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Advancing precision livestock farming: integrating artificial 
intelligence and emerging technologies for sustainable livestock 
management: review
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INTRODUCTION

The concept of Precision Livestock Farming (PLF) emerged as a framework to enhance 
livestock management through the use of advanced monitoring technologies, with early 
contributions from researchers such as Daniel Berckmans [1]. PLF emphasizes a “per ani-
mal” approach, where sensor technologies, artificial intelligence (AI), and big data analytics 
enable real-time monitoring and precise management of individual animals. This data-driv-
en approach optimizes health, welfare, and productivity, moving beyond traditional herd-
level management to tailor decision-making to each animal’s unique needs [2]. This foun-
dational work laid the groundwork for integrating PLF into broader frameworks such as 
Smart Livestock Farming (SLF), which expands PLF’s capabilities by incorporating Internet 
of Things (IoT)-enabled platforms, cloud computing, and machine learning (ML)-based 
decision-support systems (DSS). While often discussed together in modern agricultural lit-
erature, PLF and SLF are distinct yet complementary approaches that share common goals, 
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with SLF representing an evolution that incorporates PLF 
methodologies within a broader and more automated techno-
logical ecosystem. Together, PLF and SLF are designed to en-
hance individual animal management while addressing press-
ing industry challenges such as environmental sustainability, 
animal welfare, and resource-use efficiency [3,4].

The evolution of PLF has been extensively documented, 
with Berckmans’ book Advances in PLF [5] providing a com-
prehensive review of recent progress. The transformative po-
tential of PLF technologies spans across many fields, enabling 
the creation of climate-smart livestock systems that address 
critical issues such as disease prevention, improved feed effi-
ciency, and reduced environmental impact. Key advance-
ments in on-animal sensors, thermal imaging, machine vi-
sion, and acoustic monitoring have enabled early detection of 
health concerns such as mastitis, lameness, fertility disorders, 
and metabolic diseases [6]. Additionally, automated feeding 
systems, real-time grazing management, and AI-driven milk-
ing technologies have enhanced livestock productivity and 
welfare, making modern PLF more scalable and accessible [7]. 
In particular, rumen biosensors, which use potentiometric 
and ion-sensitive field-effect transistor (ISFET) technologies, 
have allowed automated continuous monitoring of ruminal 
pH, temperature, and possibly volatile fatty acid concentra-
tions, enabling precise metabolic tracking [8,9].

Since these foundational contributions, technological ad-
vancements have continued to reshape PLF. A significant shift 
has changed not only since the initial conceptualizations but 
also since our literature review in 2017 [10]. The rise of AI, 
particularly large language models (LLM), has made complex 
data interpretation more accessible, transforming PLF from a 
passive monitoring tool into an intelligent, predictive DSS. AI-
powered convolutional neural networks (CNN) and recurrent 
neural networks (RNN) are now capable of detecting subtle 
deviations in animal behavior, feeding patterns, and move-
ment through motion-tracking techniques (i.e., video), en-
abling early disease detection before clinical symptoms appear 
[11,12]. Similarly, sensor technologies have become more pre-
cise, affordable, and diverse, enabling broader adoption across 
different scales of livestock production. Integrating these tech-
nologies has elevated PLF and SLF into critical components of 
modern livestock systems, enhancing productivity while ad-
dressing animal welfare and environmental sustainability.

While PLF and SLF represent significant advancements in 
livestock management, their adoption does not inherently 
guarantee sustainability across environmental, economic, or 
social dimensions. Sustainability is a multifaceted concept re-
quiring careful consideration of the complex interactions 
within production systems [13]. Implementing PLF may lead 
to environmental benefits, such as improved resource effi-
ciency and reduced methane emissions, but it also entails sig-
nificant economic costs associated with technology adoption 

and maintenance. Moreover, integrating such advanced tech-
nologies could disrupt social sustainability, potentially mar-
ginalizing smallholder farmers or those unable to afford these 
innovations. Thus, while PLF offers a promising pathway to-
ward sustainability, it must be coupled with strategies to en-
sure its benefits are equitably distributed, its costs are manage-
able, and its adoption does not inadvertently exacerbate exist-
ing disparities in the livestock sector. These considerations 
underline the importance of a systems approach in evaluating 
the broader implications of PLF within diverse production 
contexts. 

This review builds on our earlier work and incorporates 
insights from recent developments in PLF, particularly in 
sensing technologies, computer vision (CV), and AI. We also 
discuss the evolution of PLF technology, ethical consider-
ations, and limitations, provide context for linking these ad-
vancements with practical applications, and outline future re-
search directions to address ongoing challenges in livestock 
production systems.

THE EVOLUTION OF PRECISION LIVE-
STOCK FARMING TECHNOLOGIES

The PLF has evolved from basic monitoring systems to so-
phisticated AI-driven DSS, enhancing livestock management 
efficiency, sustainability, and animal welfare. Figure 1 presents 
a comprehensive evolution of PLF technologies representing a 
remarkable journey spanning three decades, with significant 
transformations in capability, accessibility, and implementa-
tion. A comprehensive visualization of this evolution reveals 
the interrelationship between three critical dimensions—ac-
curacy, user-friendliness, and cost—providing valuable in-
sights into adoption patterns and technological progression.

Historical development and technical evolution
Initially, PLF relied on electronic identification (EID), wear-
able sensors, and automated milking systems to track animal 
health and productivity [2]. These foundational technologies 
from the early 1990s established the first generation of preci-
sion management tools, with radio-frequency identification 
(RFID) systems showing moderate accuracy (approximately 
0.84) but high user-friendliness ratings, as indicated by their 
widespread adoption. The mid-2000s marked a significant 
advancement with the introduction of rumen bolus sensors 
and automated milking systems, which improved data collec-
tion capabilities but required substantial investment. By the 
2010s, the rise of AI, IoT-based remote monitoring, and CV-
enabled real-time detection of feeding behaviors, lameness, 
and disease outbreaks [14]. This period also saw the emer-
gence of blockchain technology and advanced IoT applica-
tions, expanding the scope of PLF beyond individual animal 
monitoring to encompass entire production systems. In 2017, 



www.animbiosci.org    3

Anim Biosci 2026;00(00):250289

PLF systems primarily relied on wearable sensors to measure 
parameters such as body weight (BW), milk yield, and behav-
ioral metrics like feeding and rumination patterns. These sys-
tems laid the groundwork for precision management but were 
often constrained by the need for manual data collection and 
interpretation [15,16]. The graphical sketch in Figure 1 con-
firms this assessment, showing wearable technologies with 
improved accuracy (0.85–0.90) compared to earlier systems 
but with varying degrees of user-friendliness. While not di-
rectly comparable to earlier systems, such as RFID weight 
scales, which serve different functions, wearable systems still 
reflect an overall trend toward improved precision in sensor 
technologies, albeit with varying degrees of user-friendliness.

Recent advancements and the current state
Over the past few years, non-invasive technologies have 
emerged as the new standard. Red-green-blue and depth 
(RGB-D) cameras and 3D imaging systems now capture de-
tailed biometric and behavioral data in real-time, eliminating 
many of the limitations of earlier tools [6]. As depicted in Fig-
ure 1, CV systems show perceived high accuracy ratings 
(0.93–0.94) with moderate user-friendliness (i.e., 3 thumbs-
up), representing a technological leap while maintaining ac-
cessibility. Advancements in rumen biosensors, such as poten-
tiometric and ISFET-based pH sensors [17], have significantly 
improved the precision of monitoring key metabolic parame-
ters like pH and temperature [18]. Han et al [8] discuss how 
these sensors leverage low-power, wide-range wireless com-

munication technologies, such as low-power, long-range wide 
area network (LoRaWAN), to enable real-time data transmis-
sion, paving the way for more accessible and scalable PLF ap-
plications. Integrating IoT devices with cloud-based analytics 
platforms has revolutionized data acquisition, making real-
time decision-making possible. This advancement is support-
ed by AI-powered ML or deep learning algorithms (e.g., 
CNN, RNN, YOLO-based) that can now forecast disease out-
breaks and detect subclinical health issues before they mani-
fest [19,20]. Our visualization shown in Figure 1 assigns these 
technologies the highest accuracy ratings (0.95–0.99) in the 
PLF domain [21–23], though with varying levels of user-
friendliness and implementation cost [24,25]. While CV sys-
tems exhibit high visual detection accuracy, integrated ML-
DSS leverage multimodal data, including CV, biosensor, and 
environmental input, resulting in superior accuracy (0.95–
0.99) for complex predictive tasks such as early disease fore-
casting. When evaluating ML and AI-assisted DSS systems in 
livestock management, several critical considerations must be 
carefully weighed beyond the impressive accuracy metrics 
displayed in the visualization. These systems often demon-
strate high performance within controlled evaluation environ-
ments using carefully curated datasets that may not fully rep-
resent real-world farm operations’ complex, dynamic condi-
tions. The black-box nature of many sophisticated ML models 
creates a fundamental tension between accuracy and explain-
ability, potentially undermining farmer trust despite technical 
excellence. Additionally, these systems exhibit significant data 

Figure 1. Evolution of precision livestock farming technologies (1992–2025) regarding their perceived relative accuracy, user-friendliness, and 
cost towards improving precision animal nutrition. EID, electronic identification; RFID, radio-frequency identification; BW, body weight; ML, ma-
chine learning; CV, computer vision; UAV, unpersoned aerial vehicle; AI, artificial intelligence; DSS, decision support systems.
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dependency, where performance can degrade substantially 
when deployed in environments with characteristics different 
from those of their training data. This highlights the impor-
tance of comprehensive validation across diverse operational 
contexts and seasons before drawing definitive conclusions 
about their superiority over other technologies like CV sys-
tems, which may offer better robustness despite slightly lower 
benchmark accuracy scores.

Adoption considerations and barriers
Despite technological advancement, user-friendliness has not 
necessarily improved at the same rate as accuracy, with some 
newer technologies presenting significant learning curves for 
farmers. Research by Silvi et al [26], who surveyed 378 Brazil-
ian dairy farms, found that farmers rated “user-friendliness” 
as the third most important factor (4.39 out of 5) in technolo-
gy adoption decisions, following only “available technical sup-
port” (4.55) and “return on investment” (4.48). The visualiza-
tion’s color-coding for cost (green for affordable, yellow for 
moderate, and red for expensive) in Figure 1 reveals that the 
most advanced technologies generally entail higher imple-
mentation costs. Automated milking systems, blockchain ap-
plications, drone monitoring, and robotic herd management 
fall into the expensive category, potentially limiting their 
adoption despite their superior accuracy. Silvi et al [26] con-
firmed this cost barrier, finding that the most frequent reason 
farmers cited for not investing in precision technologies was 
“the need for investment in other sectors of the farm” (36%), 
followed by “uncertainty of return-on-investment” (24%).

Practical implementations of PLF and SLF demonstrate 
how these technologies can contribute to sustainability across 
environmental, economic, and operational domains. Environ-
mentally, PLF has been shown to enhance resource efficiency, 
optimize feeding strategies, and lower methane emissions 
through improved monitoring and data-driven decision-
making  [18]. In the feedlot, PLF can minimize environmental 
impact while increasing profitability through real-time moni-
toring of livestock health, behavior, and performance while 
supporting greenhouse gas reduction, resource optimization, 
and improved animal welfare by implementing advanced feed 
management, environmental monitoring, individualized feed-
ing protocols, early disease detection, and waste management 
solutions—ultimately supporting more sustainable feedyard 
operations [27]. In addition, satellite-integrated grazing sys-
tems, combined with on-ground IoT sensors, enable adaptive 
grazing strategies, reducing overgrazing and soil degradation 
[28–32]. However, according to the economic viability, tech-
nology adoption and maintenance costs pose challenges, par-
ticularly for smallholder farmers or operations with limited fi-
nancial resources [8]. Public-private partnerships and govern-
ment incentives have been proposed to lower economic barri-
ers to PLF adoption [33]. Therefore, one of the main points of 

improvement is the affordability of new technologies by small-
scale farmers and ranchers.

Regarding ethical and social implications, research sug-
gests that balancing real-time monitoring with animal well-
being is crucial. Automated behavior analysis, using AI-driven 
metrics such as heart rate variability, lying time, and feeding 
patterns, could ensure that PLF systems align with welfare 
standards rather than disrupt natural behaviors [3]. The inte-
gration of AI-driven monitoring raises ethical concerns re-
garding constant surveillance. Continuous tracking of physio-
logical and behavioral parameters could potentially induce 
stress in animals if not implemented with animal welfare con-
siderations in mind; therefore, all the new emergent technolo-
gies should consider this point, maybe replacing wearable 
sensors (such as big collars) with other non-wearable or non-
invasive devices, such as cameras [34]. Also, some argue that 
PLF adoption may weaken the human-animal bond, nega-
tively affecting animal welfare [35]. As farmers increasingly 
rely on sensors and robots, opportunities to observe, touch, 
and emotionally connect with animals inevitably decrease. 
This may lead to a tendency to regard animals merely as com-
modities for food production. A lack of regular human inter-
action can make human presence a source of animal stress. 
Conversely, for farmers, reduced contact with animals limits 
their ability to understand animal physiology and behavior 
better. Moreover, since PLF systems heavily depend on elec-
tronic devices, power outages or equipment malfunctions 
could result in prolonged distress or harm to the animals.

APPLICATIONS OF PRECISION LIVE-
STOCK FARMING IN LIVESTOCK SYS-
TEMS

Predicting feed intake and feeding behavior
Feed intake is a critical variable for livestock management, in-
fluencing both productivity and environmental impact. Tradi-
tional methods of measuring dry matter intake (DMI) often 
relied on manually weighing feed, which was labor-intensive, 
prone to human error, and time-consuming. Recent advance-
ments in CV systems have transformed this process. RGB-D 
cameras can now analyze feed mass and volume changes, 
while AI models interpret behaviors such as chewing and bit-
ing patterns to estimate individual feed intake with remark-
able accuracy [11]. For example, studies using CNN have re-
ported mean absolute errors as low as 0.1 kg for DMI predic-
tions [36]. Most of the CV algorithms used to predict DMI 
analyze feed disappearance rates by tracking changes in feed 
volume and mass; however, new real-time algorithms can 
track the individual feeding duration, bite rate, and rumina-
tion patterns [37] for personalized feeding programs tailored 
to individual animal needs. In addition, these AI-powered 
early warning systems alert producers to abnormal feeding 
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behaviors, allowing rapid intervention in cases of illness or 
stress [38].

The main issue with these algorithms is that they often rely 
on estimated ingestion time, which can be misrepresented. 
For instance, ingestion time is commonly recorded as the in-
terval between the animal’s arrival and departure from the 
feeder, although animals may remain at the feeder without ac-
tively ingesting. While recent ML techniques aim to correct 
this by detecting feeding activity based on weight changes in 
the feeder, the accuracy of feed intake prediction still varies. 
Davison et al [39] showed that despite corrections for BW and 
dietary characteristics (e.g., moisture, energy, and fiber), pre-
diction performance remains modest for practical application. 
However, a consensus is emerging that incorporating dietary 
parameters into the models significantly enhances prediction 
accuracy [40]. Feeding behavior traits—such as ingestion 
time, bite rate, and jaw movement—also improve model per-
formance. For instance, Ding et al [41] estimated individual 
feed intake based on jaw movement using a triaxial acceler-
ometer and reported high accuracy (R2 = 0.97 with root mean 
square error [RMSE] = 0.36). However, it is important to note 
that many reported high-accuracy values are obtained under 
controlled experimental conditions or with limited datasets, 
and often fail to generalize to diverse commercial environ-
ments. As emphasized in some studies [42,43], the accuracy 
of ML models depends heavily on the similarity between 
training and testing data, underscoring the need for indepen-
dent validation across broader production systems.

Estimating body weight and body condition score
Accurate estimation of BW and body condition score (BCS) is 
essential for evaluating animal health, productivity, and wel-
fare. Modern CV-based PLF solutions have made it possible 
to non-invasively estimate BW and BCS with remarkable ac-
curacy [44]. Correlation coefficients exceeding 0.9 have been 
reported in several studies [6]. These technologies allow pro-
ducers to monitor BW and BCS non-invasively, reducing ani-
mal stress and labor demands. This level of accuracy has been 
possible thanks to the new advanced RGB-D cameras and ML 
models extracting body contour data to accurately estimate 
BCS without human intervention. In addition, IoT-connected 
to AI models enable accurate real-time weight monitoring in 
cattle [45]. Determining both the BW and the BCS of animals 
was one of the first objectives of the new ML algorithms [46]; 
therefore, the performance acquired is already high, but there 
is room for improvement. In this sense, the next step is to pre-
dict individual BW of non-confined animals. Some drone-
based or unpersonned aerial vehicles (UAV)-assisted works 
have already been developed to estimate the BW of cattle in 
the pasture [47–49]. This shows the vast emerging potential of 
CV algorithms coupled with drones and other devices allow-
ing them to track animals on grazing conditions.

Management of reproduction
Precision technologies have been used in reproduction for 
livestock production to increase fertility by precise estrus de-
tection, execution of artificial insemination, assessment of 
BCS before breeding, regulation of the voluntary waiting peri-
od, and monitoring of calving rates along with associated 
complications [50–52]. Among all these actions where preci-
sion technologies have been used, efficient estrus detection is 
a critical component of reproductive management in dairy 
and beef cattle systems. It represents the first point before all 
posterior reproductive treatments, such as synchronization or 
artificial insemination [53]. The ability to accurately identify 
cows in estrus directly influences conception rates, calving in-
tervals, and overall reproductive efficiency. Traditional meth-
ods, such as visual observation of estrus signs (e.g., standing 
heat, increased activity, and vocalization), are labor-intensive 
and have limited accuracy due to the increasing prevalence of 
silent heat in high-yielding dairy cows [54]. As a result, PLF 
technologies have emerged as reliable solutions for automat-
ing estrus detection through continuous and objective moni-
toring of animal behavior, physiological parameters, and hor-
monal changes.

One of the most widely used technologies for estrus detec-
tion involves wearable sensors that measure cow movement 
and activity levels. Studies have demonstrated that cows in es-
trus exhibit a 2- to 4-fold increase in movement, including 
restlessness, walking, and mounting behavior [55]. Devices 
such as pedometers, accelerometers, and gyroscopes integrat-
ed into collars, ear tags, or leg-mounted sensors detect these 
behavioral changes. Several studies demonstrated how collars 
[56] and accelerometers [57] can be used to determine estrus 
and link it with some nutritional aspects. Estrus affects physi-
cal activity and alters feeding and rumination patterns due to 
increased restlessness. Studies show that cows reduce their ru-
mination time by 10% to 30% before estrus onset, which can 
be detected using bolus sensors, jaw movement monitors, or 
integrated smart collars [58].

Systems such as SCR tag (cSense Flex tag, SCR Engineers) 
and CowManager (Agis Automatisering) analyze changes in 
feeding behavior, improving estrus detection when combined 
with activity data. ReithandHoy [57] found that integrating 
rumination data with activity sensors increased estrus detec-
tion accuracy from 85% to 95%, while Pahl et al [58] showed 
that a 30% drop in rumination was a strong predictor of estrus 
when used in combination with motion-based estrus detec-
tion. Brehme et al [59] showed how temperature fluctuations 
24 h pre-estrus measured through vaginal and intra-ruminal 
temperature sensors were reliable predictors of ovulation, with 
an accuracy exceeding 85%. Recent advances in CV and ML 
are being integrated into estrus detection systems. AI-pow-
ered video analysis detects mounting behavior, tail-raising, 
and vulvar swelling, improving estrus detection in large-scale 
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operations, but can also detect changes in vocalization fre-
quency during estrus when associated with ML-based sound 
analysis [60,61].

Health monitoring and early disease detection
Health monitoring has also seen significant advancements, 
mainly through integrating AI with thermal and RGB-D im-
aging systems. For instance, thermal imaging combined with 
YOLO algorithms has achieved over 87% accuracy in detect-
ing mastitis [62]. Mastitis is one of the most common and 
costly diseases in dairy cattle, and early detection through 
thermal imaging helps reduce antibiotic usage, improve milk 
quality, and enhance overall herd welfare. Multiple studies 
have validated this method, such as Sejian et al [63], who 
demonstrated how ML algorithms trained on infrared data 
can distinguish infected udders with higher precision than 
manual inspections. Furthermore, AI-based imaging can de-
tect other inflammatory conditions, such as foot rot and lame-
ness, providing a broader scope of disease prevention through 
non-invasive temperature monitoring [64]. Regarding tem-
perature analysis, other studies utilized deep learning and 
neural networks to prevent heat stress in livestock [65,66].

Another key development in AI-powered disease monitor-
ing is the detection of bovine respiratory disease (BRD), a 
leading cause of morbidity and mortality in beef cattle. AI-
based thermal analysis of nasal temperatures and breathing 
patterns has allowed researchers to identify abnormal respira-
tory rates that signal early-stage BRD, often days before clini-
cal symptoms appear [19]. A study by Ghassemi Nejad et al 
[67] confirmed that thermal imaging cameras placed near 
feeding areas can continuously track nasal heat fluctuations, 
providing early warning alerts to farm managers. The ability 
to diagnose subclinical respiratory issues before visible distress 
develops significantly improves treatment outcomes, reduces 
disease transmission, and lowers economic losses due to 
BRD-related fatalities [68]. These tools are transforming ani-
mal health management by shifting the focus from reactive to 
proactive care, minimizing the excessive use of antibiotics.

Beyond external imaging, wearable and ingestible sensor 
technologies have transformed internal health monitoring in 
cattle. Rumen sensors, particularly those designed for contin-
uous monitoring of ruminal pH and motility, have played a 
crucial role in the early detection of digestive disorders, espe-
cially since incorporating new ML techniques to analyze the 
output data [69]. The rumen is the central organ in cattle fer-
mentative processes, and imbalances in pH levels can indicate 
conditions such as subacute ruminal acidosis (SARA), bloat, 
and metabolic inefficiencies. Several studies [18,70] demon-
strated that wireless telemetry systems tracking pH fluctua-
tions provide real-time insights into rumen function, helping 
farmers optimize feeding strategies and prevent metabolic 
diseases. These systems are particularly effective in precision 

feeding, where AI models adjust dietary compositions based 
on real-time pH fluctuations, ensuring optimal microbial fer-
mentation and nutrient absorption. Phillips et al [71] demon-
strated the effectiveness of wireless telemetry systems in track-
ing ruminal pH, highlighting their potential in monitoring 
SARA over extended periods.

Nonetheless, ruminal pH boluses face several critical per-
formance limitations that might impair their reliability as di-
agnostic tools in ruminant nutrition. Electrochemical pH 
sensors are particularly susceptible to biofouling from protein-
rich diets, as proteins readily adsorb to sensor surfaces 
through hydrophobic interactions and electronic attraction, 
creating interference layers that compromise signal detection 
and accuracy [72]. This protein-induced biofouling might be 
especially problematic in ruminants fed high-concentrate or 
high-protein diets. Additionally, substantial sensor drift over 
time presents another significant challenge, with observed 
drift patterns requiring frequent recalibration to maintain 
measurement accuracy [18,73]. Despite manufacturer claims 
of extended operational lifespans, research consistently dem-
onstrates that these devices’ practical pH monitoring capabili-
ties typically deteriorate after approximately 80–90 days of de-
ployment, significantly shorter than the often advertised 150+ 
days of functionality [8]. Despite these limitations, ruminal 
pH monitoring systems have shown transformative potential 
for continuous rumen surveillance. Recent advancements in 
wireless telemetry and sensor design, such as low-power elec-
tronics, improved coating materials, and more robust signal 
calibration, could help mitigate issues like sensor drift and bi-
ofouling, while extending battery life and enhancing data 
transmission. As such, these technologies remain a promising 
tool for commercial livestock systems, provided that future it-
erations continue to address the practical challenges associat-
ed with long-term deployment under diverse dietary and en-
vironmental conditions.

Our research has extensively used rumen sensors to ana-
lyze the area and time above and under the curve to detect ab-
normal ruminal pH patterns that might lead to SARA [74–
78]. The area and time under the pH-time curve [130] and re-
dox potential can provide key insights into fermentation dy-
namics and microbial activity. Such metrics aid in the early 
detection of SARA and enable precise adjustments in dietary 
formulations to optimize microbial efficiency, supporting sus-
tainable livestock systems. However, one major challenge in 
widely adopting ruminal pH sensors has been long-term cali-
bration accuracy and sensor costs. As mentioned above, Neu-
bauer et al [73] highlighted that indwelling pH sensors suffer 
from signal drift, requiring frequent recalibration to maintain 
precision. To address this issue, recent advancements (not re-
lated to livestock science) in self-calibrating sensor technolo-
gies have introduced AI-driven automatic recalibration 
mechanisms, significantly improving data reliability for long-
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term applications [79].
While these AI-enabled adjustments improve technical 

performance, they also introduce a new layer of complexity: 
the raw pH data are often processed through proprietary al-
gorithms managed by third-party service providers. As a re-
sult, the end-user typically receives only interpreted outputs 
rather than access to the raw sensor readings or the details of 
the data transformation pipeline [80]. This “black box” sce-
nario limits transparency and prevents independent valida-
tion of physiologically meaningful patterns, raising concerns 
about data ownership, reliability, and the long-term sustain-
ability of such systems. If commercial providers discontinue 
services or restrict access through licensing models, the prac-
tical application of these technologies in both research and 
production settings could be compromised [80].

Additionally, Han et al [8] emphasized the scalability of 
LoRaWAN technology, which facilitates seamless data trans-
mission in both large-scale and smallholder farms. This inno-
vation significantly enhances the accessibility of advanced 
sensor systems. Han et al [8] also highlighted the importance 
of integrating rumen motility and temperature sensors with 
pH sensors. These combined datasets improve diagnostic ac-
curacy and provide actionable insights for managing critical 
conditions such as ruminal tympany, displaced abomasum, 
and mastitis. By leveraging multiple sensor parameters, these 
integrated systems empower producers to make timely, data-
driven decisions, improving both animal welfare and produc-
tion efficiency, as long as battery life is improved. The ad-
vancements in AI-driven cattle health monitoring extend be-
yond disease detection, influencing overall herd management 
strategies. For instance, AI-based estrus detection systems 
have enhanced reproductive efficiency by accurately identify-
ing heat cycles in cows through motion tracking, temperature 
variations, and behavioral analysis [40]. These automated 
monitoring tools eliminate the need for manual estrus detec-
tion, reducing missed breeding opportunities and optimizing 
artificial insemination schedules. Similarly, CV algorithms 
combined with wearable accelerometers are being used to de-
tect early signs of lameness and locomotion disorders, ensur-
ing timely intervention and reducing culling rates in dairy op-
erations [81].

Finally, as AI-powered biosensors, imaging tools, and deep 
learning models continue to evolve, the future of precision 
livestock health management is shifting toward fully autono-
mous, predictive healthcare systems. AI-driven platforms are 
increasingly capable of analyzing multi-source sensor data, 
forecasting disease risks, and recommending real-time pre-
ventative actions. Research by Fuentes-Peñailillo et al [82] 
suggests that integrating blockchain-based AI systems could 
further enhance data security and traceability in livestock 
health monitoring, ensuring greater transparency in disease 
management and food safety regulations. The widespread 

adoption of AI-driven health monitoring systems transforms 
modern cattle farming by providing earlier disease detection, 
reducing reliance on antibiotics, enhancing overall herd pro-
ductivity, and making the veterinary profession in livestock 
easier [83]. These innovations ensure a shift toward sustain-
able, efficient, and welfare-conscious livestock production, 
paving the way for precision agriculture and data-driven ani-
mal health management.

PRECISION NUTRITION MODELING IN 
LIVESTOCK SYSTEMS

Precision nutrition modeling represents a transformative ap-
proach to livestock management, leveraging advanced tech-
nologies and computational methods to optimize animal nu-
trition at the individual level. This section explores the evolu-
tion of nutrition modeling from population-based approaches 
to personalized feeding strategies, examining the integration 
of sensors with mechanistic models, hybrid modeling ap-
proaches, data-driven methodologies, DSS, and future direc-
tions in this rapidly evolving field.

Integration of mechanistic models with precision 
livestock farming technologies
The incorporation of AI into PLF represents a paradigm shift 
in livestock management. Neural networks, particularly CNN 
and RNN, excel at extracting meaningful patterns from com-
plex datasets, making them invaluable for image classification, 
object detection, and segmentation tasks. Some CV algo-
rithms have proven particularly effective in automating labor-
intensive processes, from tracking feeding behavior to identi-
fying early signs of disease [6]. Table 1 summarizes some of 
the most relevant livestock-related work in AI. These AI capa-
bilities have particular relevance for precision nutrition mod-
eling, where individual animal feeding behavior and metabol-
ic responses must be accurately monitored and predicted.

Recent advances in miniaturized, low-power sensors have 
dramatically expanded the physiological parameters that can 
be monitored in real-time. Modern sensing technologies de-
ployed in livestock systems can monitor various parameters, 
including feeding behavior, physiological status, and move-
ment patterns, through IoT devices that collect real-time data 
[84,85]. When coupled with advanced nutrition models, these 
sensors allow for real-time dietary adjustments that optimize 
rumen function on an individual animal basis. Such continu-
ous monitoring capabilities represent a significant advance 
over traditional methods that rely on periodic sampling and 
population averages.

Traditional nutrition models, such as those published by 
the National Academies of Sciences, Engineering, and Medi-
cine (NASEM), provide valuable frameworks but often rely on 
population averages rather than individual animal character-
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istics. Integrating real-time data from PLF technologies with 
mechanistic nutrition modeling [86–89] represents a signifi-
cant paradigm shift, moving from generalized recommenda-
tions toward individualized, dynamic nutritional manage-
ment that fuses data with pre-established concepts and viscer-
al understandings of scientific knowledge.

The advancement of AI has transformed nutrition model-
ing from passive monitoring into intelligent, predictive DSS. 
Neural networks can detect subtle deviations in animal be-
havior, feeding patterns, and movement, enabling early detec-
tion of metabolic changes before clinical symptoms appear. 
Alonso et al [84] developed an intelligent edge-IoT platform 
for monitoring livestock and crops in a dairy farming scenario 
that demonstrated how these technologies could be integrated 
to provide real-time decision support. This real-time monitor-
ing capability has profound implications for precision nutri-
tion models, allowing for dynamic adjustment of feeding 
strategies based on individual animal responses rather than 
population averages. For instance, Pomar et al [90] developed 
a system where some “smart” technologies measured the DMI 
of growing pigs, calculating daily energy and protein require-
ments and predicting these requirements for the following 
days (i.e., forecasting). After this, a smart feeder distributes the 
ration according to individual needs daily, increasing feed ef-
ficiency by reducing feeding costs and decreasing nitrogen ex-
cretion [91]. Through new PLF technologies, such as the elec-
tronic weight scale and the smart feeders, it is possible to esti-
mate animal requirements and, posteriorly, considering ob-
served intake, estimate the energy and protein concentration 
required in the diet (Figure 2). Like our concept shown in Fig-
ure 2, Awasthi et al [92] developed an ML simulation model 
to predict average daily gain (ADG) in pasture-based beef cat-
tle using autonomously collected walk-over weights. An XG-
Boost model was trained on cleaned data incorporating age, 
sex, breed, and weather conditions. The model successfully 

simulated ADG, showing strong agreement with observed 
values. The mean difference between simulated and measured 
BW was −1.2 kg with a standard deviation of 27.3 kg. The 
ADG patterns were realistically reproduced, supporting the 
model’s utility for herd growth monitoring and management 
decision-making. In summary, PLF technologies will be a key 
part of providing individual on-farm data from animals, and 
this data will feed the database, which through mechanistic 
models will provide information (e.g., predictions, require-
ments, early warnings), helping the decision-making process 
in animal production of cattle farmers and improve their effi-
ciency and sustainability.

Hybrid intelligent mechanistic models for nutrition
Developing hybrid intelligent mechanistic models (HIMM, 
[93,97]) represents the cutting edge of precision nutrition 
modeling. Combining AI with mechanistic models has 
opened new frontiers in predictive analytics. While mechanis-
tic models excel at simulating livestock responses under con-
trolled conditions, they often lack the flexibility to account for 
real-world variability. Hybrid models that integrate data-driv-
en insights from AI with mechanistic frameworks bridge this 
gap, providing robust tools for optimizing livestock perfor-
mance and resource use. These hybrid approaches can address 
longstanding challenges in nutrition modeling, such as the 
difficult-to-measure parameters that have traditionally limited 
model accuracy. Thus, combining AI with mathematical 
models has led to hybrid frameworks capable of predicting 
livestock responses to dietary changes, optimizing feed effi-
ciency while reducing nutrient waste [93]. For example, pas-
sage rate has been identified by Allen [94] as perhaps the most 
significant limiting factor in predicting nutrient digestibility in 
the rumen. HIMM can address this challenge through two 
approaches: (1) embedding AI within mechanistic models to 
predict variables such as passage rates that are affected by 

Table 1. Summary table of artificial intelligence (AI) applications and key technologies utilized in cattle production

AI application Key technologies Purposes References

CV in livestock CNN (YOLO, ResNet), biometric facial recogni-
tion, IoT-Based Monitoring

Automates tracking of feeding behavior, 
weight estimation, and disease detection

[6,121,122]

AI and hybrid models for 
predictive analytics

Hybrid AI+mechanistic models, predictive AI for 
feed optimization, LSTM for disease detection

Improvement of feed efficiency, prediction 
of disease onset, and reduction of nutrient 
wastes

[93,123]

AI for livestock behavior anal-
ysis

Attention-based deep learning, CNN+transform-
er models for behavior tracking

Enhancement of stress detection, monitoring 
social interactions, and predicting behavioral 
patterns

[124–126]

AI in reproduction and preci-
sion breeding

RNN-based estrus detection, AI+accelerometer 
data for reproductive management

Increase accuracy in estrus detection, im-
prove calving intervals, and enhance breeding 
success

[127,128]

AI for sustainable and auton-
omous PLF

AI-driven DSS, AI-powered drones for free-range 
livestock monitoring

Reduction of labor costs, optimization of 
resource allocation, and enabling autonomous 
farm management

[129]

CV, computer vision; CNN, convolutional neural network; IoT, internet of things; LSTM, long short-term memory; RNN, recurrent neural network; PLF, 
precision livestock farming; DSS, decision support systems. 
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multiple factors, or (2) embedding mechanistic models within 
neural networks to strengthen AI predictions with bio-physi-
cochemical foundations.

The concept of “digital twins” for dairy cows has emerged 
as an innovative application of hybrid modeling approaches. 
Neethirajan and Kemp [95] describe digital twins as digital 
replicas of real-world entities that simulate physical and bio-
logical states based on input data, helping with prediction, op-
timization, and decision-making. These virtual representa-
tions combine sensor data with mechanistic nutrition models 
to simulate different dietary scenarios before implementation, 
allowing for personalized feeding strategies that account for 
individual variations in metabolism, production stage, and 
health status. This approach demonstrates how hybrid models 
can bridge the gap between theoretical nutrition science and 
practical farm implementation.

Validation of HIMM presents unique challenges due to 
their hybrid nature. Traditional statistical validation metrics 
may not fully capture model performance across the condi-
tions encountered in commercial livestock operations. Fur-
thermore, with the increasing availability of big data, the as-
sumptions underpinning classical statistical inference may no 
longer be valid [131]. In large datasets, even trivial effects can 
become statistically significant, potentially leading to overfit-
ting or spurious conclusions, thereby necessitating new vali-
dation paradigms tailored to complex, high-dimensional data. 
Research in digital twin implementations for livestock sug-
gests that multi-level validation frameworks are needed to as-

sess both predictive accuracy and biological plausibility 
through independent datasets and expert evaluation [96]. 
Such approaches emphasize the importance of validating out-
put predictions and intermediate mechanistic variables to en-
sure the model correctly represents the underlying biological 
processes.

Data-driven approaches to enhance mechanistic 
nutrition models
The emergence of data analytics has evolved through multiple 
stages, from basic descriptive analytics to predictive and pre-
scriptive analytics and ultimately to smart learning systems. 
These increasingly sophisticated approaches move from sim-
ply collecting and responding to data to predicting and pre-
scribing actions and finally to smart learning and policy mak-
ing [97].

In nutrition modeling, data-driven approaches have been 
particularly valuable for addressing variables that are difficult 
to measure directly. For example, research on predicting DMI 
has shown that adding dietary parameters to ML models sig-
nificantly increases prediction accuracy. Similarly, Ding et al 
[41] demonstrated high accuracy (R2 = 0.97) in estimating in-
dividual feed intake based on jaw movement measured 
through triaxial accelerometers. However, as discussed above, 
independent validation using external datasets is necessary to 
confirm whether such high accuracy can be consistently 
achieved across diverse production systems.

The integration of non-traditional data sources has ex-

Figure 2. Diagram showing the integration of precision livestock farming technologies with artificial intelligence and mechanistic modeling to in-
crease feed efficiency through precision nutrition techniques. DMI, dry matter intake; BW, body weight; ADG, average daily gain.
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panded the predictive capabilities of nutrition models. Recent 
research by Monteiro et al [98] demonstrates how AI ap-
proaches with feature engineering and ensemble methods can 
utilize rumen microbiome data to predict feed efficiency in 
dairy cows. Their study showed that the rumen microbiome 
plays a pivotal role in explaining variance in milk fat and pro-
tein production efficiency, potentially reducing methane 
emissions by up to 37.5% through selection for better residual 
feed intake. Similarly, voice analysis of livestock vocalizations 
shows promise as an early indicator of metabolic stress, offer-
ing a novel data stream for precision nutrition systems.

Multi-omics approaches represent another frontier in data-
driven nutrition modeling. Fontanesi [99] highlights that me-
tabolomics provides valuable insights for livestock genomics 
and phenotyping applications, allowing for identifying bio-
markers related to productive traits. Novais et al [100] applied 
factor analysis and Bayesian network modeling to integrate 
different omics data for studying production, carcass, and 
meat quality traits in cattle, demonstrating how multi-level 
data integration can reveal non-obvious relationships that ex-
ist among omics data. This multi-omics integration allows for 
identifying biomarkers of metabolic efficiency that can be in-
corporated into predictive models.

These data-driven approaches do not replace traditional 
mechanistic models but rather enhance them by improving 
parameter estimation and expanding their predictive capabili-
ties. As Tedeschi [97] noted, “Success and failures in model 
building are more related to the ability of the researcher to in-
terpret the data and understand the underlying principles and 
mechanisms to formulate the correct relationship among 
variables rather than profound mathematical knowledge.”

Decision-support systems for precision nutrition 
management
The ultimate goal of precision nutrition modeling is to devel-
op DSS that transform complex data into actionable feeding 
recommendations. As Lee et al [101] demonstrated in their 
groundbreaking work with ML models for metabolizable pro-
tein supply prediction, combining traditional mechanistic nu-
trition principles with advanced AI techniques can dramati-
cally improve prediction accuracy. Their research showed that 
support vector regression and random forest models signifi-
cantly outperformed conventional NASEM [87] equations, 
with R2 values of 0.76 for microbial nitrogen and 0.60 for ru-
men-undegradable protein compared to just 0.04 and 0.27, 
respectively, for traditional methods.

These DSS must balance scientific rigor with practical im-
plementation, providing clear guidance to livestock managers 
while accommodating operational constraints. Modern DSS 
integrate multiple data sources, including feed composition 
analysis, individual animal monitoring (via sensors and CV), 
environmental conditions, and economic parameters. For ru-

minants, DSS must account for the complex interactions be-
tween dietary composition, ruminal fermentation, and meta-
bolic processes. Integrating real-time rumen monitoring data 
into nutrition models allows DSS to dynamically adjust feed-
ing recommendations based on actual fermentation patterns 
rather than assumptions. This creates a feedback loop where 
dietary adjustments can be fine-tuned based on individual 
animal responses, moving beyond the population-average ap-
proach of traditional nutrition models.

User interface considerations are critical for DSS adoption 
in commercial settings. Research by Eastwood et al [102] em-
phasizes the importance of farmer-centric design approaches 
for precision dairy technologies, highlighting that systems 
must align with farmers’ existing practices and decision-mak-
ing processes. Similarly, Groenendaal et al [103] demonstrated 
that visualization approaches that highlight economically sig-
nificant deviations from expected outcomes, rather than pre-
senting raw data, significantly improved user engagement 
with nutrition decision support tools. Wolfert et al [104] fur-
ther emphasize that successful smart farming applications 
must translate sophisticated data outputs into actionable in-
sights that farm managers can readily implement without spe-
cialized data science training. This human-centered design 
approach represents an important advance in translating 
complex modeling outputs into practical on-farm actions.

The economic value proposition of precision nutrition DSS 
extends beyond feed cost savings. According to Zuidhof [105], 
precision livestock feeding aims to match nutrient supply pre-
cisely with the nutrient requirements of individual animals 
based on real-time feedback from sensors, providing benefits 
including greater economic returns, reduced environmental 
excretion, and improved resource utilization efficiency (Fig-
ure 2). Multiple studies have demonstrated improved income 
over feed costs, with additional benefits in reduced veterinary 
expenses due to improved metabolic health. Importantly, 
farms have shown a positive return on investment within 
months of implementation, with smaller operations experi-
encing longer payback periods but similar percentage im-
provements in profitability.

The development of effective DSS represents a crucial in-
tersection where sensor technology meets nutrition modeling. 
Building on the advances reported by Lee et al [101], incorpo-
rating physiological parameters and real-time sensor data 
within HIMM illustrates the power of combining biological 
insights with AI capabilities. Such integration enables models 
to retain mechanistic interpretability while achieving higher 
predictive accuracy. These systems benefit from the increas-
ingly large volumes of data collected through PLF technolo-
gies, transforming them into actionable insights. HIMM offer 
a promising approach to managing individual animal varia-
tion without sacrificing scientific rigor, supporting adaptive 
nutrition management that dynamically adjusts to changes in 
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metabolic status and environmental conditions. These sys-
tems have shown the potential to reduce feed costs by 7% to 
12% and decrease nutrient waste, aligning with both econom-
ic and sustainability objectives.

By integrating sensor data with mechanistic models and AI 
algorithms, precision nutrition DSS can enable adaptive feed-
ing strategies that account for individual animal requirements, 
metabolic status, and environmental conditions. Such systems 
optimize resource use and production efficiency and contrib-
ute significantly to environmental sustainability through re-
duced nutrient waste and improved animal welfare.

Future directions and challenges
While precision nutrition modeling offers transformative 

potential, several implementation challenges remain to be ad-
dressed. Precision nutrition faces many challenges, just as oth-
er PLF technologies do, while dealing with nutrition-specific 
barriers. These models must overcome technical and adoption 
hurdles for effective integration into commercial livestock op-
erations. The technical challenges specific to nutrition model-
ing include the need for accurate, real-time data on feed com-
position, intake, and digestibility. Current sensors can mea-
sure intake quantity, but determining feed quality parameters 
in real-time remains difficult. Additionally, the biological 
complexity of rumen fermentation and nutrient metabolism 
creates significant modeling challenges that require sophisti-
cated approaches combining mechanistic understanding with 
data-driven insights. Integrating nutrition models with exist-
ing farm management systems represents a significant barrier 
from an implementation perspective. Many producers already 
use various digital tools for different aspects of farm manage-
ment, and nutrition models must interface seamlessly with 
these systems to provide true value. The development of stan-
dardized data formats and application programming interface 
will enable this integration and allow different technologies to 
communicate effectively. Economic considerations also im-
pact adoption rates. While sophisticated nutrition modeling 
can improve feed efficiency and reduce waste, the initial in-
vestment in sensors, computing infrastructure, and training 
can be substantial. Future research must focus on demonstrat-
ing a clear return on investment pathways for different pro-
duction scales and systems. This includes quantifying the eco-
nomic benefits of precision nutrition beyond direct feed sav-
ings, such as improved animal health, reduced veterinary 
costs, and enhanced product quality.

As precision nutrition modeling advances, the ethical di-
mensions of data collection and use will become increasingly 
important. Data ownership, privacy, and security issues must 
be addressed through appropriate governance frameworks 
that protect farmer interests while enabling the collaborative 
data sharing necessary for model improvement. Emerging 
technologies like federated learning offer promising ap-

proaches to balancing these competing concerns. The ulti-
mate success of precision nutrition modeling will depend on 
its seamless integration into comprehensive livestock manage-
ment systems. Rather than functioning as a standalone tech-
nology, precision nutrition must become part of an integrated 
approach that connects feeding decisions with health moni-
toring, reproduction management, and environmental impact 
assessment. This holistic approach will enable truly sustain-
able livestock production systems that optimize multiple ob-
jectives simultaneously.

LIMITATIONS, OPPORTUNITIES, AND 
OUTLOOK

Limitations
While the advancements in PLF are promising and potentially 
transformative, several inherent challenges must be addressed 
to maximize their effectiveness and to ensure equitable acces-
sibility and affordability. Key challenges include reliable con-
nectivity for data transmission, standardization of data collec-
tion to reduce variability, questions surrounding data owner-
ship, high implementation costs, the need for education and 
training of the next generation of stakeholders, and ethical 
concerns related to animal welfare.

One of the primary challenges lies in the real-time process-
ing and transmission of large volumes of data generated by 
AI-powered monitoring systems, which demand robust com-
putational infrastructure and reliable connectivity [80]. How-
ever, in many rural or low-resource farming environments, 
internet connectivity remains unstable, limiting the efficiency 
of cloud-based PLF solutions. One should expect that farms 
in remote areas often experience connectivity disruptions, 
leading to delays in data processing and decision-making.

One persistent issue is the variability in data quality across 
production environments. Factors like lighting changes, oc-
clusions from other animals, variable sensor positioning, and 
camera placement can significantly impact the accuracy of 
CV systems [6]. In addition, changes in lighting, occlusion 
from other animals, and extreme weather conditions can re-
duce the accuracy of CV-based models [6,19,106]. Weather 
fluctuations (e.g., humidity, dust, extreme temperatures) add 
another wrinkle to consistency because they can impact the 
performance of sensor-based monitoring systems. During 
video/image processing, ML models trained on specific 
breeds or production systems may not generalize well across 
different geographical regions [27]. Another major obstacle in 
data accuracy is caused by sensor drift and calibration issues. 
For example, rumen pH sensors and temperature monitoring 
devices often require frequent recalibration to maintain preci-
sion in long-term data collection. Research by Nyamuryekung’e 
[107] showed that non-retrievable pH sensors tend to experi-
ence signal drift over time, leading to inconsistent health 
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monitoring results. To address this, advanced self-calibrating 
sensors are being developed, leveraging ML algorithms to 
correct inaccuracies in real time. Additionally, training pro-
grams for farmers and livestock managers are essential to en-
sure proper calibration and maintenance protocols, thereby 
improving sensor reliability in practical settings.

Another key challenge that impedes the scalability of AI-
driven PLF solutions is the lack of data standardization and 
interoperability between different sensor systems. With an in-
creasing number of companies and research institutions de-
veloping PLF tools, data fragmentation has become a major 
issue. Tedeschi et al [80] emphasized that many AI-powered 
monitoring systems operate in isolation, using proprietary 
data formats that are incompatible with other platforms. This 
incompatibility limits cross-system integration and prevents 
the creation of large-scale, comprehensive datasets necessary 
for AI model training. To overcome this, researchers are advo-
cating for adopting open-source PLF frameworks and stan-
dardized data exchange protocols, allowing different monitor-
ing systems to communicate seamlessly. Related to this point, 
data security and privacy concerns further complicate the 
adoption of cloud-based AI-driven PLF technologies. Con-
cerns over unauthorized access and data misuse have emerged, 
and large amounts of sensitive farm data are being collected 
and stored on cloud platforms. Studies by Jiang et al [108] in-
dicate that farmers often hesitate to adopt cloud-based PLF 
solutions due to concerns about ownership and third-party 
access to livestock data. Blockchain-based data encryption 
technologies have been proposed as a potential solution to en-
hance security and transparency, ensuring that only autho-
rized stakeholders can access farm-specific AI models.

Data ownership and security are additional issues that re-
quire attention. Adopting frameworks similar to the General 
Data Protection Regulation (GDPR) in agriculture could en-
sure that producers retain control over their data while estab-
lishing standards for secure data sharing and storage across 
platforms [109]. Frameworks similar to the GDPR in agricul-
ture should be established to ensure that farmers retain con-
trol over their data while allowing for secure, standardized 
data sharing [108]. These regulations could prevent data mis-
use by third parties and ensure that farmers receive tangible 
benefits from the AI-driven insights generated on their farms. 
However, as PLF systems generate increasingly granular data, 
questions about who owns this information, how it can be 
protected from misuse, and how to store the data properly be-
come critical issues—and farmers and ranchers might not be 
willing to bear this additional cost and responsibility.

Beyond infrastructure challenges, the financial burden of 
implementing PLF technologies remains a significant barrier, 
particularly for small and medium-sized farms. Some results 
suggest that the high initial costs of AI-driven monitoring sys-
tems, wearable sensors, and IoT-enabled devices hinder wide-

spread adoption [110]. To alleviate this issue, public-private 
partnerships and government subsidies, similar to policies 
used in renewable energy adoption, could facilitate financial 
accessibility [33]. Cooperative PLF models, where multiple 
smallholder farms share centralized AI-driven monitoring 
systems, could also increase affordability and optimize re-
source utilization.

Beyond technological limitations, cultural and educational 
barriers are crucial in determining the adoption rate of AI-
based PLF systems. Livestock producers lack the technical ex-
pertise to interpret AI-driven data analytics, reducing the us-
ability of real-time health monitoring tools [111]. Addressing 
this gap requires comprehensive training programs, user-
friendly AI dashboards, and real-time DSS that simplify com-
plex data outputs into actionable insights. Therefore, educa-
tion in mathematics and statistics and basic notions about ML 
and AI potentially benefit undergraduate and graduate animal 
science students in the livestock sector. 

One of the most pressing ethical concerns is the increased 
livestock monitoring. While AI-driven precision tools im-
prove disease detection, feeding management, and welfare 
monitoring, they may inadvertently introduce animal stress if 
not implemented thoughtfully. Kling-Eveillard’s [112] re-
search reveals that introducing PLF does not always degrade 
the human-animal relationship. Farmers implement new 
practices to familiarize animals with these technologies, dem-
onstrating adaptability in the integration process. Additionally, 
farmers maintain agency in technology adoption, having 
room to maneuver when using tools or equipment and choos-
ing to either entirely or partially delegate tasks to the equip-
ment based on their judgment and experience. Han et al [8] 
suggest that integrating multiple parameters, such as pH, mo-
tility, and temperature, into comprehensive AI-driven DSS 
could improve data utility by prioritizing actionable alerts, but 
at which social price? Alarm fatigue and data overload present 
significant barriers to PLF adoption. The constant stream of 
sensor-generated alerts can overwhelm farm managers, lead-
ing to misinterpretation or desensitization of important alerts. 
This technological burden contributes to farmers’ expressed 
concerns about the potential loss of observation skills and de-
veloping dependence on PLF tools, highlighting the need for 
balanced implementation that preserves traditional husband-
ry expertise while embracing technological advancement.

Opportunities
To address these challenges, future efforts should focus on de-
veloping cost-effective, user-friendly technologies that are 
adaptable to diverse environmental conditions; promoting 
data standardization; integrating PLF with AI technologies, 
such as LLM; and advancing hybrid modeling approaches. In 
the longer term, quantum computing may also offer transfor-
mative capabilities for modeling complex biological systems 
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and accelerating AI computations, although practical agricul-
tural applications are still emerging [113].

Challenges specific to precision nutrition modeling include 
the connectivity limitations common in rural farming opera-
tions. To mitigate these issues, satellite-based internet services 
and localized edge computing solutions have been proposed 
as alternative strategies to ensure real-time performance even 
in regions with poor connectivity. Edge computing offers 
promising solutions to these challenges, as demonstrated by 
Caria et al [85], who developed an intelligent pasture moni-
toring system that processes data locally using Raspberry Pi 
devices before transmitting summarized information when 
connectivity becomes available. This approach enables sophis-
ticated nutrition modeling to function even in remote areas 
with limited internet access, which is crucial for widespread 
adoption.

The shift toward open-source platforms is emerging as a 
key area of innovation, enabling collaborative development 
and reducing the costs of proprietary AI-driven livestock 
monitoring solutions. This will be essential to ensure broad 
adoption by the agriculture sector, including livestock produc-
ers, particularly in developing regions where livestock produc-
tion is integral to food security. Modular PLF designs could 
allow farmers to incrementally integrate AI-based monitoring 
tools, reducing financial strain while maximizing long-term 
benefits [114].

Developing standardized data collection and sharing pro-
tocols is crucial to improving interoperability and scalability 
in PLF systems. A lack of data standardization currently limits 
cross-platform integration, preventing large-scale AI models 
from learning effectively across multiple datasets. Although 
incipient and lacking wide support, some researchers empha-
size the need for global regulatory frameworks that mandate 
common data structures for PLF devices, ensuring seamless 
communication between sensor networks, cloud platforms, 
and AI-driven analytics systems [115]. Thus, greater collabo-
ration between researchers, technology developers, and pro-
ducers will be essential to creating standardized datasets and 
training programs that address the unique challenges of on-
farm applications.

The integration of LLM into PLF systems offers another 
avenue for innovation. LLM could serve as virtual assistants 
by synthesizing weather data, sensor metrics, and predictive 
models to recommend optimal grazing schedules or detect 
early disease outbreaks, significantly reducing producers’ cog-
nitive load and enhancing real-time decision-making accura-
cy. Cui et al [116] propose that LLM could integrate weather 
forecasting, sensor-derived health data, and AI-based behav-
ioral analysis to optimize grazing schedules, disease detection, 
and feed formulations. LLM integrated with IoT-based live-
stock sensors can identify subtle physiological changes that 
precede disease outbreaks, reducing reliance on antibiotics 

and enhancing overall herd health [117].
In precision nutrition specifically, emerging autonomous 

feeding systems represent a significant opportunity for in-
creasing efficiency while reducing environmental impact. 
These advanced nutrition models can incorporate environ-
mental footprint calculations alongside production metrics, 
enabling decision-making that optimizes economic and eco-
logical outcomes. Producers can create comprehensive man-
agement platforms by integrating nutrition models with other 
PLF systems that dynamically adjust feeding strategies based 
on real-time health, production, and environmental data. A 
critical research priority in PLF is developing AI-driven sus-
tainability models integrating satellite-based remote sensing 
with on-ground livestock monitoring systems [31]. These hy-
brid AI models could enable dynamic grazing strategies that 
respond to seasonal variability, drought conditions, and cli-
mate-related shifts in pasture availability. Furthermore, AI-
based predictive weather models could enhance forage avail-
ability mapping, enabling adaptive grazing strategies that re-
duce environmental degradation and increase pasture effi-
ciency [118].

Outlook
The evolution of PLF technologies has not been without chal-
lenges. Additionally, interoperability between different devices 
and data formats (lack of standardized protocols) remains a 
significant barrier to widespread adoption. Future research 
should focus on developing universal data-sharing standards 
to facilitate interoperability between IoT devices, cloud plat-
forms, and AI algorithms [80]. Furthermore, technological 
innovations must balance performance with accessibility, cost-
effectiveness, and user-friendliness to accelerate adoption 
across diverse farming operations.

The future of precision nutrition modeling will likely in-
volve increasingly autonomous systems that can assess animal 
status, predict responses to dietary changes, and implement 
optimal feeding strategies with minimal human intervention. 
Babina et al [119] reported a doubling of AI-related positions 
in agriculture and livestock between 2015 and 2018 compared 
to the preceding seven years in the United States, reflecting 
growing investment in automated systems powered by AI. 
Their research demonstrated economic and nutritional bene-
fits from these self-optimizing systems, particularly in opera-
tions with frequent ingredient changes or variable animal re-
quirements.

The successful integration of AI and digital technologies 
into livestock farming requires interdisciplinary collaboration 
among animal scientists, engineers, computer scientists, and 
social scientists. PLF adoption is not solely a technological 
challenge but also a socioeconomic and behavioral one, re-
quiring educational programs, policy support, and farmer en-
gagement and training [120]. Future PLF development should 
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focus on creating systems that complement rather than re-
place traditional husbandry knowledge. The ideal trajectory 
would involve technologies that enhance farmers’ capabilities 
while preserving their autonomy and expertise, bridging the 
gap between innovation and practical on-farm implementa-
tion. For PLF to reach its full potential, the field must address 
disparities in access to technology and ensure that innovations 
benefit producers of all scales. This will require coordinated 
efforts from technology developers, policymakers, and educa-
tional institutions to create accessible, adaptable solutions that 
work across diverse farming contexts. As PLF technologies 
mature, developing appropriate regulatory frameworks will 
become increasingly important. These frameworks should 
balance innovation with ethical considerations, ensuring that 
technological advancement respects animal welfare, environ-
mental sustainability, and farmers’ rights.

As precision nutrition modeling continues to evolve, the 
convergence of biological understanding, computational ca-
pabilities, and on-farm practicality will determine the pace 
and extent of adoption. Integrating PLF technologies with nu-
trition models represents a technological advancement and a 
fundamental shift in livestock management philosophy—
from reactive, population-based approaches to proactive, in-
dividualized care. This paradigm shift promises to simultane-
ously address the seemingly competing goals of enhanced 
productivity, improved animal welfare, and reduced environ-
mental impact. Realizing this potential will require continued 
interdisciplinary collaboration between animal scientists, data 
scientists, engineers, and, perhaps most importantly, the live-
stock producers who will ultimately implement these technol-
ogies in daily practice.

CONCLUSION

PLF has evolved rapidly since 2017, moving from basic sen-
sors to advanced AI-driven DSS. These technologies offer 
powerful tools to improve livestock sustainability, efficiency, 
and welfare. Progress in CV, AI, and the IoT has created new 
possibilities for animal monitoring, nutrition, and health 
management. However, important challenges remain. These 
include ensuring data privacy and security, reducing costs for 
small-scale producers, and improving the adaptability of AI 
models to different farm conditions. Climate change will fur-
ther drive the need for resilient PLF systems that reduce envi-
ronmental impact. A major advancement is the development 
of hybrid intelligent models that combine biological knowl-
edge with ML. These systems can adjust feeding in real-time, 
improving resource use and sustainability. To support wide-
spread adoption, future PLF tools must be easy to use, trans-
parent, and adaptable to varying farm sizes and regions. In-
volving farmers in technology development and using multi-
sensor approaches will be key to ensuring practical solutions. 

Ultimately, integrating biology with technology will help cre-
ate livestock systems that are both precise and sustainable.
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