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Abstract

Quantum computing (QC) represents a revolutionary paradigm in information processing, leveraging quantum mechanical phenomena (superpo-
sition, entanglement, quantum interference, and quantum tunneling) to perform calculations in fundamentally different ways than classical com-
puting (CC). While CC processes information sequentially through Boolean logic operations on discrete binary states (Os and 15s), quantum
computers manipulate qubits that can exist in superpositions of states, enabling parallel operations on exponentially large state spaces. Despite
claims regarding “quantum supremacy,” QC remains in its early developmental stages, comparable to the CC of the 1950s and 1960s. True quan-
tum supremacy, where quantum computers demonstrate definitive, practical advantages over classical computers for well-defined tasks, has not
vet been established. Practical applications face real challenges, i.e., decoherence, high error rates, and demanding error correction requirements.
Three developmental phases are projected: noisy intermediate-scale quantum systems by 2030, broad quantum advantage from 2030 to 2040,
and full-scale fault tolerance after 2040. Does QC offer solutions to fundamental problems that classical systems, including supercomputers and
artificial intelligence, cannot already resolve? While conventional technologies continue to advance agricultural capabilities through machine learning
(ML) and complex optimization, quantum approaches may potentially transform domains that require molecular-level simulations (such as sail
chemistry and rumen microbial interactions) or exponentially complex optimization problems in resource allocation. Quantum ML models, such
as quantum neural networks, generative adversarial networks, and autoencoders, are being explored in guantum-—classical hybrids, which have
shown potential for faster optimization and higherdimensional data representation; but, these advantages remain largely conceptual. The value
proposition of QC in agriculture ultimately depends on whether the field’'s most pressing challenges involve quantum mechanical processes that
classical computers cannot simulate efficiently or optimization problems of such complexity that quantum algorithms would provide substantial
practical advantages over classical approaches. The agricultural community must also address societal implications, such as access equity, data
ownership, algorithmic transparency, and educational preparedness for this emerging technology.

Lay Summary

Quantum computing (QC) is emerging as a revolutionary technology that could change how we solve complex problems, especially in biology,
chemistry, and agriculture. Unlike classical computers that use binary bits, quantum computers use qubits, which exploit principles like superpo-
sition and entanglement to process information in fundamentally new ways. This gives quantum computers the theoretical ability to simulate
complex molecules, optimize massive systems, and analyze data in ways classical systems cannot. Although quantum computers are still in the
early development stages—with challenges like noise, scalability, and error correction—researchers are already exploring applications in materials
science, pharmaceuticals, and agriculture. This paper explores the fundamental principles of QC, its current limitations, and its potential to trans-
form agricultural research. It highlights hybrid approaches that combine QC and classical computing and the need for agricultural scientists to
begin preparing for this shift through education. While practical applications may take years to materialize, QC development—currently feeling a
bit like herding cats—mirrors the atmosphere of the mid-1900s, when digital computers were still viewed as futuristic novelties. Just as those
early machines evolved from experimental curiosities into indispensable tools, the eventual integration of QC into agricultural sciences could
unlock innovations that transform the field.
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Introduction intractable for even the most powerful supercomputers.

The field of computing is on the brink of a paradigm shift, bur ~ Moore’ Law refers to the observation made by Gordon Moore,
perhaps not too fast. As classical computers approach the limits co-founder of Intel, in 1965 that the number of transistors on
of Moore’s Law, quantum computing (QC) emerges as a rev- an integrated circuit doubles approximately every (one or) two
olutionary technology with the potential to solve problems  years, leading to exponential growth in computing power at
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relatively consistent cost (Moore, 1965). This observation
became a guiding principle for the semiconductor industry,
driving decades of technological advancement and miniatur-
ization. The prediction has held for many decades, though,
since the 2000s, the industry has encountered physical limita-
tions as transistors approach atomic scales and the chips get
too hot (Waldrop, 2016). The physical restriction makes it
increasingly difficult and costly to continue the historical pace
of miniaturization, prompting semiconductor manufacturers
to search for alternative computing paradigms like QC.

In physical sciences, two major scientific revolutions trans-
formed physics in the 20th century: the theory of relativity and
quantum mechanics (Aspect, 2024). Quantum physics has been
recognized as having an impact comparable to the Industrial
Revolution, which was powered by the laws of thermodynamics
and the steam engine. As discussed later in more details, quan-
tum physics introduces principles such as superposition (where
systems can exist in multiple states simultaneously), entangle-
ment (instantaneous correlation between particles regardless of
distance), quantum interference (where probabilities combine
in non-classical ways), and quantum tunneling (where particles
can pass through energy barriers that would be insurmountable
in classical physics). Nobel laureate Alain Aspect has noted that
quantum mechanics represents one of the most profound shifts
in scientific understanding in human history. Physicists typically
recognize two distinct quantum revolutions: the first occurred
in the early 20th century with pioneering work by Max Planck,
Albert Einstein, Niels Bohr, Werner Heisenberg, and Louis de
Broglie, among many others, who established the fundamental
principles of quantum mechanics (Aspect, 2023, 2024). The
second quantum revolution began in the 1960s-1980s, building
on the theoretical work of Einstein and Erwin Schrodinger, who
had identified quantum entanglement—what Einstein famously
(and possibly) referred to as “spooky action at a distance”—as
a profound phenomenon requiring deeper investigation (Aspect,
2023, 2024). This second revolution has led to technologies
like QC, quantum cryptography, and quantum sensing that are
perceived to have transformative potential across multiple
fields today.

Therefore, QC harnesses the principles of quantum mechan-
ics to process information in ways that classical computers
cannot. To illustrate the potential power of QC, let’s consider
a specific task: the simulation of complex molecular structures,
crucial in nutritional science. For instance, simulating the
behavior of a molecule like glucose, with 24 atoms (6 C, 12 H,
and 6 O) and approximately 96 electrons (6 in each C, 1 in
each H, and 8 in each O), would require a classical computer
to track 2% possible electron configurations (Aspuru-Guzik et
al., 20055 Cao et al., 2019)—an astronomically large number,
approximately 7.9 x 1028, which is about 10 billion times larger
than the estimated number of grains of sand on Earth (7.5x10'%)
(Blatner, 2012). This task quickly becomes infeasible for clas-
sical computers as molecular complexity increases. In contrast,
in theory, a quantum computer with just 96 quantum process-
ing units could simulate this molecule more efficiently. The
reason is that on classical computers, resource requirements
for a complete simulation of the time-independent Schrodinger
equation scale exponentially with the number of atoms in a
molecule, limiting such full configuration interaction calcula-
tions to diatomic and triatomic molecules, whereas on quan-
tum computers, resource requirements scale polynomially with
system size (Aspuru-Guzik et al., 2005; Cao et al., 2019). The
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Schrodinger equation, fundamental to these simulations,
describes how the quantum state of a physical system evolves
over time. In its time-independent form, HY = EY, where H
is the Hamiltonian operator representing total energy, ¥ is the
wave function, and E represents energy levels (Griffiths and
Schroeter, 2018). Classical computers struggle with this equa-
tion for complex molecules because the required computational
resources grow exponentially with each additional particle,
while quantum computers can potentially represent these quan-
tum states natively using superposition and entanglement (Niel-
sen and Chuang, 2010).

At this pivotal juncture in computational science, QC stands
as both a technological frontier and a philosophical challenge
to our understanding of (quantum) information processing.
While the field of quantum mechanics continues to evolve,
bringing new insights that reshape our fundamental under-
standing of nature, QC represents its most ambitious practical
application. Quantum theory stands apart from other major
physical frameworks like Newtonian mechanics, Maxwell’s
electrodynamics, or Einstein’s relativity in that it was not devel-
oped or definitively formulated by a single scientist and contin-
ues to bear the marks of its challenging and revolutionary
origins (Griffiths and Schroeter, 2018). It seems fair to say that
QC is “a technology emerging from a theory without consen-
sus.” The science of quantum mechanics operates both math-
ematically and experimentally, but the fundamental meaning
and interpretation of quantum mechanics remain contested
among physicists and philosophers of science; it is not an easy
topic to discuss on a daily basis. Nevertheless, the foundations
of quantum mechanics themselves remain hotly debated in the
scientific community, and no consensus on essential questions
has been reached (Schlosshauer et al., 2013). This controversy
is not about quantum mechanics’ mathematical formalism or
experimental predictions, which are remarkably successful, but
rather about what the theory implies about the nature of reality.

This review aims to bridge the theoretical with the practical
by briefly explaining QC principles, contrasting them with
classical computing (CC) paradigms, and exploring their trans-
formative potential specifically for agricultural sciences. From
simulating complex biological systems for crop improvement
to optimizing resource allocation across vast agricultural net-
works, QC promises capabilities beyond classical limitations.
Yet, as we navigate between optimistic projections and skep-
tical assessments, we must remain grounded in the consider-
able technical challenges that lie ahead. The journey toward
practical “quantum advantage” will require interdisciplinary
collaboration, realistic expectations, and patience as we deter-
mine whether QC will ultimately deliver on its revolutionary
promise or remain constrained by fundamental physical
limitations.

Quantum computing

A quantum computer is a sophisticated device that leverages
the principles of quantum mechanics to process information.
Unlike classical computers that use bits (binary digits: 0s and
1s) to represent information, quantum computers use quantum
bits or qubits. As briefly mentioned above, the power of qubits
lies in four key quantum mechanical properties: superposition,
entanglement, quantum interference, and quantum tunneling.
Each plays a distinct role in enabling quantum computers to
achieve computational capabilities that can surpass those of
classical systems.
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Superposition

Superposition allows a qubit to exist in multiple states simul-
taneously rather than discrete binary values (0 or 1). As
depicted in Figure 1, a qubit in superposition is like a spinning
coin that is, in a sense, both heads and tails at once until you
observe it (measure it), at which point it “collapses” to just one
state. It enables quantum computers to process multiple com-
putational paths concurrently. When you have multiple qubits
in superposition, they can represent all possible combinations
of 0s and 1s simultaneously, allowing for massive parallelism
in computation. This parallel processing capability provides
theoretical computational advantages for specific problem
classes (Preskill, 2018).

Entanglement

Einstein et al. (1935) described a phenomenon (later termed
quantum entanglement by Schrodinger) where the quantum
states of multiple particles become correlated such that the
quantum state of each particle cannot be described inde-
pendently. As mentioned above, Einstein later referred to this
phenomenon as “spooky action at a distance” (Born and
Einstein, 1971; Aspect, 2024) (translated from spukbafte
Fernwirkung) (Hossenfelder, 2022) in his correspondence
with Max Born on March 3%, 1947 (Born and Einstein, 1971,
p- 158). Aspect (2024) indicated that in Einstein’s opinion,
“if two objects, which have interacted in the past but are now
separated, present a perfect correlation, they must carry
within them a set of properties determined in concert before
their separation, and which then have survived in each of the
objects.” This concept can be further illustrated with an anal-
ogy of homozygous twins who share identical chromosomes
but live in separate countries. If these twins possess a genetic
condition programmed to manifest at a specific age, both will
develop symptoms simultaneously despite their geographic
separation—not because of mysterious communication
between them, but because they carry the exact predetermined
genetic instructions (Aspect, 2024). Einstein’s discomfort with
quantum entanglement led to a decades-long scientific quest
to determine whether his intuition about hidden variables was
correct. Bell’s (1964) theorem provided a mathematical
framework to test Einstein’s local hidden variables theory

against quantum mechanics. Bell derived inequalities that
would be satisfied by any theory based on local hidden vari-
ables but violated by quantum mechanics in certain scenarios.
Subsequent experiments, most notably those conducted by
Alain Aspect and colleagues in the early 1980s, confirmed
quantum mechanics’ predictions by demonstrating violations
of Bell’s inequalities (Bell, 1964; Aspect et al., 1982; Aspect,
2024). These experimental results strongly suggest that quan-
tum entanglement cannot be explained by pre-existing prop-
erties carried by particles, but represents a fundamentally
different kind of correlation that defies classical intuition.
Despite these philosophical challenges, entanglement has
proven to be an essential resource for quantum information
processing.

Entanglement serves as a crucial resource for quantum
information processing, enabling computational capabilities
beyond classical limits (Horodecki et al., 2009). It enables
qubits to be correlated in ways that have no classical analog,
allowing quantum computers to perform certain calculations
exponentially faster than classical computers (Nielsen and
Chuang, 2010). It is a quantum phenomenon where two (or
more) qubits become linked in such a way that the state of
one instantly affects the state of the other, no matter how far
apart they are, i.e., they no longer have independent states;
instead, they share a joint quantum state. In fact, Jian-Wei Pan
and colleagues experimentally demonstrated that quantum
entanglement persists over vast distances when, in 2017, they
used the Micius satellite to distribute entangled photon pairs
between ground stations separated by 1,200 kilometers, con-
firming that the quantum correlation remains intact regardless
of spatial separation (Yin et al., 2017). As illustrated in Figure
2, the glove-in-box analogy helps introduce the concept of
quantum entanglement by comparing it to a more familiar
classical scenario. In the classical case, a pair of gloves—one
left-handed and one right-handed—are placed in two separate
boxes, which are then sealed and sent to different locations.
Although the identity of the gloves is unknown until a box is
opened, the glove types were fixed from the beginning. In
contrast, in the quantum case, the “gloves”—representing
entangled qubits—do not have definite identities prior to mea-
surement. When one box is opened, and a glove is revealed,

Figure 1. Visual analogy of quantum superposition and measurement. (A) In quantum computing, a qubit can exist in a superposition state, graphically
represented by a spinning coin and mathematically described as | +) = (\0} +\1>)/\/2 or|—-) :(\O) —\1})/\/2, resulting from the Hadamard operation on | 0)
and | 1), respectively. Upon measurement, the superposition collapses to a definite classical state (1 =heads or 0 =tails), each with 50% probability,

similar to outcomes in classical computing (B).
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Figure 2. Graphical representation of quantum entanglement versus
classical correlation using the glove-in-box analogy. (A) In quantum
computing, two boxes contain entangled qubits represented by the
quantum link (curvilinear line). On the left, the Bell state

[} *y=(j00y+[11)) /N2 results in both boxes revealing the same glove
upon measurement (both left or both right). On the right, the Bell state
[¥*) =([01) +/10))/ V2 results in the boxes containing opposite gloves. In
both cases, the outcomes are not predetermined but are correlated in a
non-classical, probabilistic way. (B) In classical computing, the gloves
have definite identities from the start. If one box contains a left-handed
glove, the other contains a right-handed glove, but this information is only
revealed when the boxes are opened. Unlike quantum entanglement, the
correlation here is due to a prior assignment.

the glove in the other box instantaneously assumes the corre-
sponding correlated identity, even if the boxes are far apart.
Depending on the specific Bell state, a maximally entangled
two-qubit state, the gloves will be either the same or opposite.
For example, in the | ®") state (Figure 2A left panel), both
gloves will match (e.g., both left-handed), while in the | ¥*)
state (Figure 2A right panel), the gloves will differ (i.e., one
left-handed, one right-handed) (Mermin, 1981; Nielsen and
Chuang, 2010). While Bell states represent the extreme case
of maximal entanglement, in practice, entanglement can also
occur to varying degrees. Although this analogy captures the
idea of strong correlations and nonlocal outcomes, it does not
fully reflect the unique features of quantum entanglement—such
as the ability to choose different measurement settings and
observe correlations that violate classical expectations (Mer-
min, 1981; Nielsen and Chuang, 2010). This illustrates quan-
tum entanglement’s non-classical, probabilistic nature, where
measurement outcomes are not predetermined but are per-
fectly correlated according to the shared entangled state.
Therefore, the glove-in-box analogy is a helpful conceptual
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tool, but should not be interpreted as a complete description
of entanglement phenomena. Another way to understand
entanglement is the “quantum book” (Preskill, 2018). Unlike
a classical 100-page book, where reading each page reveals
1% of the content, reading individual pages of the entangled
quantum book reveals only “random gibberish.” This occurs
because the information is not stored in individual pages but
rather in their correlations. The quantum information can
only be accessed simultaneously through collective observa-
tions of multiple pages. This characteristic distinguishes quan-
tum information processing from CC, highlighting how
entanglement allows information to be encoded in relation-
ships between components rather than in the components
themselves.

Quantum interference

It is the third foundational pillar of QC, alongside superposition
and entanglement, and serves as the critical mechanism enabling
quantum computational advantage. In the circuit model, quan-
tum algorithms manipulate qubits using quantum gates to gen-
erate interference patterns that amplify correct outcomes and
suppress incorrect ones (Nielsen and Chuang, 2010); in other
paradigms, such as quantum annealing (Das and Chakrabarti,
2008), photonic continuous-variable computing (Braunstein
and van Loock, 2005), and some neutral atom systems (Saffman
et al., 2010), analogous interference effects are engineered
through different physical processes rather than discrete gates.
This selective enhancement lies at the heart of the computa-
tional speedups observed in quantum algorithms (Nielsen and
Chuang, 2010; Montanaro, 2016). Quantum interference is
often illustrated using the water wave analogy to build an intu-
itive understanding, as shown in Figure 3. When two stones are
dropped into a pond, the resulting ripples overlap, producing
constructive interference (when crests align) and destructive
interference (when crests and troughs cancel). Analogously,
quantum interference arises from the interaction of probability
amplitudes, i.e., complex-valued quantities whose squared mag-
nitudes determine the likelihood of measurement outcomes.
Regardless of the implementation, quantum operations orches-
trate these amplitudes to bias the probability distribution
toward correct answers. However, this analogy, while helpful,
is conceptually limited. Quantum and classical wave packets
can share mathematical descriptions [e.g., via the Schrodinger
equation; Griffiths and Schroeter (2018)], but the physical inter-
pretations differ fundamentally (Rozenman et al., 2019). Water
waves are physical displacements in a medium, whereas quan-
tum wave functions represent probabilities and exist in an
abstract Hilbert space (Rozenman et al., 2019). Hilbert space
is the mathematical framework where quantum states “live”—a
complete vector space with an inner product that allows for
measuring distances and angles between quantum states. This
abstract space is essential for QC because it provides the math-
ematical structure needed to describe superposition, entangle-
ment, and the evolution of quantum systems, with its
dimensionality growing exponentially with the number of
qubits (2" dimensions for n qubits) (Supplementary Appendix
1). The analogy breaks down especially when interpreting inter-
ference as a purely spatial effect; quantum interference operates
in the space of possibilities, not classical geometry. This distinc-
tion is crucial: quantum interference is not merely a wave phe-
nomenon but a non-classical computational resource that
allows algorithms like Grover’s search and quantum Fourier
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Figure 3. \Water wave analogy for quantum interference. Ripples from two stones show (A) no interference or (B) constructive and destructive
interferences, similar to how quantum algorithms amplify correct outcomes and cancel incorrect ones through the interference of probability amplitudes.
While visually intuitive, this analogy has important limitations as quantum interference occurs in Hilbert space, not physical space, and involves complex

amplitudes rather than physical waves (Rozenman et al., 2019).

Figure 4. lllustration of quantum tunneling using the hill and the ball analogy. In classical computing, a ball on one side of a hill cannot cross to the other
side without enough energy to roll over the top. In contrast, in quantum computing, the same ball “mysteriously” appears on the other side without ever
going over the top because the particle’s wavefunction can extend through the barrier (i.e., hill), giving a finite probability that the particle will appear on

the other side without traversing over the top.

transform to outperform their classical counterparts (Rozenman
et al., 2019).

While superposition, entanglement, and quantum interfer-
ence form the core of most discussions on QC, certain qubit
architectures rely on an additional quantum phenomenon,
quantum tunneling, as a fundamental operational resource.

Quantum tunneling

Quantum tunneling occurs when a particle passes through an
energy barrier that it would be unable to overcome according
to classical physics. This effect arises from the wave-like nature
of quantum particles and the probabilistic nature of their wave-
functions (Griffiths and Schroeter, 2018). The concept can be
visualized by imagining a ball resting at the base of a slope that
is too steep for it to climb; while classical mechanics predicts
the ball will remain trapped, quantum mechanics allows it to
be found on the other side without ever cresting the slope, due
to its wavefunction extending into and beyond the barrier
(Figure 4). In superconducting qubits, paired electrons known
as Cooper pairs can tunnel through an ultra-thin insulating
barrier in a Josephson junction. This tunneling is central to the
operation of the qubit: it creates discrete, anharmonic energy
levels that can be manipulated to represent and process quan-
tum information (Clarke and Wilhelm, 2008; Krantz et al.,
2019). By enabling precise and coherent control of these states,

tunneling complements superposition, entanglement, and
quantum interference as a fundamental quantum resource in
specific qubit architectures.

Together, superposition, entanglement, quantum interfer-
ence, and quantum tunneling form the foundational quantum
phenomena that enable computation in fundamentally different
ways than classical computers. While CC algorithms are
sequences of logical operations performed on bits, quantum
algorithms manipulate qubits through quantum gates, exploit-
ing these quantum phenomena to perform specific calculations
more efficiently than classical algorithms (Arute et al., 2019).
Current quantum computers use various physical systems to
implement qubits, including superconducting circuits, trapped
ions, and topological systems. Each approach has advantages
and challenges, and research is ongoing to determine the most
effective and scalable qubit technologies for each application
(Bennett and DiVincenzo, 2000). The potential of QC is per-
haps best illustrated by Shor’s quantum algorithm for integer
factorization, which can theoretically break many current cryp-
tographic systems. While factoring large numbers is computa-
tionally intensive for classical computers, Shor’s algorithm
could factor them exponentially faster. This poses significant
implications for cybersecurity (Shor, 1997) as it could compro-
mise widely used encryption methods like RSA
(Rivest-Shamir-Adleman), the most common public-key
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cryptographic algorithm used today. The RSA’s key exchange
security relies on the practical difficulty of factoring a large
semiprime number—i.e., a product of two large prime num-
bers. Classically, this requires checking potential prime factors
up to the square root of the target number, a task that becomes
computationally infeasible as the number of digits increases
(Aspect, 2024).

Evolution of quantum computing

Contextualizing QC progression through comparison with
historical CC development provides a valuable perspective.
Figure 5 illustrates the parallel but offset developmental trajec-
tories of classical and QC technologies. While CC has evolved
from theoretical concepts to ubiquitous systems over nearly a
century, QC remains in its early stages with capabilities com-
parable to those of CC in the 1950s-—1960s. Major technolog-
ical milestones are indicated for each paradigm, with projected
developments for QC extending into the 2030s and 2040s. The
green dashed lines highlight the developmental equivalence
between 2020s QC and 1950s-1960s CC.

Classical computing developmental timeline

The evolution of CC unfolded as a remarkable technological
odyssey spanning nearly half a century (Ceruzzi, 2003). Begin-
ning with Alan Turing’s theoretical foundations in 1936 that
conceptualized the universal computing machine (Turing,
1937), this journey gained physical form with the Electronic
Numerical Integrator and Computer’s (ENIAC) completion in
1945, the first programmable, electronic, general-purpose dig-
ital computer. However, ENIAC was not a stored-program
machine; it required manual reconfiguration using cables and
switches to change programs. The first successful implementa-
tions of the stored-program concept appeared shortly after,
with the Manchester Baby prototype in 1948 and the Electronic
Delay Storage Automatic Calculator (EDSAC) in 1949, which
is widely recognized as the first computer to run a full program
stored in memory. The commercial computing era truly began
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when Universal Automatic Computer I (UNIVAC) was deliv-
ered to the U.S. Census Bureau in 1951, establishing the feasi-
bility of business-oriented data processing. The revolutionary
IBM System/360, announced in 1964, introduced the first stan-
dardized computer family, allowing businesses to upgrade their
computing capabilities without rewriting applications and
cementing IBM’s dominance in the industry. The microproces-
sor revolution followed with Intel’s 4004 in 1971, dramatically
shrinking computing power onto a single chip and paving the
way for personal computing’s emergence through a watershed
moment in 1977 when three pioneering “trinity” systems
launched: the Apple II, Commodore PET, and Tandy Radio
Shack (TRS-80), collectively bringing affordable computing to
homes and small businesses for the first time. The TRS-80
model I was particularly important as it was one of the first
mass-produced, fully assembled personal computers available
through widespread retail distribution (i.e., RadioShack), mak-
ing computing accessible to many Americans who didn’t have
access to specialized computer stores (Welsh and Welsh, 2007).
The introduction of the IBM PC in 1981 further accelerated
adoption and standardization. Subsequent decades witnessed
exponential growth in computing power, alongside the trans-
formative impacts of networking, mobile devices, and sophis-
ticated software systems, culminating in CC’s journey from
esoteric research tools to ubiquitous global infrastructure
(Ceruzzi, 2003), including supercomputers.

Quantum computing developmental timeline

The QC paradigm represents a fundamentally different techno-
logical trajectory still in its embryonic phase compared to its
classical counterpart (Figure 5). This journey began when Rich-
ard Feynman publicly articulated the concept during a 1981
conference at MIT, proposing that quantum systems could be
effectively simulated only by computers leveraging quantum
mechanical properties (Feynman, 1982). As Georgescu et al.
(2014) later confirmed, quantum computers possess an inherent
advantage in modeling other quantum systems—a task that

Figure 5. Comparative evolutionary timeline of classical and quantum computing (1930s to 2040s).
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becomes exponentially complex on classical architectures. This
capability holds transformative potential for materials science
and pharmaceutical research, leading to the development of
quantum chemistry, an intersection among physics, chemistry,
computer science, and applied mathematics (Aspuru-Guzik et
al., 2018). The field gained theoretical rigor when David
Deutsch formalized the universal quantum computer model in
his seminal 1985 paper, establishing the mathematical founda-
tion for quantum computation (Deutsch, 1985). Practical algo-
rithms emerged in the mid-1990s through groundbreaking
work by Peter Shor (Shor, 1994) and Lov Grover (Grover,
1996), demonstrating QC’s potential superiority for specific
problems. Experimental implementation has progressed grad-
ually from rudimentary qubits in the early 2000s to today’s
noisy intermediate-scale quantum (NISQ) systems with 50 to
100+ qubits (Preskill, 2018). NISQ refers to the current gener-
ation of quantum computers that operate with a moderate
number of qubits (typically below 1,000) but suffer from sig-
nificant noise and quantum decoherence (i.e., the loss of quan-
tum information due to unavoidable interactions with the
environment), limiting their ability to maintain quantum states
and perform error-free calculations (Preskill, 2018). These sys-
tems lack the comprehensive error correction needed for
fault-tolerant computation, yet they are sufficiently powerful
to explore quantum algorithms and potentially demonstrate
quantum advantage in specific applications. However, practical
quantum advantage remains elusive for most applications.
While decoherence remains a fundamental limitation for
maintaining quantum states over the durations required for
computation, the current biggest obstacle to practical quantum
advantage is the limited number of physical qubits available in
existing systems, a challenge that decoherence and other noise
sources exacerbate by constraining how many logical qubits
can be derived from physical ones. For many commercially
relevant problems, the scale of the computation exceeds the
capacity of today’s devices, even before accounting for the over-
head required for error correction. Quantum computation
requires qubits to interact with external control systems to
perform operations such as entangling gates. These necessary
interactions inevitably expose the system to environmental
noise, contributing to decoherence. This creates a fundamental
tension: qubits must remain sufficiently isolated to preserve
coherence, yet accessible enough to perform logic operations
(Black et al., 2002). Recent experiments show typical coherence
times of 50 microseconds to a few milliseconds for supercon-
ducting qubits (Burnett et al., 2019), far shorter than required
for complex algorithms. Error correction requires significant
overhead, with estimates suggesting that thousands of physical
qubits are needed for each logical qubit capable of fault-tolerant
operation (Fowler et al., 2012). Current error rates for
two-qubit gates remain at approximately 0.5% to 1% for lead-
ing platforms (Noiri et al., 2022), whereas fault tolerance gen-
erally requires error rates below 0.1% (Wang et al., 2011).
These constraints make hybrid quantum—classical approaches
essential in the near term, with quantum processors focused
on the subproblems where they offer the greatest advantage,
while classical computers handle the remaining computation.
As shown in Figure 5, QC development currently approxi-
mates the evolutionary stage that CC occupied during the
1950s-1960s period, which is characterized by early imple-
mentations with limited functionality but substantial future
potential. The theoretical and applied QC fields are rapidly

gaining traction, with significant advancements likely to occur
sooner rather than later. Most industry experts and researchers
project that error-corrected quantum systems could be achieved
within the next decade, with a possible fault-tolerant, practical
QC implementation after 2025. In stark contrast to this opti-
mistic outlook, Dyakonov (2020) presents a fundamentally
skeptical assessment of QC’s future. He argues that QC faces
insurmountable physical challenges rather than merely engi-
neering obstacles to be overcome with time. He contends that
controlling the vast number of continuous quantum parameters
required (which grows exponentially with the number of
qubits) is physically impossible in practice. Furthermore, he
asserts that quantum error correction schemes cannot work as
theorized because they rely on mathematical abstractions that
ignore fundamental physical realities. In his assessment, after
25 years of research with no meaningful computational results,
QC represents “more of a sociological phenomenon than a
viable technological path” (Dyakonov, 2020).

The “quantum supremacy” concept represents an important
milestone in developing QC technology. In its conventional
definition, quantum supremacy refers to the point at which a
quantum computer can perform a well-defined computational
task that is practically impossible for classical computers to
complete within a reasonable timeframe (Yung, 2019). It is
important to distinguish this from “quantum advantage”:
supremacy, in the traditional sense, can apply to any task per-
formed faster by a quantum computer, even if the task has no
direct practical value (as in Google’s 2019 random circuit sam-
pling experiment described next), whereas quantum advantage
refers to solving practical, real-world problems more efficiently
than classical systems. Some researchers have proposed a
broader interpretation of supremacy that is not limited to exe-
cution speed, emphasizing that quantum systems may also offer
unique representational capabilities, for example, in quantum
machine learning (QML), where projecting classical data into
high-dimensional Hilbert spaces can capture correlations inac-
cessible to classical computation, even if the quantum approach
is slower. For agricultural applications (and likely many other
applied sciences), our ultimate focus is on achieving quantum
advantage, i.e., practical benefits for real-world problems,
rather than merely demonstrating supremacy.

Current state of quantum computing

Despite the considerable media hype surrounding QC, includ-
ing Google’s landmark 2019 quantum supremacy claim that
their 53-qubit Sycamore processor performed a specialized
calculation in 200seconds that they estimated would take a
classical supercomputer 10,000 years, causing them to declare
“an experimental realization of quantum supremacy for this
specific computational task” (Arute et al., 2019). Google’s
claim was immediately challenged by IBM researchers, who
demonstrated that by leveraging secondary storage on the Sum-
mit supercomputer, such circuits could be simulated “with high
fidelity to arbitrary depth in a matter of days” (Pednault et al.,
2019), effectively reducing Google’s estimated 10,000 years to
approximately 2.5 days.

As of 2025, QC has progressed from a theoretical concept
to an emerging technology with significant potential. Given
Google’s 2019 premature announcement of quantum suprem-
acy, it is important to note that the QC market is currently
highly volatile, with rapidly changing claims, counterclaims,
and projections from various industry players and researchers.
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It is crucial to approach industry announcements with appro-
priate scientific skepticism (Roberson and White, 2019). While
large-scale, fault-tolerant quantum computers (FTQC), i.e.,
systems with comprehensive error correction capabilities that
can reliably perform quantum computations despite noise and
decoherence, remain elusive, several milestones have been
reached. Companies like IBM, Google, and IonQ have devel-
oped quantum processors with increasing numbers of qubits.
For instance, IBM’ Osprey processor, announced in 2022,
featured 433 qubits (Collins and Nay, 2022), though the quan-
tum volume, a hardware-agnostic metric that measures the
performance of quantum computers by considering both qubit
count and error rates (Moll et al., 2018), remains significantly
lower than the raw qubit count would suggest. Unlike raw
qubit count, which tallies the number of qubits, quantum vol-
ume captures the effective computational power by incorpo-
rating critical factors such as gate fidelity, connectivity between
qubits, and circuit depth capabilities. For example, a 100-qubit
processor with poor connectivity and high error rates might
have a lower quantum volume than a 20-qubit processor with
all-to-all connectivity and low errors, making the quantum
volume a more realistic measure of what computations can
actually be performed successfully.

Then, in late 2023, IBM announced its Condor processor,
featuring 1,121 qubits and representing the world’s largest
quantum chip at the time (Pasternack, 2024). However, Con-
dor also demonstrated the practical limits of simply scaling up
qubit count, as the massive chip required unprecedented cool-
ing infrastructure and generated significant engineering chal-
lenges related to noise, connectivity, and error rates.
Simultaneously, IBM developed their Heron processor (133
qubits), which prioritizes error mitigation and gate fidelity over
raw qubit numbers, alongside a modular system architecture
designed to link multiple high-quality processors together (Pas-
ternack, 2024). In 2024, IBM released the Heron R2, expand-
ing to 156 qubits with improved coherence times and the ability
to execute up to 5,000 two-qubit gates, enabling what IBM
terms “utility-scale” quantum computation (Ivezic, 2024). In
2025, IBM unveiled the Nighthawk processor (120 qubits),
featuring a novel square lattice connectivity map designed to
improve nearest-neighbor coupling and reduce circuit depth.
Although Nighthawk’s qubit count is lower than Condor or
Osprey, its architecture supports up to ~15,000 gates and can
scale by chaining up to nine modules (~1,080 qubits) while
maintaining high fidelity (Anonymous, 2025b). Looking fur-
ther ahead, IBM announced its goal to deliver the Starling
quantum supercomputer by 2029, projected to contain ~2,000
physical qubits and 200 logical qubits with full error correc-
tion, capable of executing approximately 100 million quantum
gates—marking a potential transition to scalable, fault-tolerant
quantum computation (Tatananni, 2025). IBM’s dual develop-
ment of Condor’s brute-force scaling approach and Heron’s
quality-focused design exemplifies the broader industry recog-
nition that quantum advantage will likely emerge from
improved qubit coherence and error correction rather than
simply maximizing qubit count. The addition of Nighthawk
and Starling to IBM’s roadmap reinforces this hybrid strategy,
combining near-term gains from improved connectivity and
modular scaling with long-term fault-tolerant system goals.

In February 2025, Amazon Web Services (AWS) unveiled its
inaugural quantum processor, designated “Ocelot” (Anony-
mous, 2025a). This superconducting qubit-based processor
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incorporates novel error correction methodologies designed to
“reduce the costs of implementing quantum error correction
by up to 90%, compared to current approaches.” Several com-
panies now offer cloud access to quantum computers, allowing
researchers and developers to experiment with quantum algo-
rithms (Preskill, 2018). Researchers have made critical advances
in quantum error correction, a crucial step towards FTQC. For
example, a 2023 study demonstrated significant progress in
developing practical quantum error correction methods (Fowler
et al., 2012; Campbell, 2024), outperforming its constituent
physical qubits (Kim et al., 2023) and representing a significant
threshold in the field. However, considerable challenges remain,
including improving qubit quality and quantity, developing
practical quantum algorithms, and creating a robust quantum
software ecosystem (Preskill, 2018).

Perspectives on QC timelines vary substantially across the
industry. Their expert projections in academic and industry
analyses indicate that truly FTQC capable of solving practical
problems will likely emerge around 2030 (Bobier et al., 2024),
though some companies are accelerating their timelines with
targeted roadmaps (Baker, 2024). Some suggest that truly
FTQC capable of delivering reliable, practical business value
will not emerge soon; expert projections indicate that “every-
day quantum computers are still decades away” as there
remains “a vast gap to be bridged before quantum computers
can do more meaningful things” (Anonymous, 2019). Accord-
ing to comprehensive market analyses by Boston Consulting
Group (BCG), the QC industry is expected to develop in three
distinct phases: NISQ (i.e., computers with less than 1,000
qubits) until 2030, broad quantum advantage from 2030 to
2040, and full-scale fault tolerance after 2040 (Bobier et al.,
2021). This phased development reflects the significant techni-
cal challenges in quantum error correction that experts believe
will remain QC’s biggest hurdle for much of this decade (Pre-
skill, 2023). The timeline projections of QC exhibit substantial
variation among domain experts (Novet, 2025): Oskar Painter,
AWS Director of Quantum Hardware, projected that commer-
cial quantum workloads will not be operational for “10years
or more.” Similarly, Jensen Huang, Nvidia CEO, estimated
that practical QC applications remain “15 to 30years” from
realization, while Mark Zuckerberg, from Meta, suggested a
minimum developmental timeline of “at least a decade” before
commercial viability. Contrastingly, Julian Kelly, Google
Quantum Artificial Intelligence (AI) Director of Hardware,
presented a more optimistic assessment, suggesting QC tech-
nology is “about five years out from a real breakout application
that you can only solve on a quantum computer” (Cherney,
2025). McKinsey’s quantitative analysis estimated that approx-
imately 5,000 operational quantum computers would be in
place by 2030, with hardware and software capabilities suffi-
cient for complex computational problems not anticipated until
2035 or beyond (Stackpole, 2024).

While we are currently in the NISQ era, as first defined by
Preskill (2018), recent advances suggest we may see “early
fault-tolerant quantum computers” with a few hundred logical
qubits in the latter half of this decade. These early FTQC sys-
tems will enable practical applications but are not yet powerful
enough to run intensive quantum algorithms like Shor’s factor-
ization (Anonymous, 2024a). Multiple industry leaders, includ-
ing Quantinuum, have published roadmaps targeting FTQC
by 2030 (Anonymous, 2024b), demonstrating progress through
achievements like creating 12 logical qubits on existing
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hardware. These developments support BCG’s projection that
QC will make $450-850 billion of economic value by 2040,
with the most transformative commercial applications requir-
ing the broad quantum advantage expected in the 2030-2040
timeframe (Bobier et al., 2024).

The field has recently seen significant progress in
intermediate-scale applications that do not require complete
fault tolerance. Variational quantum algorithms have shown
promise in chemistry simulations (McArdle et al., 2020),
though they still face limitations in accuracy compared to clas-
sical methods. Additionally, QML approaches are being devel-
oped that may offer advantages for specific data structures
(Biamonte et al., 2017), but the general quantum advantage
for practical problems remains unproven experimentally.
According to the National Academies of Sciences, Engineering,
and Medicine (NASEM, 2019), the scientific consensus sug-
gests that while QC holds tremendous potential, the path to
reliable, practical business value requires overcoming substan-
tial technical barriers and may take 5-10years of further fun-
damental research.

Classical versus quantum computing
Fundamental differences

The field of computing stands at a fascinating crossroads, with
QC emerging as a revolutionary paradigm that challenges our
traditional understanding of information processing. Table 1
summarizes the key differences between CC and QC. The fun-
damental distinction between them begins at the most elemen-
tary level of information representation (Nielsen and Chuang,
2010). As indicated before, while classical systems rely on bits
that exist in definitively binary states (0 or 1), quantum com-
puters leverage quantum mechanical phenomena to utilize
qubits, which can exist in superpositions of states (Preskill,
2018). This fundamental difference cascades into profound
operational distinctions. Classical computers process informa-
tion sequentially through Boolean logic operations on discrete
binary states. In contrast, quantum systems can perform par-
allel operations on exponentially large state spaces (Nielsen
and Chuang, 2010). Classical systems benefit from relatively
straightforward error correction mechanisms, whereas quan-
tum systems remain exquisitely sensitive to environmental
perturbations—a phenomenon known as decoherence (Zurek,
2003). This sensitivity necessitates sophisticated quantum error
correction codes, which require significant overhead to imple-
ment effectively (Terhal, 2015). Recent advances in error cor-
rection have been substantial, with Google demonstrating the
first “below-threshold” error correction in 2024 using their
105-qubit Willow processor, achieving exponential error sup-
pression with increasing code size (Acharya et al., 2025). Per-
haps most significantly, the algorithmic approaches diverge
fundamentally. While classical algorithms rely on deterministic

Table 1. Key differences between classical and quantum computing

or probabilistic operations rooted in Boolean logic, quantum
algorithms exploit unique quantum phenomena such as inter-
ference and entanglement to achieve computational advantages
for specific problems (Montanaro, 2016).

Comparative advantages and limitations

Recent advances in Shor’s algorithm implementation have been
notable, with researchers successfully factoring 21 on IBM
quantum processors using only five qubits (Skosana and Tame,
2021). The largest number factored using a complete simulation
of Shor’s algorithm on classical hardware without prior knowl-
edge of the solution is 549,755,813,701 (Willsch et al., 2023),
though practical implementation on quantum hardware
remains challenging for larger numbers. One particularly prom-
ising application domain involves the simulation of quantum
systems. Other advantages include the quantum approximate
optimization algorithm (QAOA) (Farhi et al., 2014; Blekos et
al., 2024) and quantum annealing techniques (Hauke et al.,
2020) that demonstrate promising theoretical advantages for
complex optimization problems that pervade scientific and
industrial domains. The intersection of QC with machine learn-
ing (ML) represents another frontier with significant potential,
as QML algorithms may offer substantial speedups for specific
learning tasks and data structures (Biamonte et al., 2017;
Schuld and Petruccione, 2021). However, QC is not universally
superior—many computational tasks show no quantum advan-
tage and remain better suited to classical architectures (Aaron-
son, 2015). As mentioned above, current quantum error
correction methods require significant overhead, with estimates
suggesting thousands of physical qubits needed for each logical
qubit capable of fault-tolerant operation (Campbell, 2024).
This massive overhead is necessary because quantum states are
extremely fragile, as any interaction with the environment can
cause errors. Error correction codes work by encoding the infor-
mation of one “logical” qubit across many “physical” qubits
in a way that allows detection and correction of errors without
directly measuring (and thus destroying) the quantum informa-
tion. The more physical qubits used, the more robust the logical
qubit becomes against noise and decoherence, but this comes
at the cost of needing perhaps 1,000-10,000 physical qubits to
create just one reliable logical qubit. Developing effective quan-
tum algorithms presents another substantial hurdle because
creating algorithms that leverage quantum effects to outperform
classical approaches requires fundamentally different
problem-solving paradigms (Montanaro, 2016). Additionally,
current QC infrastructure remains costly and specialized, lim-
iting accessibility and widespread adoption (NASEM, 2019).

Performance comparison

When considering performance, the relative advantage of QC
requires nuanced analysis. For specific problems with

Aspect Classical Computing (CC)

Quantum Computing (QC)

Information units
State representation
Processing

Error susceptibility

Bits (0 or 1)

Binary states

Sequential operations on bits

More stable, easier to correct errors

Qubits (superposition of 0 and 1)

Superposition of states

Parallel operations on quantum states

Highly sensitive to environmental interference, requires complex error correction

Algorithmic approach Based on boolean logic and arithmetic Exploits quantum phenomena like interference and entanglement
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appropriate structure, quantum computers theoretically offer
exponential improvements in computational efficiency, but for
many common computational tasks, classical computers
remain not only adequate but superior in terms of both per-
formance and practicality (Harrow and Montanaro, 2017).
The distinctive value proposition of QC lies not in raw pro-
cessing speed but in algorithmic efficiency for particular prob-
lem classes. As mentioned above, the so-called quantum
supremacy (Arute et al., 2019; Zhong et al., 2020) is purely of
theoretical significance but possibly hints at the technology’s
future potential. The achievements of Google’s Willow proces-
sor represent a critical step toward building noise-resistant
quantum computers with practical scale and have demon-
strated significant progress in quantum error correction, achiev-
ing a “beyond-classical” ability in random circuit sampling
tasks that would be intractable for classical supercomputers
(Acharya et al., 2025).

The black box example

To better understand how quantum computers perform calcu-
lations differently from classical computers, let’s consider a
simple problem and compare the approaches. Imagine a black
box function that takes a single bit as input and produces a
single bit as output. The function is either constant (always
outputs zero or always outputs one: f(0) = f(1) = 0 or f(0) =
f(1) = 1) or balanced (outputs 0 for half the inputs and 1 for
the other half: either £(0) = 0, (1) = 1 or £(0) = 1, £(1) = 0). Our
task is to determine which type of function we have. As shown
in Supplementary Appendix 1, a classical computer must check
the function twice to be certain. Step 1: calculate £(0), step 2:
calculate f(1), and step 3: compare both outputs. The function
is constant if f(0) = f(1). The function is balanced if £(0) = f(1).
Using Deutsch’s algorithm (Deutsch, 1985), a quantum com-
puter can solve this problem with only one function evaluation.
The ingenious aspect of Deutsch’s algorithm is in how it uses
superposition to evaluate both inputs simultaneously (quantum
parallelism), encodes the result in phase rather than directly
reading output values (phase kickback), and uses interference
through the final Hadamard gate to extract global information
about the function without determining specific values. Phase
kickback is a quantum phenomenon where information about
a function gets encoded in the phase (the quantum mechanical
‘angle’) of a qubit rather than its amplitude. This is crucial
because while we cannot directly measure phase, we can use
quantum gates to convert phase differences into measurable
probability differences, allowing us to extract global properties
of functions with fewer evaluations than classically possible.
This demonstrates a fundamental quantum advantage: the abil-
ity to extract global properties of a function without evaluating
all possible inputs individually, something provably impossible
in CC (Mermin, 2007).

Emulation of quantum computing

Although it is possible to simulate quantum computations on
classical computers to a certain extent using Python libraries
such as Qiskit, Cirq, PennyLane, and many others (Aleksand-
rowicz et al., 2019; Kaiser and Granade, 2021; Young et al.,
2023), it is crucial to understand the distinction between quan-
tum simulators and quantum emulators. Simulators perform
idealized, noise-free quantum circuit simulations, allowing
researchers to test algorithms without hardware imperfections.
Some simulators, such as IBM’s Aer framework (https://qiskit.
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github.io/qiskit-aer), also allow the injection of custom or
hardware-derived noise models to mimic real-world conditions
(Aleksandrowicz et al., 2019). Emulators, on the other hand,
replicate the behavior of a specific quantum processing unit,
including its native gate set, connectivity, and calibrated noise
distributions, often using snapshots of the device’s state at a
given time. This makes emulators valuable for assessing algo-
rithm performance under realistic hardware constraints before
running on actual quantum devices.

Classical computers can effectively simulate quantum systems
with a small number of qubits (typically up to about 30-40 qubits)
(Gangapuram et al., 2024). Beyond this, the simulation becomes
exponentially more resource-intensive due to the vast state space
that needs to be represented (Zhou et al., 2020). Simulators and
emulators are invaluable for developing and testing quantum algo-
rithms, educating students and researchers, and exploring quan-
tum concepts. However, they cannot replicate the full power of a
quantum computer for large-scale problems. The exponential
advantage of quantum computers for specific tasks only becomes
apparent when dealing with issues beyond the simulation capa-
bilities of classical computers (Preskill, 2018). For example, while
a classical computer can simulate Shor’s algorithm for small num-
bers, it cannot do so for the large numbers used in real-world
cryptography—that’s where actual quantum hardware becomes
necessary (and troublesome). In essence, QC emulation on clas-
sical computers serves as a crucial bridge in developing QC, but
it does not negate the need for actual quantum hardware to realize
the full potential of QC.

Current Development Paradigms and
Limitations

Despite significant advances in QC research, fully functional
large-scale quantum computers do not yet exist. These systems,
while impressive demonstrations of quantum principles, remain
limited in their practical capabilities due to issues with qubit
coherence, error rates, and scaling. We are currently at a critical
juncture in QC development. Classical computers can simulate
quantum systems up to a specific size, but, as discussed before,
we are approaching the “quantum advantage” or “quantum
supremacy” era previously introduced (Yung, 2019). This sig-
nificant threshold marks where QC hardware must progress
independently as classical emulation becomes computationally
infeasible. Three primary approaches are currently being pur-
sued to demonstrate quantum supremacy: boson sampling,
sampling from instantaneous quantum polynomial circuits, and
sampling from chaotic quantum circuits (Yung, 2019). Each
of these methods represents a pathway to establishing the prac-
tical superiority of quantum systems for specialized computa-
tional tasks. Applying these quantum supremacy techniques to
agricultural problems would represent a transformative capa-
bility for addressing previously stubborn challenges in the field.

The quantum assembly language era

The current state of QC bears striking similarities to the early
days of CC when assembly language was the primary program-
ming method (Figure 5). Today’s quantum developers work
directly with low-level qubit manipulations, quantum gates
(i.e., fundamental operations of qubits), and circuit designs,
essentially the “assembly language” of QC. We are still devel-
oping the basic building blocks before more abstract,
user-friendly QC languages and frameworks emerge. While
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several quantum programming languages already exist, such
as IBM’s Qiskit (Aleksandrowicz et al., 2019), Google’s Cirq,
and Microsoft’s Q# (Kaiser and Granade, 2021), most
gate-based systems ultimately compile down to OpenQASM,
an open quantum assembly language used across multiple ven-
dors (Cross et al., 2017). They still operate at a relatively low
level of abstraction compared to modern classical program-
ming languages, often require programmers to think about
quantum circuits, gates, and physical qubit operations rather
than high-level abstractions. This state of development means
quantum algorithms often require deep expertise in quantum
mechanics and low-level quantum operations, creating a sig-
nificant barrier to entry for domain specialists in fields like
agriculture who might benefit from quantum applications.
Furthermore, as our theoretical and experimental understand-
ing of quantum systems evolves, our current programming
models—rooted in classical logic and sequential execution—may
prove insufficient to fully capture or exploit the inherently
non-classical nature of quantum information, such as entan-
glement and quantum interference. This suggests that future
breakthroughs may involve better tools and new ways of con-
ceptualizing algorithm design and computation.

Among the various physical approaches to implementing
quantum computers, neutral atom systems show particular
promise for scalability. These systems can potentially prepare
qubit arrays in one, two, or three-dimensional geometries, with
recent experiments demonstrating control of up to 50 atomic
qubits (Saffman, 2019). The high ratio between coherent cou-
pling (the rate at which quantum operations can be performed)
and decoherence (i.e., unwanted loss of quantum information)
in neutral-atom systems establishes a favorable foundation for
scalability. This scalability will be essential for reaching the
million-qubit threshold that meaningful agricultural applica-
tions may eventually require.

Current application development approaches

Given these hardware limitations, QC applications are cur-
rently developed through three main approaches: classical
emulation (as discussed above), hybrid classical-quantum
approaches, or limited-scale quantum hardware. Researchers
use classical computers to simulate quantum algorithms for
small problem sizes in the classical emulation. These emulators
become exponentially slower as the number of qubits increases,
effectively limiting simulations to about 30-40 qubits on the
most powerful supercomputers. The hybrid classical-quantum
approach uses classical computers to handle parts of the prob-
lem while offloading specific computations to quantum proces-
sors (Bharti et al., 2022; Cerezo et al., 2022). This approach
works within hardware constraints while leveraging quantum
advantages for suitable sub-problems. In the limited-scale
quantum hardware, researchers access actual quantum proces-
sors through cloud services provided by companies like IBM,
Google, Amazon, and others. These systems allow testing of
real quantum algorithms but with significant constraints on
qubit count, coherence time, and error rates.

Agriculture presents a unique confluence of computational
challenges that align remarkably well with QC’s strengths.
Unlike many industrial applications that involve straightfor-
ward optimization, agricultural systems encompass
quantum-mechanical processes at the molecular level (soil
chemistry, photosynthesis, nitrogen fixation), exponentially
complex optimization problems (resource allocation across

"

time, space, and uncertain weather conditions), and massive
multivariate datasets from genomics, phenomics, and environ-
mental sensors. These characteristics—quantum processes,
combinatorial explosion, and high-dimensional data—precisely
represent the domains where quantum computers promise
advantages over classical systems. Furthermore, agriculture’s
pressing need for sustainability solutions demands computa-
tional breakthroughs to optimize resource use, minimize envi-
ronmental impact, and feed a growing global population within
planetary boundaries. To illustrate the potential alignment
between agricultural computational challenges and QC capa-
bilities, Table 2 summarizes key application areas across molec-
ular simulations, optimization problems, genomics, data
analysis, and integrated systems. While these applications show
theoretical promise, it is crucial to recognize that practical
implementation awaits significant advances in quantum hard-
ware, as discussed throughout this review.

Applications in Agricultural Sciences

Given the current stage of development of QC, the most prob-
able applications within the next 5- to 10-year timeframe
(Bharti et al., 2022) include quantum chemical simulation of
molecular structures and reactions where quantum mechanical
effects significantly influence system behavior, particularly rel-
evant for pharmaceutical development and materials science
(McArdle et al., 2020), optimization of specialized problems
using combinatorial optimization applications in logistics, sup-
ply chain management, and financial portfolio construction
where current heuristic approaches demonstrate suboptimal
performance (Harrigan et al., 2021), and applications to
advancing theoretical understanding of quantum algorithms,
error correction methodologies, and computational complexity
classifications (Aaronson, 2015). For most commercial orga-
nizations and individual consumers, QC benefits will initially
manifest indirectly through improved products, materials, and
services rather than through direct quantum computational
interaction (NASEM, 2019).

Fundamental sciences

Biology and chemistry are perhaps the most foundational sci-
entific disciplines poised to benefit significantly from QC due
to their reliance on complex quantum mechanical interactions
that are difficult to simulate classically. Quantum computing
offers unprecedented potential for accurately modeling molec-
ular electronic structures and solving the Schrodinger equation
(Nielsen and Chuang, 2010; Griffiths and Schroeter, 2018) for
large, interacting systems, tasks that are infeasible with classical
methods (Cao et al., 2019; Baiardi et al., 2023). In chemistry,
QC enables more precise calculations of ground and excited
states of molecular systems using algorithms like quantum
phase estimation and variational quantum eigensolvers, which
are especially relevant in areas like catalyst design and reaction
mechanism elucidation (Cao et al., 2019; McArdle et al., 2020).
Complex configurational searches in materials like graphene
can be reformulated into quantum-amenable optimization
problems using quantum annealing (Camino et al., 2023). In
biology, QC is expected to revolutionize areas such as drug
discovery, where quantum algorithms could vastly improve the
prediction of binding affinities, protein folding, and the map-
ping of biochemical interactions at atomistic resolution (Baiardi
et al., 2023).
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Agricultural sciences

A critical question for agricultural research is whether QC
offers solutions to fundamental (existing) problems that CC
systems, including supercomputers and Al, cannot resolve.
While CC continues to advance agricultural sciences through
ML models, digital farm twins, and complex optimization algo-
rithms (Tedeschi, 2019), particular agricultural challenges may
benefit from quantum approaches. Recent comprehensive
reviews have identified several promising QC applications
across agricultural and life sciences domains, including bioin-
formatics, remote sensing, climate modeling, and smart farming
(de Souza et al., 2024; Pook et al., 2025).

Quantum computers could potentially provide unique
advantages in complex molecular simulations, such as model-
ing nitrogen fixation and soil chemistry processes at the quan-
tum level through Hamiltonian simulation approaches for
resource recovery from agricultural waste streams, enabling
the development of more efficient fertilizers and sustainable
soil management strategies towards sustainability. These
molecular simulations involve quantum mechanical interac-
tions that classical computers struggle to model accurately.
Quantum algorithms such as QAOA might better handle the
exponentially complex optimization problems in large-scale
agricultural planning involving numerous variables like water
usage, crop rotation, and resource allocation, particularly in
agri-food supply chain management where perishable products
create highly complex nondeterministic polynomial time
(NP-hard) optimization problems (Chen et al., 2015; Saheb-
jamnia et al., 2018; Chouhan et al., 2021), i.e., it involves the
optimization of multiple variables and may include
multi-objective programming in which the number of possible
combinations grow exponentially.

Additional promising applications include solving large-scale
linear equation systems in animal breeding for estimating genetic
merits across millions of animals, quantum-enhanced ML
approaches for satellite image classification in land-use analysis,
and quantum search algorithms for genome assembly to effi-
ciently piece together DNA segments. Climate modeling is crit-
ical to on-farm decision-making and could also see improvements
through QC’s ability to process multiple variables simultane-
ously; however, significant challenges remain, including under-
standing climate, defining sustainability metrics, and the nascent
state of QC technology. Applications in the applied sciences,
specifically agricultural sciences, including animal sciences, are
vast and promising, but they are still theoretical or in the early
stages of development, with most practical applications not
expected in the near future due to current quantum hardware
limitations(Tedeschi, 2024; Pook et al., 2025).

Animal science

Animal nutrition and welfare

In animal nutrition, QC could revolutionize our ability to
model complex biological systems by simulating quantum-level
interactions among microbial communities, dietary com-
pounds, and host tissues. In rumen microbiome analysis, QC
could enable the exploration of dynamic interactions among
thousands of microbial species, fermentation products, and
host genetic responses, i.e., factors that influence nutrient uti-
lization, microbial crossfeeding behavior, microbial protein
synthesis, and methane emissions. For instance, the enzyme
nitrogenase, crucial for microbial protein synthesis in the
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rumen, contains iron-molybdenum cofactors where electron
transfer occurs through quantum tunneling (Hoffman et al.,
2014). Current metagenomic and metabolomic studies produce
terabytes of data that require extensive classical processing (Li
et al., 2019). Quantum algorithms, such as quantum search
and simulation methods, could reduce processing times and
help identify microbial consortia optimized for feed efficiency
and reduced emissions (Pook et al., 2025). These tools may
also facilitate the screening of novel feed additives or com-
pounds by modeling their effects on microbial metabolism and
host responses, supporting more precise and sustainable nutri-
tion strategies. Specifically, QC could model how methane
inhibitors, such as 3-nitrooxypropanol (or other halogenated
haloforms), interact with methyl-coenzyme M reductase at the
quantum level, potentially identifying more effective inhibitor
designs. Furthermore, quantum algorithms for solving partial
differential equations have demonstrated potential in climate
and environmental modeling, which could inform real-time
heat stress predictions and guide the design of ventilation sys-
tems in livestock housing (Pook et al., 2025). Quantum prin-
cipal component analysis has also shown promise in identifying
key environmental and physiological features related to ther-
mal comfort and facility design in livestock operations (Mar-
aveas et al., 2024; Pook et al., 2025). This could optimize the
interaction of multiple wvariables, including the
temperature-humidity index, air velocity, radiant heat load,
and animal-specific factors such as body weight and production
level (Tedeschi and Fox, 2020a, b). Together, these applications
illustrate how QC may enhance both the nutritional and envi-
ronmental dimensions of precision livestock systems.

Animal breeding and genomics

In animal breeding specifically, QC has been proposed as a
potential tool for certain computational challenges, though
significant practical limitations remain. Current mixed model
equations used in genetic evaluation require solving systems
with billions of equations, as breeding programs now routinely
evaluate millions of animals across multiple traits simultane-
ously (Vandenplas et al., 2023; Pook et al., 2025). The com-
putational complexity of these systems has become a major
bottleneck, with some evaluations requiring days of processing
on high-performance computing clusters (Freudenberg et al.,
2023). The Harrow-Hassidim-Lloyd quantum algorithm could
theoretically provide speedups for solving certain linear sys-
tems, with runtime that is polynomial in log(N) and the con-
dition number k, provided the coefficient matrix is sparse and
well-conditioned (Harrow et al., 2009). However, this approach
is limited to estimating specific properties of the solution (such
as expectation values) rather than computing individual breed-
ing values directly. To address such limitations, Mukherjee and
Basu Mallik (2025) recently introduced a hybrid
quantum-classical algorithm designed to solve linear systems
with reduced quantum resource demands, offering a potentially
more practical alternative to Harrow-Hassidim-Lloyd for sci-
entific computing problems requiring full solution vectors.
Similarly, quantum-inspired classical algorithms have shown
promise for low-rank linear systems with logarithmic depen-
dence on dimension, though they still have polynomial depen-
dence on other parameters like rank and condition number
(Chia et al., 2020). Given that breeding value estimation typ-
ically requires the full solution vector and often involves poorly
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conditioned systems, the practical applicability of these quan-
tum approaches to real breeding programs remains an open
question, requiring further research (Pook et al., 2025). The
applications of QC in livestock genomics extend beyond tra-
ditional sequence analysis to encompass the integration of
complex multi-omics data. Grover’s algorithm provides qua-
dratic speedup for genome assembly, reducing search complex-
ity from O(N) to O(\/ N) for assembling fragmented DNA
sequences (Sarkar et al., 2021; Fang et al., 2024). This qua-
dratic speedup—where a classical search through N fragments
requires N operations while Grover’s algorithm needs only Vv N
operations—means that assembling a genome from 1 million
fragments could theoretically require just 1,000 quantum oper-
ations instead of 1 million classical ones. This advancement is
particularly relevant for livestock breeding programs where de
novo assembly of reference genomes for indigenous breeds
remains computationally challenging (Crysnanto et al., 2021),
as also emphasized by Pook et al. (2025) in their assessment
of QC applications in agriculture.

Precision livestock farming

The recent review by Maraveas et al. (2024) expands the dis-
cussion of QC in agriculture, specifically highlighting how QC,
when combined with Al could transform precision livestock
farming (PLF). The transition to “smart agriculture” necessi-
tates data-centric approaches, where the strategic integration
of QC and AI offers unprecedented capabilities to enhance
predictive analytics, optimize resource allocation, and model
complex biological systems under real-world constraints (Mar-
aveas et al., 2024; Tedeschi, 2024). A particularly promising
area is QML, a rapidly advancing field at the intersection of
QC and classical ML. The QML field leverages
quantum-enhanced algorithms such as quantum neural net-
works, quantum kernel methods, and hybrid quantum—classical
models to process high-dimensional datasets common in PLE.
These include real-time sensor data on animal behavior, rumen
fermentation dynamics, feed composition variability, and envi-
ronmental conditions (Neethirajan, 2020; Tedeschi et al.,
2021). Research in QML has also explored quantum general-
izations of established ML models like Boltzmann machines,
generative adversarial networks, and autoencoders (Allcock
and Zhang, 2019), which may offer computational advantages
for non-linear and complex agricultural datasets. Such
approaches could support advanced pattern recognition, pre-
dictive modeling, and adaptive learning in data-intensive live-
stock systems. QML has the potential to enhance decision
support systems that integrate mechanistic modeling with
Al-driven inference—referred to as hybrid intelligent mecha-
nistic models (Tedeschi, 2022; 2023). These systems may iden-
tify optimal feed interventions, mitigate emissions, or predict
welfare risks under fluctuating conditions. While these
quantum-enhanced methods remain largely conceptual, they
offer a novel computational layer beyond what is currently
achievable with classical Al, and represent a key frontier as
quantum technology matures. In parallel, quantum optimiza-
tion algorithms show promise for solving logistical and oper-
ational challenges in livestock systems. For instance, the QAOA
could be applied to optimize feed delivery routes across mul-
tiple barns, reducing labor costs and ensuring timely feeding
(Farhi et al., 2014). In integrated crop-livestock systems, quan-
tum optimization could balance nutrient flows between crop
and animal units, maximizing whole-farm resource efficiency
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while minimizing environmental impacts (Pook et al., 2025).
Additionally, quantum digital twins represent an emerging and
transformative application in PLF. These high-fidelity virtual
replicas can simulate entire livestock production systems by
integrating genomic, nutritional, health, environmental, and
economic variables. Such models offer the potential for
real-time optimization of animal management strategies, sup-
porting individualized care and enhanced resource use. As
described by Neethirajan and Kemp (2021), digital twins could
enable predictive monitoring of animal health and welfare,
leading to more responsive and sustainable farming practices.
Maraveas et al. (2024) further suggest that quantum-enhanced
simulations could significantly improve the fidelity and scal-
ability of such digital twin systems. Together, these quantum
technologies, QML, optimization, and digital twins, signal a
paradigm shift in PLE, enabling systems that are more predic-
tive, adaptive, and efficient than those relying solely on CC.
In summary, the value proposition of QC in agriculture ulti-
mately depends on whether the field’s most pressing challenges
involve quantum mechanical processes that classical computers
fundamentally cannot simulate efficiently or optimization prob-
lems of such complexity that quantum algorithms would pro-
vide substantial speedups compared to classical approaches.

Future considerations

Beyond the technical capabilities, we must also consider the
social and economic implications of adopting QC in agricul-
ture. The trajectory mirrors the early evolution of CC, when
mainframes were exclusively accessible to military installations,
research laboratories, and large corporations (Ceruzzi, 2003)
due to their enormous cost and specialized maintenance
requirements. Similarly, the high costs of quantum infrastruc-
ture may limit access to wealthy institutions and corporations,
potentially widening the digital divide between large industrial
farming operations and small-scale farmers. Questions of data
ownership, algorithmic transparency, and the concentration of
technological power become increasingly relevant. Addition-
ally, the carbon footprint of QC facilities should be weighed
against their potential environmental benefits in agricultural
applications. Current QC systems, particularly those using
superconducting qubits, require cryogenic cooling to ~10-15
mK and complex control electronics that consume significant
amounts of energy (Arute et al., 2019), that end up favoring
CC for handling simple problems (Desdentado et al., 2024).
While computational benefits for certain problem classes may
be substantial, it is essential to consider whether these energy
demands could offset environmental gains achieved through
improved predictions or optimizations. Future QC adoption
in agriculture will need to weigh computational benefits against
energy costs to ensure net sustainability gains. A further con-
sideration is the growing demand for robust quantum software
and benchmarking tools to support reliable, scalable applica-
tions. System-level software is critical to translate quantum
algorithms into executable instructions while managing con-
trol, error correction, and noise mitigation, which are tasks
that remain computationally intensive and largely reliant on
classical preprocessing. Importantly, software and hardware
must evolve in unison. The effectiveness of QC hinges on tight
integration between software capabilities and the physical con-
straints and architecture of quantum hardware. Without this
co-development, advances in one domain may be bottlenecked
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by limitations in the other. Finally, a critical challenge is edu-
cation: preparing the next generation of agricultural scientists
with the interdisciplinary knowledge spanning quantum phys-
ics, computer science, and agricultural systems necessary to
develop and implement quantum solutions. This educational
transformation will require significant revisions to existing
curricula and the development of specialized training programs
that bridge the gap between quantum theory and practical agri-
cultural applications.

Conclusion

Quantum computing is not simply a faster version of CC, as it
represents a new computational paradigm with the potential
to solve classes of problems that remain out of reach for even
the most advanced classical systems. Its promise lies in how it
redefines problem-solving, especially for applications involving
quantum mechanical systems, massive optimization spaces, or
probabilistic modeling. Despite current limitations in hardware
scalability, error correction, and coherence times, the theoret-
ical and algorithmic groundwork continues to progress rapidly,
laying the foundation for transformative applications once
suitable quantum hardware becomes viable.

For agricultural sciences, including animal science, the poten-
tial of QC is both intriguing and largely speculative. Many of
its proposed benefits remain largely theoretical, such as mod-
eling rumen microbial interactions at the molecular level, opti-
mizing feed formulations under dynamic environmental
constraints, or integrating high-dimensional sensor data in
real-time. Yet, the trajectory mirrors early CC: conceptual
exploration preceding hardware readiness. A critical consider-
ation remains whether QC truly offers solutions to fundamental
agricultural problems that classical systems, including super-
computers and Al, cannot resolve. This question must guide
research priorities as we evaluate potential quantum applica-
tions against existing classical approaches. Hybrid approaches,
including quantum-enhanced Al, quantum simulators, and
quantum-classical workflows, offer more immediate entry
points into agricultural applications, especially for PLF and
sustainability. We believe that QC is not positioned to replace
CC but to complement it. Classical methods will remain the
backbone for most agricultural systems, but QC may augment
their capabilities in specific domains such as complex system
modeling, resource optimization, and molecular simulation.

To prepare, applied science communities must begin building
quantum readiness. This includes investing in quantum literacy
among researchers, fostering interdisciplinary collaborations,
identifying meaningful agricultural use cases, and engaging
with quantum hardware and software ecosystem developers.
Moreover, we must proactively address the social and economic
implications of QC adoption in agriculture. The high costs of
quantum infrastructure may limit access to wealthy institutions
and corporations, potentially exacerbating the digital divide
between large industrial farming operations and small-scale
farmers. Questions of data ownership, algorithmic transpar-
ency, and the concentration of technological power become
increasingly relevant and must be addressed through thoughtful
policy development and inclusive stakeholder engagement. As
we stand at the intersection of theory and implementation, the
agricultural sciences have a rare opportunity to shape the tra-
jectory of QC applications from the outset. The road ahead is
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long, but the potential returns, both scientifically and econom-
ically, as well as environmentally, make this journey well worth
the investment.
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