to overfit-
ting or spurious conclusions, thereby necessitating new vali-
dation paradigms tailored to complex, high-dimensional data.
Research in digital twin implementations for livestock sug-
gests that multi-level validation frameworks are needed to as-

sess both predictive accuracy and biological plausibility
through independent datasets and expert evaluation [96].
Such approaches emphasize the importance of validating out-
put predictions and intermediate mechanistic variables to en-
sure the model correctly represents the underlying biological
processes.

Data-driven approaches to enhance mechanistic
nutrition models

The emergence of data analytics has evolved through multiple
stages, from basic descriptive analytics to predictive and pre-
scriptive analytics and ultimately to smart learning systems.
These increasingly sophisticated approaches move from sim-
ply collecting and responding to data to predicting and pre-
scribing actions and finally to smart learning and policy mak-
ing [97].

In nutrition modeling, data-driven approaches have been
particularly valuable for addressing variables that are difficult
to measure directly. For example, research on predicting DMI
has shown that adding dietary parameters to ML models sig-
nificantly increases prediction accuracy. Similarly, Ding et al
[41] demonstrated high accuracy (R*=0.97) in estimating in-
dividual feed intake based on jaw movement measured
through triaxial accelerometers. However, as discussed above,
independent validation using external datasets is necessary to
confirm whether such high accuracy can be consistently
achieved across diverse production systems.

The integration of non-traditional data sources has ex-
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panded the predictive capabilities of nutrition models. Recent
research by Monteiro et al [98] demonstrates how Al ap-
proaches with feature engineering and ensemble methods can
utilize rumen microbiome data to predict feed efficiency in
dairy cows. Their study showed that the rumen microbiome
plays a pivotal role in explaining variance in milk fat and pro-
tein production efficiency, potentially reducing methane
emissions by up to 37.5% through selection for better residual
feed intake. Similarly, voice analysis of livestock vocalizations
shows promise as an early indicator of metabolic stress, offer-
ing a novel data stream for precision nutrition systems.

Multi-omics approaches represent another frontier in data-
driven nutrition modeling. Fontanesi [99] highlights that me-
tabolomics provides valuable insights for livestock genomics
and phenotyping applications, allowing for identifying bio-
markers related to productive traits. Novais et al [100] applied
factor analysis and Bayesian network modeling to integrate
different omics data for studying production, carcass, and
meat quality traits in cattle, demonstrating how multi-level
data integration can reveal non-obvious relationships that ex-
ist among omics data. This multi-omics integration allows for
identifying biomarkers of metabolic efficiency that can be in-
corporated into predictive models.

These data-driven approaches do not replace traditional
mechanistic models but rather enhance them by improving
parameter estimation and expanding their predictive capabili-
ties. As Tedeschi [97] noted, “Success and failures in model
building are more related to the ability of the researcher to in-
terpret the data and understand the underlying principles and
mechanisms to formulate the correct relationship among
variables rather than profound mathematical knowledge”

Decision-support systems for precision nutrition
management

The ultimate goal of precision nutrition modeling is to devel-
op DSS that transform complex data into actionable feeding
recommendations. As Lee et al [101] demonstrated in their
groundbreaking work with ML models for metabolizable pro-
tein supply prediction, combining traditional mechanistic nu-
trition principles with advanced AI techniques can dramati-
cally improve prediction accuracy. Their research showed that
support vector regression and random forest models signifi-
cantly outperformed conventional NASEM [87] equations,
with R? values of 0.76 for microbial nitrogen and 0.60 for ru-
men-undegradable protein compared to just 0.04 and 0.27,
respectively, for traditional methods.

These DSS must balance scientific rigor with practical im-
plementation, providing clear guidance to livestock managers
while accommodating operational constraints. Modern DSS
integrate multiple data sources, including feed composition
analysis, individual animal monitoring (via sensors and CV),
environmental conditions, and economic parameters. For ru-
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minants, DSS must account for the complex interactions be-
tween dietary composition, ruminal fermentation, and meta-
bolic processes. Integrating real-time rumen monitoring data
into nutrition models allows DSS to dynamically adjust feed-
ing recommendations based on actual fermentation patterns
rather than assumptions. This creates a feedback loop where
dietary adjustments can be fine-tuned based on individual
animal responses, moving beyond the population-average ap-
proach of traditional nutrition models.

User interface considerations are critical for DSS adoption
in commercial settings. Research by Eastwood et al [102] em-
phasizes the importance of farmer-centric design approaches
for precision dairy technologies, highlighting that systems
must align with farmers’ existing practices and decision-mak-
ing processes. Similarly, Groenendaal et al [103] demonstrated
that visualization approaches that highlight economically sig-
nificant deviations from expected outcomes, rather than pre-
senting raw data, significantly improved user engagement
with nutrition decision support tools. Wolfert et al [104] fur-
ther emphasize that successful smart farming applications
must translate sophisticated data outputs into actionable in-
sights that farm managers can readily implement without spe-
cialized data science training. This human-centered design
approach represents an important advance in translating
complex modeling outputs into practical on-farm actions.

The economic value proposition of precision nutrition DSS
extends beyond feed cost savings. According to Zuidhof [105],
precision livestock feeding aims to match nutrient supply pre-
cisely with the nutrient requirements of individual animals
based on real-time feedback from sensors, providing benefits
including greater economic returns, reduced environmental
excretion, and improved resource utilization efficiency (Fig-
ure 2). Multiple studies have demonstrated improved income
over feed costs, with additional benefits in reduced veterinary
expenses due to improved metabolic health. Importantly,
farms have shown a positive return on investment within
months of implementation, with smaller operations experi-
encing longer payback periods but similar percentage im-
provements in profitability.

The development of effective DSS represents a crucial in-
tersection where sensor technology meets nutrition modeling.
Building on the advances reported by Lee et al [101], incorpo-
rating physiological parameters and real-time sensor data
within HIMM illustrates the power of combining biological
insights with Al capabilities. Such integration enables models
to retain mechanistic interpretability while achieving higher
predictive accuracy. These systems benefit from the increas-
ingly large volumes of data collected through PLF technolo-
gies, transforming them into actionable insights. HIMM offer
a promising approach to managing individual animal varia-
tion without sacrificing scientific rigor, supporting adaptive
nutrition management that dynamically adjusts to changes in
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metabolic status and environmental conditions. These sys-
tems have shown the potential to reduce feed costs by 7% to
12% and decrease nutrient waste, aligning with both econom-
ic and sustainability objectives.

By integrating sensor data with mechanistic models and Al
algorithms, precision nutrition DSS can enable adaptive feed-
ing strategies that account for individual animal requirements,
metabolic status, and environmental conditions. Such systems
optimize resource use and production efficiency and contrib-
ute significantly to environmental sustainability through re-
duced nutrient waste and improved animal welfare.

Future directions and challenges

While precision nutrition modeling offers transformative
potential, several implementation challenges remain to be ad-
dressed. Precision nutrition faces many challenges, just as oth-
er PLF technologies do, while dealing with nutrition-specific
barriers. These models must overcome technical and adoption
hurdles for effective integration into commercial livestock op-
erations. The technical challenges specific to nutrition model-
ing include the need for accurate, real-time data on feed com-
position, intake, and digestibility. Current sensors can mea-
sure intake quantity, but determining feed quality parameters
in real-time remains difficult. Additionally, the biological
complexity of rumen fermentation and nutrient metabolism
creates significant modeling challenges that require sophisti-
cated approaches combining mechanistic understanding with
data-driven insights. Integrating nutrition models with exist-
ing farm management systems represents a significant barrier
from an implementation perspective. Many producers already
use various digital tools for different aspects of farm manage-
ment, and nutrition models must interface seamlessly with
these systems to provide true value. The development of stan-
dardized data formats and application programming interface
will enable this integration and allow different technologies to
communicate effectively. Economic considerations also im-
pact adoption rates. While sophisticated nutrition modeling
can improve feed efficiency and reduce waste, the initial in-
vestment in sensors, computing infrastructure, and training
can be substantial. Future research must focus on demonstrat-
ing a clear return on investment pathways for different pro-
duction scales and systems. This includes quantifying the eco-
nomic benefits of precision nutrition beyond direct feed sav-
ings, such as improved animal health, reduced veterinary
costs, and enhanced product quality.

As precision nutrition modeling advances, the ethical di-
mensions of data collection and use will become increasingly
important. Data ownership, privacy, and security issues must
be addressed through appropriate governance frameworks
that protect farmer interests while enabling the collaborative
data sharing necessary for model improvement. Emerging
technologies like federated learning offer promising ap-
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proaches to balancing these competing concerns. The ulti-
mate success of precision nutrition modeling will depend on
its seamless integration into comprehensive livestock manage-
ment systems. Rather than functioning as a standalone tech-
nology, precision nutrition must become part of an integrated
approach that connects feeding decisions with health moni-
toring, reproduction management, and environmental impact
assessment. This holistic approach will enable truly sustain-
able livestock production systems that optimize multiple ob-
jectives simultaneously.

LIMITATIONS, OPPORTUNITIES, AND
OUTLOOK

Limitations

While the advancements in PLF are promising and potentially
transformative, several inherent challenges must be addressed
to maximize their effectiveness and to ensure equitable acces-
sibility and affordability. Key challenges include reliable con-
nectivity for data transmission, standardization of data collec-
tion to reduce variability, questions surrounding data owner-
ship, high implementation costs, the need for education and
training of the next generation of stakeholders, and ethical
concerns related to animal welfare.

One of the primary challenges lies in the real-time process-
ing and transmission of large volumes of data generated by
Al-powered monitoring systems, which demand robust com-
putational infrastructure and reliable connectivity [80]. How-
ever, in many rural or low-resource farming environments,
internet connectivity remains unstable, limiting the efficiency
of cloud-based PLF solutions. One should expect that farms
in remote areas often experience connectivity disruptions,
leading to delays in data processing and decision-making.

One persistent issue is the variability in data quality across
production environments. Factors like lighting changes, oc-
clusions from other animals, variable sensor positioning, and
camera placement can significantly impact the accuracy of
CV systems [6]. In addition, changes in lighting, occlusion
from other animals, and extreme weather conditions can re-
duce the accuracy of CV-based models [6,19,106]. Weather
fluctuations (e.g., humidity, dust, extreme temperatures) add
another wrinkle to consistency because they can impact the
performance of sensor-based monitoring systems. During
video/image processing, ML models trained on specific
breeds or production systems may not generalize well across
different geographical regions [27]. Another major obstacle in
data accuracy is caused by sensor drift and calibration issues.
For example, rumen pH sensors and temperature monitoring
devices often require frequent recalibration to maintain preci-
sion in long-term data collection. Research by Nyamuryekunge
[107] showed that non-retrievable pH sensors tend to experi-
ence signal drift over time, leading to inconsistent health

www.animbiosci.org 11



Anim Biosci 2026;00(00):250289

monitoring results. To address this, advanced self-calibrating
sensors are being developed, leveraging ML algorithms to
correct inaccuracies in real time. Additionally, training pro-
grams for farmers and livestock managers are essential to en-
sure proper calibration and maintenance protocols, thereby
improving sensor reliability in practical settings.

Another key challenge that impedes the scalability of AI-
driven PLF solutions is the lack of data standardization and
interoperability between different sensor systems. With an in-
creasing number of companies and research institutions de-
veloping PLF tools, data fragmentation has become a major
issue. Tedeschi et al [80] emphasized that many Al-powered
monitoring systems operate in isolation, using proprietary
data formats that are incompatible with other platforms. This
incompatibility limits cross-system integration and prevents
the creation of large-scale, comprehensive datasets necessary
for AT model training. To overcome this, researchers are advo-
cating for adopting open-source PLF frameworks and stan-
dardized data exchange protocols, allowing different monitor-
ing systems to communicate seamlessly. Related to this point,
data security and privacy concerns further complicate the
adoption of cloud-based Al-driven PLF technologies. Con-
cerns over unauthorized access and data misuse have emerged,
and large amounts of sensitive farm data are being collected
and stored on cloud platforms. Studies by Jiang et al [108] in-
dicate that farmers often hesitate to adopt cloud-based PLF
solutions due to concerns about ownership and third-party
access to livestock data. Blockchain-based data encryption
technologies have been proposed as a potential solution to en-
hance security and transparency, ensuring that only autho-
rized stakeholders can access farm-specific Al models.

Data ownership and security are additional issues that re-
quire attention. Adopting frameworks similar to the General
Data Protection Regulation (GDPR) in agriculture could en-
sure that producers retain control over their data while estab-
lishing standards for secure data sharing and storage across
platforms [109]. Frameworks similar to the GDPR in agricul-
ture should be established to ensure that farmers retain con-
trol over their data while allowing for secure, standardized
data sharing [108]. These regulations could prevent data mis-
use by third parties and ensure that farmers receive tangible
benefits from the AI-driven insights generated on their farms.
However, as PLF systems generate increasingly granular data,
questions about who owns this information, how it can be
protected from misuse, and how to store the data properly be-
come critical issues—and farmers and ranchers might not be
willing to bear this additional cost and responsibility.

Beyond infrastructure challenges, the financial burden of
implementing PLF technologies remains a significant barrier,
particularly for small and medium-sized farms. Some results
suggest that the high initial costs of AI-driven monitoring sys-
tems, wearable sensors, and IoT-enabled devices hinder wide-
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spread adoption [110]. To alleviate this issue, public-private
partnerships and government subsidies, similar to policies
used in renewable energy adoption, could facilitate financial
accessibility [33]. Cooperative PLF models, where multiple
smallholder farms share centralized AI-driven monitoring
systems, could also increase affordability and optimize re-
source utilization.

Beyond technological limitations, cultural and educational
barriers are crucial in determining the adoption rate of Al-
based PLF systems. Livestock producers lack the technical ex-
pertise to interpret Al-driven data analytics, reducing the us-
ability of real-time health monitoring tools [111]. Addressing
this gap requires comprehensive training programs, user-
friendly AI dashboards, and real-time DSS that simplify com-
plex data outputs into actionable insights. Therefore, educa-
tion in mathematics and statistics and basic notions about ML
and Al potentially benefit undergraduate and graduate animal
science students in the livestock sector.

One of the most pressing ethical concerns is the increased
livestock monitoring. While Al-driven precision tools im-
prove disease detection, feeding management, and welfare
monitoring, they may inadvertently introduce animal stress if
not implemented thoughtfully. Kling-Eveillard’s [112] re-
search reveals that introducing PLF does not always degrade
the human-animal relationship. Farmers implement new
practices to familiarize animals with these technologies, dem-
onstrating adaptability in the integration process. Additionally,
farmers maintain agency in technology adoption, having
room to maneuver when using tools or equipment and choos-
ing to either entirely or partially delegate tasks to the equip-
ment based on their judgment and experience. Han et al [8]
suggest that integrating multiple parameters, such as pH, mo-
tility, and temperature, into comprehensive Al-driven DSS
could improve data utility by prioritizing actionable alerts, but
at which social price? Alarm fatigue and data overload present
significant barriers to PLF adoption. The constant stream of
sensor-generated alerts can overwhelm farm managers, lead-
ing to misinterpretation or desensitization of important alerts.
This technological burden contributes to farmers’ expressed
concerns about the potential loss of observation skills and de-
veloping dependence on PLF tools, highlighting the need for
balanced implementation that preserves traditional husband-
ry expertise while embracing technological advancement.

Opportunities

To address these challenges, future efforts should focus on de-
veloping cost-effective, user-friendly technologies that are
adaptable to diverse environmental conditions; promoting
data standardization; integrating PLF with AI technologies,
such as LLM; and advancing hybrid modeling approaches. In
the longer term, quantum computing may also offer transfor-
mative capabilities for modeling complex biological systems
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and accelerating AT computations, although practical agricul-
tural applications are still emerging [113].

Challenges specific to precision nutrition modeling include
the connectivity limitations common in rural farming opera-
tions. To mitigate these issues, satellite-based internet services
and localized edge computing solutions have been proposed
as alternative strategies to ensure real-time performance even
in regions with poor connectivity. Edge computing offers
promising solutions to these challenges, as demonstrated by
Caria et al [85], who developed an intelligent pasture moni-
toring system that processes data locally using Raspberry Pi
devices before transmitting summarized information when
connectivity becomes available. This approach enables sophis-
ticated nutrition modeling to function even in remote areas
with limited internet access, which is crucial for widespread
adoption.

The shift toward open-source platforms is emerging as a
key area of innovation, enabling collaborative development
and reducing the costs of proprietary Al-driven livestock
monitoring solutions. This will be essential to ensure broad
adoption by the agriculture sector, including livestock produc-
ers, particularly in developing regions where livestock produc-
tion is integral to food security. Modular PLF designs could
allow farmers to incrementally integrate Al-based monitoring
tools, reducing financial strain while maximizing long-term
benefits [114].

Developing standardized data collection and sharing pro-
tocols is crucial to improving interoperability and scalability
in PLF systems. A lack of data standardization currently limits
cross-platform integration, preventing large-scale AI models
from learning effectively across multiple datasets. Although
incipient and lacking wide support, some researchers empha-
size the need for global regulatory frameworks that mandate
common data structures for PLF devices, ensuring seamless
communication between sensor networks, cloud platforms,
and Al-driven analytics systems [115]. Thus, greater collabo-
ration between researchers, technology developers, and pro-
ducers will be essential to creating standardized datasets and
training programs that address the unique challenges of on-
farm applications.

The integration of LLM into PLF systems offers another
avenue for innovation. LLM could serve as virtual assistants
by synthesizing weather data, sensor metrics, and predictive
models to recommend optimal grazing schedules or detect
early disease outbreaks, significantly reducing producers’ cog-
nitive load and enhancing real-time decision-making accura-
cy. Cui et al [116] propose that LLM could integrate weather
forecasting, sensor-derived health data, and Al-based behav-
ioral analysis to optimize grazing schedules, disease detection,
and feed formulations. LLM integrated with IoT-based live-
stock sensors can identify subtle physiological changes that
precede disease outbreaks, reducing reliance on antibiotics
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and enhancing overall herd health [117].

In precision nutrition specifically, emerging autonomous
feeding systems represent a significant opportunity for in-
creasing efficiency while reducing environmental impact.
These advanced nutrition models can incorporate environ-
mental footprint calculations alongside production metrics,
enabling decision-making that optimizes economic and eco-
logical outcomes. Producers can create comprehensive man-
agement platforms by integrating nutrition models with other
PLF systems that dynamically adjust feeding strategies based
on real-time health, production, and environmental data. A
critical research priority in PLF is developing Al-driven sus-
tainability models integrating satellite-based remote sensing
with on-ground livestock monitoring systems [31]. These hy-
brid AI models could enable dynamic grazing strategies that
respond to seasonal variability, drought conditions, and cli-
mate-related shifts in pasture availability. Furthermore, AI-
based predictive weather models could enhance forage avail-
ability mapping, enabling adaptive grazing strategies that re-
duce environmental degradation and increase pasture effi-
ciency [118].

Outlook

The evolution of PLF technologies has not been without chal-
lenges. Additionally, interoperability between different devices
and data formats (lack of standardized protocols) remains a
significant barrier to widespread adoption. Future research
should focus on developing universal data-sharing standards
to facilitate interoperability between IoT devices, cloud plat-
forms, and AI algorithms [80]. Furthermore, technological
innovations must balance performance with accessibility; cost-
effectiveness, and user-friendliness to accelerate adoption
across diverse farming operations.

The future of precision nutrition modeling will likely in-
volve increasingly autonomous systems that can assess animal
status, predict responses to dietary changes, and implement
optimal feeding strategies with minimal human intervention.
Babina et al [119] reported a doubling of Al-related positions
in agriculture and livestock between 2015 and 2018 compared
to the preceding seven years in the United States, reflecting
growing investment in automated systems powered by Al
Their research demonstrated economic and nutritional bene-
fits from these self-optimizing systems, particularly in opera-
tions with frequent ingredient changes or variable animal re-
quirements.

The successful integration of Al and digital technologies
into livestock farming requires interdisciplinary collaboration
among animal scientists, engineers, computer scientists, and
social scientists. PLF adoption is not solely a technological
challenge but also a socioeconomic and behavioral one, re-
quiring educational programs, policy support, and farmer en-
gagement and training [120]. Future PLF development should
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focus on creating systems that complement rather than re-
place traditional husbandry knowledge. The ideal trajectory
would involve technologies that enhance farmers’ capabilities
while preserving their autonomy and expertise, bridging the
gap between innovation and practical on-farm implementa-
tion. For PLF to reach its full potential, the field must address
disparities in access to technology and ensure that innovations
benefit producers of all scales. This will require coordinated
efforts from technology developers, policymakers, and educa-
tional institutions to create accessible, adaptable solutions that
work across diverse farming contexts. As PLF technologies
mature, developing appropriate regulatory frameworks will
become increasingly important. These frameworks should
balance innovation with ethical considerations, ensuring that
technological advancement respects animal welfare, environ-
mental sustainability, and farmers’ rights.

As precision nutrition modeling continues to evolve, the
convergence of biological understanding, computational ca-
pabilities, and on-farm practicality will determine the pace
and extent of adoption. Integrating PLF technologies with nu-
trition models represents a technological advancement and a
fundamental shift in livestock management philosophy—
from reactive, population-based approaches to proactive, in-
dividualized care. This paradigm shift promises to simultane-
ously address the seemingly competing goals of enhanced
productivity, improved animal welfare, and reduced environ-
mental impact. Realizing this potential will require continued
interdisciplinary collaboration between animal scientists, data
scientists, engineers, and, perhaps most importantly, the live-
stock producers who will ultimately implement these technol-
ogies in daily practice.

CONCLUSION

PLF has evolved rapidly since 2017, moving from basic sen-
sors to advanced Al-driven DSS. These technologies offer
powerful tools to improve livestock sustainability, efficiency,
and welfare. Progress in CV; Al and the IoT has created new
possibilities for animal monitoring, nutrition, and health
management. However, important challenges remain. These
include ensuring data privacy and security, reducing costs for
small-scale producers, and improving the adaptability of Al
models to different farm conditions. Climate change will fur-
ther drive the need for resilient PLF systems that reduce envi-
ronmental impact. A major advancement is the development
of hybrid intelligent models that combine biological knowl-
edge with ML. These systems can adjust feeding in real-time,
improving resource use and sustainability. To support wide-
spread adoption, future PLF tools must be easy to use, trans-
parent, and adaptable to varying farm sizes and regions. In-
volving farmers in technology development and using multi-
sensor approaches will be key to ensuring practical solutions.
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Ultimately, integrating biology with technology will help cre-
ate livestock systems that are both precise and sustainable.
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