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Abstract
Quantum computing (QC) represents a revolutionary paradigm in information processing, leveraging quantum mechanical phenomena (superpo-
sition, entanglement, quantum interference, and quantum tunneling) to perform calculations in fundamentally different ways than classical com-
puting (CC). While CC processes information sequentially through Boolean logic operations on discrete binary states (0 s and 1 s), quantum 
computers manipulate qubits that can exist in superpositions of states, enabling parallel operations on exponentially large state spaces. Despite 
claims regarding “quantum supremacy,” QC remains in its early developmental stages, comparable to the CC of the 1950s and 1960s. True quan-
tum supremacy, where quantum computers demonstrate definitive, practical advantages over classical computers for well-defined tasks, has not 
yet been established. Practical applications face real challenges, i.e., decoherence, high error rates, and demanding error correction requirements. 
Three developmental phases are projected: noisy intermediate-scale quantum systems by 2030, broad quantum advantage from 2030 to 2040, 
and full-scale fault tolerance after 2040. Does QC offer solutions to fundamental problems that classical systems, including supercomputers and 
artificial intelligence, cannot already resolve? While conventional technologies continue to advance agricultural capabilities through machine learning 
(ML) and complex optimization, quantum approaches may potentially transform domains that require molecular-level simulations (such as soil 
chemistry and rumen microbial interactions) or exponentially complex optimization problems in resource allocation. Quantum ML models, such 
as quantum neural networks, generative adversarial networks, and autoencoders, are being explored in quantum–classical hybrids, which have 
shown potential for faster optimization and higher-dimensional data representation; but, these advantages remain largely conceptual. The value 
proposition of QC in agriculture ultimately depends on whether the field’s most pressing challenges involve quantum mechanical processes that 
classical computers cannot simulate efficiently or optimization problems of such complexity that quantum algorithms would provide substantial 
practical advantages over classical approaches. The agricultural community must also address societal implications, such as access equity, data 
ownership, algorithmic transparency, and educational preparedness for this emerging technology.

Lay Summary
Quantum computing (QC) is emerging as a revolutionary technology that could change how we solve complex problems, especially in biology, 
chemistry, and agriculture. Unlike classical computers that use binary bits, quantum computers use qubits, which exploit principles like superpo-
sition and entanglement to process information in fundamentally new ways. This gives quantum computers the theoretical ability to simulate 
complex molecules, optimize massive systems, and analyze data in ways classical systems cannot. Although quantum computers are still in the 
early development stages—with challenges like noise, scalability, and error correction—researchers are already exploring applications in materials 
science, pharmaceuticals, and agriculture. This paper explores the fundamental principles of QC, its current limitations, and its potential to trans-
form agricultural research. It highlights hybrid approaches that combine QC and classical computing and the need for agricultural scientists to 
begin preparing for this shift through education. While practical applications may take years to materialize, QC development—currently feeling a 
bit like herding cats—mirrors the atmosphere of the mid-1900s, when digital computers were still viewed as futuristic novelties. Just as those 
early machines evolved from experimental curiosities into indispensable tools, the eventual integration of QC into agricultural sciences could 
unlock innovations that transform the field.

Key words: agriculture technology, hybrid intelligence, modeling, precision livestock farming, quantum computing, quantum simulation
Abbreviations: AI = artificial intelligence; AWS = Amazon Web Services; BCG = Boston Consulting Group; CC = classical computing; ENIAC = electronic numerical 
integrator and computer; FTQC = fault-tolerant quantum computer; ML = machine learning; NASEM = National Academies of Sciences, Engineering, and Medicine; 
NISQ = noisy intermediate-scale quantum; PLF = precision livestock farming; QAOA = quantum approximate optimization algorithm; QC = quantum computing; 
QML = quantum machine learning; TRS = Tandy Radio Shack, and UNIVAC = universal automatic computer

Introduction
The field of computing is on the brink of a paradigm shift, but 
perhaps not too fast. As classical computers approach the limits 
of Moore’s Law, quantum computing (QC) emerges as a rev-
olutionary technology with the potential to solve problems 

intractable for even the most powerful supercomputers. 
Moore’s Law refers to the observation made by Gordon Moore, 
co-founder of Intel, in 1965 that the number of transistors on 
an integrated circuit doubles approximately every (one or) two 
years, leading to exponential growth in computing power at 
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relatively consistent cost (Moore, 1965). This observation 
became a guiding principle for the semiconductor industry, 
driving decades of technological advancement and miniatur-
ization. The prediction has held for many decades, though, 
since the 2000s, the industry has encountered physical limita-
tions as transistors approach atomic scales and the chips get 
too hot (Waldrop, 2016). The physical restriction makes it 
increasingly difficult and costly to continue the historical pace 
of miniaturization, prompting semiconductor manufacturers 
to search for alternative computing paradigms like QC.

In physical sciences, two major scientific revolutions trans-
formed physics in the 20th century: the theory of relativity and 
quantum mechanics (Aspect, 2024). Quantum physics has been 
recognized as having an impact comparable to the Industrial 
Revolution, which was powered by the laws of thermodynamics 
and the steam engine. As discussed later in more details, quan-
tum physics introduces principles such as superposition (where 
systems can exist in multiple states simultaneously), entangle-
ment (instantaneous correlation between particles regardless of 
distance), quantum interference (where probabilities combine 
in non-classical ways), and quantum tunneling (where particles 
can pass through energy barriers that would be insurmountable 
in classical physics). Nobel laureate Alain Aspect has noted that 
quantum mechanics represents one of the most profound shifts 
in scientific understanding in human history. Physicists typically 
recognize two distinct quantum revolutions: the first occurred 
in the early 20th century with pioneering work by Max Planck, 
Albert Einstein, Niels Bohr, Werner Heisenberg, and Louis de 
Broglie, among many others, who established the fundamental 
principles of quantum mechanics (Aspect, 2023, 2024). The 
second quantum revolution began in the 1960s–1980s, building 
on the theoretical work of Einstein and Erwin Schrödinger, who 
had identified quantum entanglement—what Einstein famously 
(and possibly) referred to as “spooky action at a distance”—as 
a profound phenomenon requiring deeper investigation (Aspect, 
2023, 2024). This second revolution has led to technologies 
like QC, quantum cryptography, and quantum sensing that are 
perceived to have transformative potential across multiple 
fields today.

Therefore, QC harnesses the principles of quantum mechan-
ics to process information in ways that classical computers 
cannot. To illustrate the potential power of QC, let’s consider 
a specific task: the simulation of complex molecular structures, 
crucial in nutritional science. For instance, simulating the 
behavior of a molecule like glucose, with 24 atoms (6 C, 12 H, 
and 6 O) and approximately 96 electrons (6 in each C, 1 in 
each H, and 8 in each O), would require a classical computer 
to track 296 possible electron configurations (Aspuru-Guzik et 
al., 2005; Cao et al., 2019)—an astronomically large number, 
approximately 7.9 × 1028, which is about 10 billion times larger 
than the estimated number of grains of sand on Earth (7.5 × 1018) 
(Blatner, 2012). This task quickly becomes infeasible for clas-
sical computers as molecular complexity increases. In contrast, 
in theory, a quantum computer with just 96 quantum process-
ing units could simulate this molecule more efficiently. The 
reason is that on classical computers, resource requirements 
for a complete simulation of the time-independent Schrödinger 
equation scale exponentially with the number of atoms in a 
molecule, limiting such full configuration interaction calcula-
tions to diatomic and triatomic molecules, whereas on quan-
tum computers, resource requirements scale polynomially with 
system size (Aspuru-Guzik et al., 2005; Cao et al., 2019). The 

Schrödinger equation, fundamental to these simulations, 
describes how the quantum state of a physical system evolves 
over time. In its time-independent form, H EΨ Ψ= , where H 
is the Hamiltonian operator representing total energy, Ψ is the 
wave function, and E represents energy levels (Griffiths and 
Schroeter, 2018). Classical computers struggle with this equa-
tion for complex molecules because the required computational 
resources grow exponentially with each additional particle, 
while quantum computers can potentially represent these quan-
tum states natively using superposition and entanglement (Niel-
sen and Chuang, 2010).

At this pivotal juncture in computational science, QC stands 
as both a technological frontier and a philosophical challenge 
to our understanding of (quantum) information processing. 
While the field of quantum mechanics continues to evolve, 
bringing new insights that reshape our fundamental under-
standing of nature, QC represents its most ambitious practical 
application. Quantum theory stands apart from other major 
physical frameworks like Newtonian mechanics, Maxwell’s 
electrodynamics, or Einstein’s relativity in that it was not devel-
oped or definitively formulated by a single scientist and contin-
ues to bear the marks of its challenging and revolutionary 
origins (Griffiths and Schroeter, 2018). It seems fair to say that 
QC is “a technology emerging from a theory without consen-
sus.” The science of quantum mechanics operates both math-
ematically and experimentally, but the fundamental meaning 
and interpretation of quantum mechanics remain contested 
among physicists and philosophers of science; it is not an easy 
topic to discuss on a daily basis. Nevertheless, the foundations 
of quantum mechanics themselves remain hotly debated in the 
scientific community, and no consensus on essential questions 
has been reached (Schlosshauer et al., 2013). This controversy 
is not about quantum mechanics’ mathematical formalism or 
experimental predictions, which are remarkably successful, but 
rather about what the theory implies about the nature of reality.

This review aims to bridge the theoretical with the practical 
by briefly explaining QC principles, contrasting them with 
classical computing (CC) paradigms, and exploring their trans-
formative potential specifically for agricultural sciences. From 
simulating complex biological systems for crop improvement 
to optimizing resource allocation across vast agricultural net-
works, QC promises capabilities beyond classical limitations. 
Yet, as we navigate between optimistic projections and skep-
tical assessments, we must remain grounded in the consider-
able technical challenges that lie ahead. The journey toward 
practical “quantum advantage” will require interdisciplinary 
collaboration, realistic expectations, and patience as we deter-
mine whether QC will ultimately deliver on its revolutionary 
promise or remain constrained by fundamental physical 
limitations.

Quantum computing
A quantum computer is a sophisticated device that leverages 
the principles of quantum mechanics to process information. 
Unlike classical computers that use bits (binary digits: 0 s and 
1 s) to represent information, quantum computers use quantum 
bits or qubits. As briefly mentioned above, the power of qubits 
lies in four key quantum mechanical properties: superposition, 
entanglement, quantum interference, and quantum tunneling. 
Each plays a distinct role in enabling quantum computers to 
achieve computational capabilities that can surpass those of 
classical systems.

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article/doi/10.1093/jas/skaf445/8383451 by guest on 19 January 2026



Tedeschi� 3

Superposition
Superposition allows a qubit to exist in multiple states simul-
taneously rather than discrete binary values (0 or 1). As 
depicted in Figure 1, a qubit in superposition is like a spinning 
coin that is, in a sense, both heads and tails at once until you 
observe it (measure it), at which point it “collapses” to just one 
state. It enables quantum computers to process multiple com-
putational paths concurrently. When you have multiple qubits 
in superposition, they can represent all possible combinations 
of 0 s and 1 s simultaneously, allowing for massive parallelism 
in computation. This parallel processing capability provides 
theoretical computational advantages for specific problem 
classes (Preskill, 2018).

Entanglement
Einstein et al. (1935) described a phenomenon (later termed 
quantum entanglement by Schrödinger) where the quantum 
states of multiple particles become correlated such that the 
quantum state of each particle cannot be described inde-
pendently. As mentioned above, Einstein later referred to this 
phenomenon as “spooky action at a distance” (Born and 
Einstein, 1971; Aspect, 2024) (translated from spukhafte 
Fernwirkung) (Hossenfelder, 2022) in his correspondence 
with Max Born on March 3rd, 1947 (Born and Einstein, 1971, 
p. 158). Aspect (2024) indicated that in Einstein’s opinion, 
“if two objects, which have interacted in the past but are now 
separated, present a perfect correlation, they must carry 
within them a set of properties determined in concert before 
their separation, and which then have survived in each of the 
objects.” This concept can be further illustrated with an anal-
ogy of homozygous twins who share identical chromosomes 
but live in separate countries. If these twins possess a genetic 
condition programmed to manifest at a specific age, both will 
develop symptoms simultaneously despite their geographic 
separation—not because of mysterious communication 
between them, but because they carry the exact predetermined 
genetic instructions (Aspect, 2024). Einstein’s discomfort with 
quantum entanglement led to a decades-long scientific quest 
to determine whether his intuition about hidden variables was 
correct. Bell’s (1964) theorem provided a mathematical 
framework to test Einstein’s local hidden variables theory 

against quantum mechanics. Bell derived inequalities that 
would be satisfied by any theory based on local hidden vari-
ables but violated by quantum mechanics in certain scenarios. 
Subsequent experiments, most notably those conducted by 
Alain Aspect and colleagues in the early 1980s, confirmed 
quantum mechanics’ predictions by demonstrating violations 
of Bell’s inequalities (Bell, 1964; Aspect et al., 1982; Aspect, 
2024). These experimental results strongly suggest that quan-
tum entanglement cannot be explained by pre-existing prop-
erties carried by particles, but represents a fundamentally 
different kind of correlation that defies classical intuition. 
Despite these philosophical challenges, entanglement has 
proven to be an essential resource for quantum information 
processing.

Entanglement serves as a crucial resource for quantum 
information processing, enabling computational capabilities 
beyond classical limits (Horodecki et al., 2009). It enables 
qubits to be correlated in ways that have no classical analog, 
allowing quantum computers to perform certain calculations 
exponentially faster than classical computers (Nielsen and 
Chuang, 2010). It is a quantum phenomenon where two (or 
more) qubits become linked in such a way that the state of 
one instantly affects the state of the other, no matter how far 
apart they are, i.e., they no longer have independent states; 
instead, they share a joint quantum state. In fact, Jian-Wei Pan 
and colleagues experimentally demonstrated that quantum 
entanglement persists over vast distances when, in 2017, they 
used the Micius satellite to distribute entangled photon pairs 
between ground stations separated by 1,200 kilometers, con-
firming that the quantum correlation remains intact regardless 
of spatial separation (Yin et al., 2017). As illustrated in Figure 
2, the glove-in-box analogy helps introduce the concept of 
quantum entanglement by comparing it to a more familiar 
classical scenario. In the classical case, a pair of gloves—one 
left-handed and one right-handed—are placed in two separate 
boxes, which are then sealed and sent to different locations. 
Although the identity of the gloves is unknown until a box is 
opened, the glove types were fixed from the beginning. In 
contrast, in the quantum case, the “gloves”—representing 
entangled qubits—do not have definite identities prior to mea-
surement. When one box is opened, and a glove is revealed, 

Figure 1.  Visual analogy of quantum superposition and measurement. (A) In quantum computing, a qubit can exist in a superposition state, graphically 
represented by a spinning coin and mathematically described as | /+ = +( ) √〉 〉 〉0 1 2 or | /− = −( ) √〉 〉 〉0 1 2, resulting from the Hadamard operation on | 0〉 
and | 1〉, respectively. Upon measurement, the superposition collapses to a definite classical state (1 = heads or 0 = tails), each with 50% probability, 
similar to outcomes in classical computing (B).
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the glove in the other box instantaneously assumes the corre-
sponding correlated identity, even if the boxes are far apart. 
Depending on the specific Bell state, a maximally entangled 
two-qubit state, the gloves will be either the same or opposite. 
For example, in the |Φ 〉+  state (Figure 2A left panel), both 
gloves will match (e.g., both left-handed), while in the |Ψ+〉
state (Figure 2A right panel), the gloves will differ (i.e., one 
left-handed, one right-handed) (Mermin, 1981; Nielsen and 
Chuang, 2010). While Bell states represent the extreme case 
of maximal entanglement, in practice, entanglement can also 
occur to varying degrees. Although this analogy captures the 
idea of strong correlations and nonlocal outcomes, it does not 
fully reflect the unique features of quantum entanglement—such 
as the ability to choose different measurement settings and 
observe correlations that violate classical expectations (Mer-
min, 1981; Nielsen and Chuang, 2010). This illustrates quan-
tum entanglement’s non-classical, probabilistic nature, where 
measurement outcomes are not predetermined but are per-
fectly correlated according to the shared entangled state. 
Therefore, the glove-in-box analogy is a helpful conceptual 

tool, but should not be interpreted as a complete description 
of entanglement phenomena. Another way to understand 
entanglement is the “quantum book” (Preskill, 2018). Unlike 
a classical 100-page book, where reading each page reveals 
1% of the content, reading individual pages of the entangled 
quantum book reveals only “random gibberish.” This occurs 
because the information is not stored in individual pages but 
rather in their correlations. The quantum information can 
only be accessed simultaneously through collective observa-
tions of multiple pages. This characteristic distinguishes quan-
tum information processing from CC, highlighting how 
entanglement allows information to be encoded in relation-
ships between components rather than in the components 
themselves.

Quantum interference
It is the third foundational pillar of QC, alongside superposition 
and entanglement, and serves as the critical mechanism enabling 
quantum computational advantage. In the circuit model, quan-
tum algorithms manipulate qubits using quantum gates to gen-
erate interference patterns that amplify correct outcomes and 
suppress incorrect ones (Nielsen and Chuang, 2010); in other 
paradigms, such as quantum annealing (Das and Chakrabarti, 
2008), photonic continuous-variable computing (Braunstein 
and van Loock, 2005), and some neutral atom systems (Saffman 
et al., 2010), analogous interference effects are engineered 
through different physical processes rather than discrete gates.  
This selective enhancement lies at the heart of the computa-
tional speedups observed in quantum algorithms (Nielsen and 
Chuang, 2010; Montanaro, 2016). Quantum interference is 
often illustrated using the water wave analogy to build an intu-
itive understanding, as shown in Figure 3. When two stones are 
dropped into a pond, the resulting ripples overlap, producing 
constructive interference (when crests align) and destructive 
interference (when crests and troughs cancel). Analogously, 
quantum interference arises from the interaction of probability 
amplitudes, i.e., complex-valued quantities whose squared mag-
nitudes determine the likelihood of measurement outcomes. 
Regardless of the implementation, quantum operations orches-
trate these amplitudes to bias the probability distribution 
toward correct answers. However, this analogy, while helpful, 
is conceptually limited. Quantum and classical wave packets 
can share mathematical descriptions [e.g., via the Schrödinger 
equation; Griffiths and Schroeter (2018)], but the physical inter-
pretations differ fundamentally (Rozenman et al., 2019). Water 
waves are physical displacements in a medium, whereas quan-
tum wave functions represent probabilities and exist in an 
abstract Hilbert space (Rozenman et al., 2019). Hilbert space 
is the mathematical framework where quantum states “live”—a 
complete vector space with an inner product that allows for 
measuring distances and angles between quantum states. This 
abstract space is essential for QC because it provides the math-
ematical structure needed to describe superposition, entangle-
ment, and the evolution of quantum systems, with its 
dimensionality growing exponentially with the number of 
qubits (2n dimensions for n qubits) (Supplementary Appendix 
1). The analogy breaks down especially when interpreting inter-
ference as a purely spatial effect; quantum interference operates 
in the space of possibilities, not classical geometry. This distinc-
tion is crucial: quantum interference is not merely a wave phe-
nomenon but a non-classical computational resource that 
allows algorithms like Grover’s search and quantum Fourier 

Figure 2.  Graphical representation of quantum entanglement versus 
classical correlation using the glove-in-box analogy. (A) In quantum 
computing, two boxes contain entangled qubits represented by the 
quantum link (curvilinear line). On the left, the Bell state 
| /¦ + = +( ) √〉 〉 〉00 11 2 results in both boxes revealing the same glove 
upon measurement (both left or both right). On the right, the Bell state 
| /Ψ+ = +( ) √〉 〉 〉01 10 2 results in the boxes containing opposite gloves. In 
both cases, the outcomes are not predetermined but are correlated in a 
non-classical, probabilistic way. (B) In classical computing, the gloves 
have definite identities from the start. If one box contains a left-handed 
glove, the other contains a right-handed glove, but this information is only 
revealed when the boxes are opened. Unlike quantum entanglement, the 
correlation here is due to a prior assignment.
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transform to outperform their classical counterparts (Rozenman 
et al., 2019).

While superposition, entanglement, and quantum interfer-
ence form the core of most discussions on QC, certain qubit 
architectures rely on an additional quantum phenomenon, 
quantum tunneling, as a fundamental operational resource.

Quantum tunneling
Quantum tunneling occurs when a particle passes through an 
energy barrier that it would be unable to overcome according 
to classical physics. This effect arises from the wave-like nature 
of quantum particles and the probabilistic nature of their wave-
functions (Griffiths and Schroeter, 2018). The concept can be 
visualized by imagining a ball resting at the base of a slope that 
is too steep for it to climb; while classical mechanics predicts 
the ball will remain trapped, quantum mechanics allows it to 
be found on the other side without ever cresting the slope, due 
to its wavefunction extending into and beyond the barrier 
(Figure 4). In superconducting qubits, paired electrons known 
as Cooper pairs can tunnel through an ultra-thin insulating 
barrier in a Josephson junction. This tunneling is central to the 
operation of the qubit: it creates discrete, anharmonic energy 
levels that can be manipulated to represent and process quan-
tum information (Clarke and Wilhelm, 2008; Krantz et al., 
2019). By enabling precise and coherent control of these states, 

tunneling complements superposition, entanglement, and 
quantum interference as a fundamental quantum resource in 
specific qubit architectures.

Together, superposition, entanglement, quantum interfer-
ence, and quantum tunneling form the foundational quantum 
phenomena that enable computation in fundamentally different 
ways than classical computers. While CC algorithms are 
sequences of logical operations performed on bits, quantum 
algorithms manipulate qubits through quantum gates, exploit-
ing these quantum phenomena to perform specific calculations 
more efficiently than classical algorithms (Arute et al., 2019). 
Current quantum computers use various physical systems to 
implement qubits, including superconducting circuits, trapped 
ions, and topological systems. Each approach has advantages 
and challenges, and research is ongoing to determine the most 
effective and scalable qubit technologies for each application 
(Bennett and DiVincenzo, 2000). The potential of QC is per-
haps best illustrated by Shor’s quantum algorithm for integer 
factorization, which can theoretically break many current cryp-
tographic systems. While factoring large numbers is computa-
tionally intensive for classical computers, Shor’s algorithm 
could factor them exponentially faster. This poses significant 
implications for cybersecurity (Shor, 1997) as it could compro-
mise widely used encryption methods like RSA 
(Rivest–Shamir–Adleman), the most common public-key 

Figure 3.  Water wave analogy for quantum interference. Ripples from two stones show (A) no interference or (B) constructive and destructive 
interferences, similar to how quantum algorithms amplify correct outcomes and cancel incorrect ones through the interference of probability amplitudes. 
While visually intuitive, this analogy has important limitations as quantum interference occurs in Hilbert space, not physical space, and involves complex 
amplitudes rather than physical waves (Rozenman et al., 2019).

Figure 4.  Illustration of quantum tunneling using the hill and the ball analogy. In classical computing, a ball on one side of a hill cannot cross to the other 
side without enough energy to roll over the top. In contrast, in quantum computing, the same ball “mysteriously” appears on the other side without ever 
going over the top because the particle’s wavefunction can extend through the barrier (i.e., hill), giving a finite probability that the particle will appear on 
the other side without traversing over the top.

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article/doi/10.1093/jas/skaf445/8383451 by guest on 19 January 2026



6� Journal of Animal Science, 2026, Vol. 104, No. 1

cryptographic algorithm used today. The RSA’s key exchange 
security relies on the practical difficulty of factoring a large 
semiprime number—i.e., a product of two large prime num-
bers. Classically, this requires checking potential prime factors 
up to the square root of the target number, a task that becomes 
computationally infeasible as the number of digits increases 
(Aspect, 2024).

Evolution of quantum computing
Contextualizing QC progression through comparison with 
historical CC development provides a valuable perspective. 
Figure 5 illustrates the parallel but offset developmental trajec-
tories of classical and QC technologies. While CC has evolved 
from theoretical concepts to ubiquitous systems over nearly a 
century, QC remains in its early stages with capabilities com-
parable to those of CC in the 1950s-–1960s. Major technolog-
ical milestones are indicated for each paradigm, with projected 
developments for QC extending into the 2030s and 2040s. The 
green dashed lines highlight the developmental equivalence 
between 2020s QC and 1950s–1960s CC.

Classical computing developmental timeline
The evolution of CC unfolded as a remarkable technological 
odyssey spanning nearly half a century (Ceruzzi, 2003). Begin-
ning with Alan Turing’s theoretical foundations in 1936 that 
conceptualized the universal computing machine (Turing, 
1937), this journey gained physical form with the Electronic 
Numerical Integrator and Computer’s (ENIAC) completion in 
1945, the first programmable, electronic, general-purpose dig-
ital computer. However, ENIAC was not a stored-program 
machine; it required manual reconfiguration using cables and 
switches to change programs. The first successful implementa-
tions of the stored-program concept appeared shortly after, 
with the Manchester Baby prototype in 1948 and the Electronic 
Delay Storage Automatic Calculator (EDSAC) in 1949, which 
is widely recognized as the first computer to run a full program 
stored in memory. The commercial computing era truly began 

when Universal Automatic Computer I (UNIVAC) was deliv-
ered to the U.S. Census Bureau in 1951, establishing the feasi-
bility of business-oriented data processing. The revolutionary 
IBM System/360, announced in 1964, introduced the first stan-
dardized computer family, allowing businesses to upgrade their 
computing capabilities without rewriting applications and 
cementing IBM’s dominance in the industry. The microproces-
sor revolution followed with Intel’s 4004 in 1971, dramatically 
shrinking computing power onto a single chip and paving the 
way for personal computing’s emergence through a watershed 
moment in 1977 when three pioneering “trinity” systems 
launched: the Apple II, Commodore PET, and Tandy Radio 
Shack (TRS-80), collectively bringing affordable computing to 
homes and small businesses for the first time. The TRS-80 
model I was particularly important as it was one of the first 
mass-produced, fully assembled personal computers available 
through widespread retail distribution (i.e., RadioShack), mak-
ing computing accessible to many Americans who didn’t have 
access to specialized computer stores (Welsh and Welsh, 2007). 
The introduction of the IBM PC in 1981 further accelerated 
adoption and standardization. Subsequent decades witnessed 
exponential growth in computing power, alongside the trans-
formative impacts of networking, mobile devices, and sophis-
ticated software systems, culminating in CC’s journey from 
esoteric research tools to ubiquitous global infrastructure 
(Ceruzzi, 2003), including supercomputers.

Quantum computing developmental timeline
The QC paradigm represents a fundamentally different techno-
logical trajectory still in its embryonic phase compared to its 
classical counterpart (Figure 5). This journey began when Rich-
ard Feynman publicly articulated the concept during a 1981 
conference at MIT, proposing that quantum systems could be 
effectively simulated only by computers leveraging quantum 
mechanical properties (Feynman, 1982). As Georgescu et al. 
(2014) later confirmed, quantum computers possess an inherent 
advantage in modeling other quantum systems—a task that 

Figure 5.  Comparative evolutionary timeline of classical and quantum computing (1930s to 2040s).
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becomes exponentially complex on classical architectures. This 
capability holds transformative potential for materials science 
and pharmaceutical research, leading to the development of 
quantum chemistry, an intersection among physics, chemistry, 
computer science, and applied mathematics (Aspuru-Guzik et 
al., 2018). The field gained theoretical rigor when David 
Deutsch formalized the universal quantum computer model in 
his seminal 1985 paper, establishing the mathematical founda-
tion for quantum computation (Deutsch, 1985). Practical algo-
rithms emerged in the mid-1990s through groundbreaking 
work by Peter Shor (Shor, 1994) and Lov Grover (Grover, 
1996), demonstrating QC’s potential superiority for specific 
problems. Experimental implementation has progressed grad-
ually from rudimentary qubits in the early 2000s to today’s 
noisy intermediate-scale quantum (NISQ) systems with 50 to 
100+ qubits (Preskill, 2018). NISQ refers to the current gener-
ation of quantum computers that operate with a moderate 
number of qubits (typically below 1,000) but suffer from sig-
nificant noise and quantum decoherence (i.e., the loss of quan-
tum information due to unavoidable interactions with the 
environment), limiting their ability to maintain quantum states 
and perform error-free calculations (Preskill, 2018). These sys-
tems lack the comprehensive error correction needed for 
fault-tolerant computation, yet they are sufficiently powerful 
to explore quantum algorithms and potentially demonstrate 
quantum advantage in specific applications. However, practical 
quantum advantage remains elusive for most applications.

While decoherence remains a fundamental limitation for 
maintaining quantum states over the durations required for 
computation, the current biggest obstacle to practical quantum 
advantage is the limited number of physical qubits available in 
existing systems, a challenge that decoherence and other noise 
sources exacerbate by constraining how many logical qubits 
can be derived from physical ones. For many commercially 
relevant problems, the scale of the computation exceeds the 
capacity of today’s devices, even before accounting for the over-
head required for error correction. Quantum computation 
requires qubits to interact with external control systems to 
perform operations such as entangling gates. These necessary 
interactions inevitably expose the system to environmental 
noise, contributing to decoherence. This creates a fundamental 
tension: qubits must remain sufficiently isolated to preserve 
coherence, yet accessible enough to perform logic operations 
(Black et al., 2002). Recent experiments show typical coherence 
times of 50 microseconds to a few milliseconds for supercon-
ducting qubits (Burnett et al., 2019), far shorter than required 
for complex algorithms. Error correction requires significant 
overhead, with estimates suggesting that thousands of physical 
qubits are needed for each logical qubit capable of fault-tolerant 
operation (Fowler et al., 2012). Current error rates for 
two-qubit gates remain at approximately 0.5% to 1% for lead-
ing platforms (Noiri et al., 2022), whereas fault tolerance gen-
erally requires error rates below 0.1% (Wang et al., 2011). 
These constraints make hybrid quantum–classical approaches 
essential in the near term, with quantum processors focused 
on the subproblems where they offer the greatest advantage, 
while classical computers handle the remaining computation.

As shown in Figure 5, QC development currently approxi-
mates the evolutionary stage that CC occupied during the 
1950s–1960s period, which is characterized by early imple-
mentations with limited functionality but substantial future 
potential. The theoretical and applied QC fields are rapidly 

gaining traction, with significant advancements likely to occur 
sooner rather than later. Most industry experts and researchers 
project that error-corrected quantum systems could be achieved 
within the next decade, with a possible fault-tolerant, practical 
QC implementation after 2025. In stark contrast to this opti-
mistic outlook, Dyakonov (2020) presents a fundamentally 
skeptical assessment of QC’s future. He argues that QC faces 
insurmountable physical challenges rather than merely engi-
neering obstacles to be overcome with time. He contends that 
controlling the vast number of continuous quantum parameters 
required (which grows exponentially with the number of 
qubits) is physically impossible in practice. Furthermore, he 
asserts that quantum error correction schemes cannot work as 
theorized because they rely on mathematical abstractions that 
ignore fundamental physical realities. In his assessment, after 
25 years of research with no meaningful computational results, 
QC represents “more of a sociological phenomenon than a 
viable technological path” (Dyakonov, 2020).

The “quantum supremacy” concept represents an important 
milestone in developing QC technology. In its conventional 
definition, quantum supremacy refers to the point at which a 
quantum computer can perform a well-defined computational 
task that is practically impossible for classical computers to 
complete within a reasonable timeframe (Yung, 2019). It is 
important to distinguish this from “quantum advantage”: 
supremacy, in the traditional sense, can apply to any task per-
formed faster by a quantum computer, even if the task has no 
direct practical value (as in Google’s 2019 random circuit sam-
pling experiment described next), whereas quantum advantage 
refers to solving practical, real-world problems more efficiently 
than classical systems. Some researchers have proposed a 
broader interpretation of supremacy that is not limited to exe-
cution speed, emphasizing that quantum systems may also offer 
unique representational capabilities, for example, in quantum 
machine learning (QML), where projecting classical data into 
high-dimensional Hilbert spaces can capture correlations inac-
cessible to classical computation, even if the quantum approach 
is slower. For agricultural applications (and likely many other 
applied sciences), our ultimate focus is on achieving quantum 
advantage, i.e., practical benefits for real-world problems, 
rather than merely demonstrating supremacy.

Current state of quantum computing
Despite the considerable media hype surrounding QC, includ-
ing Google’s landmark 2019 quantum supremacy claim that 
their 53-qubit Sycamore processor performed a specialized 
calculation in 200 seconds that they estimated would take a 
classical supercomputer 10,000 years, causing them to declare 
“an experimental realization of quantum supremacy for this 
specific computational task” (Arute et al., 2019). Google’s 
claim was immediately challenged by IBM researchers, who 
demonstrated that by leveraging secondary storage on the Sum-
mit supercomputer, such circuits could be simulated “with high 
fidelity to arbitrary depth in a matter of days” (Pednault et al., 
2019), effectively reducing Google’s estimated 10,000 years to 
approximately 2.5 days.

As of 2025, QC has progressed from a theoretical concept 
to an emerging technology with significant potential. Given 
Google’s 2019 premature announcement of quantum suprem-
acy, it is important to note that the QC market is currently 
highly volatile, with rapidly changing claims, counterclaims, 
and projections from various industry players and researchers. 
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It is crucial to approach industry announcements with appro-
priate scientific skepticism (Roberson and White, 2019). While 
large-scale, fault-tolerant quantum computers (FTQC), i.e., 
systems with comprehensive error correction capabilities that 
can reliably perform quantum computations despite noise and 
decoherence, remain elusive, several milestones have been 
reached. Companies like IBM, Google, and IonQ have devel-
oped quantum processors with increasing numbers of qubits. 
For instance, IBM’s Osprey processor, announced in 2022, 
featured 433 qubits (Collins and Nay, 2022), though the quan-
tum volume, a hardware-agnostic metric that measures the 
performance of quantum computers by considering both qubit 
count and error rates (Moll et al., 2018), remains significantly 
lower than the raw qubit count would suggest. Unlike raw 
qubit count, which tallies the number of qubits, quantum vol-
ume captures the effective computational power by incorpo-
rating critical factors such as gate fidelity, connectivity between 
qubits, and circuit depth capabilities. For example, a 100-qubit 
processor with poor connectivity and high error rates might 
have a lower quantum volume than a 20-qubit processor with 
all-to-all connectivity and low errors, making the quantum 
volume a more realistic measure of what computations can 
actually be performed successfully.

Then, in late 2023, IBM announced its Condor processor, 
featuring 1,121 qubits and representing the world’s largest 
quantum chip at the time (Pasternack, 2024). However, Con-
dor also demonstrated the practical limits of simply scaling up 
qubit count, as the massive chip required unprecedented cool-
ing infrastructure and generated significant engineering chal-
lenges related to noise, connectivity, and error rates. 
Simultaneously, IBM developed their Heron processor (133 
qubits), which prioritizes error mitigation and gate fidelity over 
raw qubit numbers, alongside a modular system architecture 
designed to link multiple high-quality processors together (Pas-
ternack, 2024). In 2024, IBM released the Heron R2, expand-
ing to 156 qubits with improved coherence times and the ability 
to execute up to 5,000 two-qubit gates, enabling what IBM 
terms “utility-scale” quantum computation (Ivezic, 2024). In 
2025, IBM unveiled the Nighthawk processor (120 qubits), 
featuring a novel square lattice connectivity map designed to 
improve nearest-neighbor coupling and reduce circuit depth. 
Although Nighthawk’s qubit count is lower than Condor or 
Osprey, its architecture supports up to ∼15,000 gates and can 
scale by chaining up to nine modules (∼1,080 qubits) while 
maintaining high fidelity (Anonymous, 2025b). Looking fur-
ther ahead, IBM announced its goal to deliver the Starling 
quantum supercomputer by 2029, projected to contain ∼2,000 
physical qubits and 200 logical qubits with full error correc-
tion, capable of executing approximately 100 million quantum 
gates—marking a potential transition to scalable, fault-tolerant 
quantum computation (Tatananni, 2025). IBM’s dual develop-
ment of Condor’s brute-force scaling approach and Heron’s 
quality-focused design exemplifies the broader industry recog-
nition that quantum advantage will likely emerge from 
improved qubit coherence and error correction rather than 
simply maximizing qubit count. The addition of Nighthawk 
and Starling to IBM’s roadmap reinforces this hybrid strategy, 
combining near-term gains from improved connectivity and 
modular scaling with long-term fault-tolerant system goals.

In February 2025, Amazon Web Services (AWS) unveiled its 
inaugural quantum processor, designated “Ocelot” (Anony-
mous, 2025a). This superconducting qubit-based processor 

incorporates novel error correction methodologies designed to 
“reduce the costs of implementing quantum error correction 
by up to 90%, compared to current approaches.” Several com-
panies now offer cloud access to quantum computers, allowing 
researchers and developers to experiment with quantum algo-
rithms (Preskill, 2018). Researchers have made critical advances 
in quantum error correction, a crucial step towards FTQC. For 
example, a 2023 study demonstrated significant progress in 
developing practical quantum error correction methods (Fowler 
et al., 2012; Campbell, 2024), outperforming its constituent 
physical qubits (Kim et al., 2023) and representing a significant 
threshold in the field. However, considerable challenges remain, 
including improving qubit quality and quantity, developing 
practical quantum algorithms, and creating a robust quantum 
software ecosystem (Preskill, 2018).

Perspectives on QC timelines vary substantially across the 
industry. Their expert projections in academic and industry 
analyses indicate that truly FTQC capable of solving practical 
problems will likely emerge around 2030 (Bobier et al., 2024), 
though some companies are accelerating their timelines with 
targeted roadmaps (Baker, 2024). Some suggest that truly 
FTQC capable of delivering reliable, practical business value 
will not emerge soon; expert projections indicate that “every-
day quantum computers are still decades away” as there 
remains “a vast gap to be bridged before quantum computers 
can do more meaningful things” (Anonymous, 2019). Accord-
ing to comprehensive market analyses by Boston Consulting 
Group (BCG), the QC industry is expected to develop in three 
distinct phases: NISQ (i.e., computers with less than 1,000 
qubits) until 2030, broad quantum advantage from 2030 to 
2040, and full-scale fault tolerance after 2040 (Bobier et al., 
2021). This phased development reflects the significant techni-
cal challenges in quantum error correction that experts believe 
will remain QC’s biggest hurdle for much of this decade (Pre-
skill, 2023). The timeline projections of QC exhibit substantial 
variation among domain experts (Novet, 2025): Oskar Painter, 
AWS Director of Quantum Hardware, projected that commer-
cial quantum workloads will not be operational for “10 years 
or more.” Similarly, Jensen Huang, Nvidia CEO, estimated 
that practical QC applications remain “15 to 30 years” from 
realization, while Mark Zuckerberg, from Meta, suggested a 
minimum developmental timeline of “at least a decade” before 
commercial viability. Contrastingly, Julian Kelly, Google 
Quantum Artificial Intelligence (AI) Director of Hardware, 
presented a more optimistic assessment, suggesting QC tech-
nology is “about five years out from a real breakout application 
that you can only solve on a quantum computer” (Cherney, 
2025). McKinsey’s quantitative analysis estimated that approx-
imately 5,000 operational quantum computers would be in 
place by 2030, with hardware and software capabilities suffi-
cient for complex computational problems not anticipated until 
2035 or beyond (Stackpole, 2024).

While we are currently in the NISQ era, as first defined by 
Preskill (2018), recent advances suggest we may see “early 
fault-tolerant quantum computers” with a few hundred logical 
qubits in the latter half of this decade. These early FTQC sys-
tems will enable practical applications but are not yet powerful 
enough to run intensive quantum algorithms like Shor’s factor-
ization (Anonymous, 2024a). Multiple industry leaders, includ-
ing Quantinuum, have published roadmaps targeting FTQC 
by 2030 (Anonymous, 2024b), demonstrating progress through 
achievements like creating 12 logical qubits on existing 
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hardware. These developments support BCG’s projection that 
QC will make $450–850 billion of economic value by 2040, 
with the most transformative commercial applications requir-
ing the broad quantum advantage expected in the 2030–2040 
timeframe (Bobier et al., 2024).

The field has recently seen significant progress in 
intermediate-scale applications that do not require complete 
fault tolerance. Variational quantum algorithms have shown 
promise in chemistry simulations (McArdle et al., 2020), 
though they still face limitations in accuracy compared to clas-
sical methods. Additionally, QML approaches are being devel-
oped that may offer advantages for specific data structures 
(Biamonte et al., 2017), but the general quantum advantage 
for practical problems remains unproven experimentally. 
According to the National Academies of Sciences, Engineering, 
and Medicine (NASEM, 2019), the scientific consensus sug-
gests that while QC holds tremendous potential, the path to 
reliable, practical business value requires overcoming substan-
tial technical barriers and may take 5-10 years of further fun-
damental research.

Classical versus quantum computing
Fundamental differences
The field of computing stands at a fascinating crossroads, with 
QC emerging as a revolutionary paradigm that challenges our 
traditional understanding of information processing. Table 1 
summarizes the key differences between CC and QC. The fun-
damental distinction between them begins at the most elemen-
tary level of information representation (Nielsen and Chuang, 
2010). As indicated before, while classical systems rely on bits 
that exist in definitively binary states (0 or 1), quantum com-
puters leverage quantum mechanical phenomena to utilize 
qubits, which can exist in superpositions of states (Preskill, 
2018). This fundamental difference cascades into profound 
operational distinctions. Classical computers process informa-
tion sequentially through Boolean logic operations on discrete 
binary states. In contrast, quantum systems can perform par-
allel operations on exponentially large state spaces (Nielsen 
and Chuang, 2010). Classical systems benefit from relatively 
straightforward error correction mechanisms, whereas quan-
tum systems remain exquisitely sensitive to environmental 
perturbations—a phenomenon known as decoherence (Zurek, 
2003). This sensitivity necessitates sophisticated quantum error 
correction codes, which require significant overhead to imple-
ment effectively (Terhal, 2015). Recent advances in error cor-
rection have been substantial, with Google demonstrating the 
first “below-threshold” error correction in 2024 using their 
105-qubit Willow processor, achieving exponential error sup-
pression with increasing code size (Acharya et al., 2025). Per-
haps most significantly, the algorithmic approaches diverge 
fundamentally. While classical algorithms rely on deterministic 

or probabilistic operations rooted in Boolean logic, quantum 
algorithms exploit unique quantum phenomena such as inter-
ference and entanglement to achieve computational advantages 
for specific problems (Montanaro, 2016).

Comparative advantages and limitations
Recent advances in Shor’s algorithm implementation have been 
notable, with researchers successfully factoring 21 on IBM 
quantum processors using only five qubits (Skosana and Tame, 
2021). The largest number factored using a complete simulation 
of Shor’s algorithm on classical hardware without prior knowl-
edge of the solution is 549,755,813,701 (Willsch et al., 2023), 
though practical implementation on quantum hardware 
remains challenging for larger numbers. One particularly prom-
ising application domain involves the simulation of quantum 
systems. Other advantages include the quantum approximate 
optimization algorithm (QAOA) (Farhi et al., 2014; Blekos et 
al., 2024) and quantum annealing techniques (Hauke et al., 
2020) that demonstrate promising theoretical advantages for 
complex optimization problems that pervade scientific and 
industrial domains. The intersection of QC with machine learn-
ing (ML) represents another frontier with significant potential, 
as QML algorithms may offer substantial speedups for specific 
learning tasks and data structures (Biamonte et al., 2017; 
Schuld and Petruccione, 2021). However, QC is not universally 
superior—many computational tasks show no quantum advan-
tage and remain better suited to classical architectures (Aaron-
son, 2015). As mentioned above, current quantum error 
correction methods require significant overhead, with estimates 
suggesting thousands of physical qubits needed for each logical 
qubit capable of fault-tolerant operation (Campbell, 2024). 
This massive overhead is necessary because quantum states are 
extremely fragile, as any interaction with the environment can 
cause errors. Error correction codes work by encoding the infor-
mation of one “logical” qubit across many “physical” qubits 
in a way that allows detection and correction of errors without 
directly measuring (and thus destroying) the quantum informa-
tion. The more physical qubits used, the more robust the logical 
qubit becomes against noise and decoherence, but this comes 
at the cost of needing perhaps 1,000–10,000 physical qubits to 
create just one reliable logical qubit. Developing effective quan-
tum algorithms presents another substantial hurdle because 
creating algorithms that leverage quantum effects to outperform 
classical approaches requires fundamentally different 
problem-solving paradigms (Montanaro, 2016). Additionally, 
current QC infrastructure remains costly and specialized, lim-
iting accessibility and widespread adoption (NASEM, 2019).

Performance comparison
When considering performance, the relative advantage of QC 
requires nuanced analysis. For specific problems with 

Table 1.  Key differences between classical and quantum computing

Aspect Classical Computing (CC) Quantum Computing (QC)

Information units Bits (0 or 1) Qubits (superposition of 0 and 1)
State representation Binary states Superposition of states
Processing Sequential operations on bits Parallel operations on quantum states
Error susceptibility More stable, easier to correct errors Highly sensitive to environmental interference, requires complex error correction
Algorithmic approach Based on boolean logic and arithmetic Exploits quantum phenomena like interference and entanglement
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appropriate structure, quantum computers theoretically offer 
exponential improvements in computational efficiency, but for 
many common computational tasks, classical computers 
remain not only adequate but superior in terms of both per-
formance and practicality (Harrow and Montanaro, 2017). 
The distinctive value proposition of QC lies not in raw pro-
cessing speed but in algorithmic efficiency for particular prob-
lem classes. As mentioned above, the so-called quantum 
supremacy (Arute et al., 2019; Zhong et al., 2020) is purely of 
theoretical significance but possibly hints at the technology’s 
future potential. The achievements of Google’s Willow proces-
sor represent a critical step toward building noise-resistant 
quantum computers with practical scale and have demon-
strated significant progress in quantum error correction, achiev-
ing a “beyond-classical” ability in random circuit sampling 
tasks that would be intractable for classical supercomputers 
(Acharya et al., 2025).

The black box example
To better understand how quantum computers perform calcu-
lations differently from classical computers, let’s consider a 
simple problem and compare the approaches. Imagine a black 
box function that takes a single bit as input and produces a 
single bit as output. The function is either constant (always 
outputs zero or always outputs one: f(0) = f(1) = 0 or f(0) = 
f(1) = 1) or balanced (outputs 0 for half the inputs and 1 for 
the other half: either f(0) = 0, f(1) = 1 or f(0) = 1, f(1) = 0). Our 
task is to determine which type of function we have. As shown 
in Supplementary Appendix 1, a classical computer must check 
the function twice to be certain. Step 1: calculate f(0), step 2: 
calculate f(1), and step 3: compare both outputs. The function 
is constant if f(0) = f(1). The function is balanced if f(0) ≠ f(1). 
Using Deutsch’s algorithm (Deutsch, 1985), a quantum com-
puter can solve this problem with only one function evaluation. 
The ingenious aspect of Deutsch’s algorithm is in how it uses 
superposition to evaluate both inputs simultaneously (quantum 
parallelism), encodes the result in phase rather than directly 
reading output values (phase kickback), and uses interference 
through the final Hadamard gate to extract global information 
about the function without determining specific values. Phase 
kickback is a quantum phenomenon where information about 
a function gets encoded in the phase (the quantum mechanical 
‘angle’) of a qubit rather than its amplitude. This is crucial 
because while we cannot directly measure phase, we can use 
quantum gates to convert phase differences into measurable 
probability differences, allowing us to extract global properties 
of functions with fewer evaluations than classically possible. 
This demonstrates a fundamental quantum advantage: the abil-
ity to extract global properties of a function without evaluating 
all possible inputs individually, something provably impossible 
in CC (Mermin, 2007).

Emulation of quantum computing
Although it is possible to simulate quantum computations on 
classical computers to a certain extent using Python libraries 
such as Qiskit, Cirq, PennyLane, and many others (Aleksand-
rowicz et al., 2019; Kaiser and Granade, 2021; Young et al., 
2023), it is crucial to understand the distinction between quan-
tum simulators and quantum emulators. Simulators perform 
idealized, noise-free quantum circuit simulations, allowing 
researchers to test algorithms without hardware imperfections. 
Some simulators, such as IBM’s Aer framework (https://qiskit.

github.io/qiskit-aer), also allow the injection of custom or 
hardware-derived noise models to mimic real-world conditions 
(Aleksandrowicz et al., 2019). Emulators, on the other hand, 
replicate the behavior of a specific quantum processing unit, 
including its native gate set, connectivity, and calibrated noise 
distributions, often using snapshots of the device’s state at a 
given time. This makes emulators valuable for assessing algo-
rithm performance under realistic hardware constraints before 
running on actual quantum devices.

Classical computers can effectively simulate quantum systems 
with a small number of qubits (typically up to about 30–40 qubits) 
(Gangapuram et al., 2024). Beyond this, the simulation becomes 
exponentially more resource-intensive due to the vast state space 
that needs to be represented (Zhou et al., 2020). Simulators and 
emulators are invaluable for developing and testing quantum algo-
rithms, educating students and researchers, and exploring quan-
tum concepts. However, they cannot replicate the full power of a 
quantum computer for large-scale problems. The exponential 
advantage of quantum computers for specific tasks only becomes 
apparent when dealing with issues beyond the simulation capa-
bilities of classical computers (Preskill, 2018). For example, while 
a classical computer can simulate Shor’s algorithm for small num-
bers, it cannot do so for the large numbers used in real-world 
cryptography—that’s where actual quantum hardware becomes 
necessary (and troublesome). In essence, QC emulation on clas-
sical computers serves as a crucial bridge in developing QC, but 
it does not negate the need for actual quantum hardware to realize 
the full potential of QC.

Current Development Paradigms and 
Limitations
Despite significant advances in QC research, fully functional 
large-scale quantum computers do not yet exist. These systems, 
while impressive demonstrations of quantum principles, remain 
limited in their practical capabilities due to issues with qubit 
coherence, error rates, and scaling. We are currently at a critical 
juncture in QC development. Classical computers can simulate 
quantum systems up to a specific size, but, as discussed before, 
we are approaching the “quantum advantage” or “quantum 
supremacy” era previously introduced (Yung, 2019). This sig-
nificant threshold marks where QC hardware must progress 
independently as classical emulation becomes computationally 
infeasible. Three primary approaches are currently being pur-
sued to demonstrate quantum supremacy: boson sampling, 
sampling from instantaneous quantum polynomial circuits, and 
sampling from chaotic quantum circuits (Yung, 2019). Each 
of these methods represents a pathway to establishing the prac-
tical superiority of quantum systems for specialized computa-
tional tasks. Applying these quantum supremacy techniques to 
agricultural problems would represent a transformative capa-
bility for addressing previously stubborn challenges in the field.

The quantum assembly language era
The current state of QC bears striking similarities to the early 
days of CC when assembly language was the primary program-
ming method (Figure 5). Today’s quantum developers work 
directly with low-level qubit manipulations, quantum gates 
(i.e., fundamental operations of qubits), and circuit designs, 
essentially the “assembly language” of QC. We are still devel-
oping the basic building blocks before more abstract, 
user-friendly QC languages and frameworks emerge. While 
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several quantum programming languages already exist, such 
as IBM’s Qiskit (Aleksandrowicz et al., 2019), Google’s Cirq, 
and Microsoft’s Q# (Kaiser and Granade, 2021), most 
gate-based systems ultimately compile down to OpenQASM, 
an open quantum assembly language used across multiple ven-
dors (Cross et al., 2017). They still operate at a relatively low 
level of abstraction compared to modern classical program-
ming languages, often require programmers to think about 
quantum circuits, gates, and physical qubit operations rather 
than high-level abstractions. This state of development means 
quantum algorithms often require deep expertise in quantum 
mechanics and low-level quantum operations, creating a sig-
nificant barrier to entry for domain specialists in fields like 
agriculture who might benefit from quantum applications. 
Furthermore, as our theoretical and experimental understand-
ing of quantum systems evolves, our current programming 
models—rooted in classical logic and sequential execution—may 
prove insufficient to fully capture or exploit the inherently 
non-classical nature of quantum information, such as entan-
glement and quantum interference. This suggests that future 
breakthroughs may involve better tools and new ways of con-
ceptualizing algorithm design and computation.

Among the various physical approaches to implementing 
quantum computers, neutral atom systems show particular 
promise for scalability. These systems can potentially prepare 
qubit arrays in one, two, or three-dimensional geometries, with 
recent experiments demonstrating control of up to 50 atomic 
qubits (Saffman, 2019). The high ratio between coherent cou-
pling (the rate at which quantum operations can be performed) 
and decoherence (i.e., unwanted loss of quantum information) 
in neutral-atom systems establishes a favorable foundation for 
scalability. This scalability will be essential for reaching the 
million-qubit threshold that meaningful agricultural applica-
tions may eventually require.

Current application development approaches
Given these hardware limitations, QC applications are cur-
rently developed through three main approaches: classical 
emulation (as discussed above), hybrid classical-quantum 
approaches, or limited-scale quantum hardware. Researchers 
use classical computers to simulate quantum algorithms for 
small problem sizes in the classical emulation. These emulators 
become exponentially slower as the number of qubits increases, 
effectively limiting simulations to about 30–40 qubits on the 
most powerful supercomputers. The hybrid classical-quantum 
approach uses classical computers to handle parts of the prob-
lem while offloading specific computations to quantum proces-
sors (Bharti et al., 2022; Cerezo et al., 2022). This approach 
works within hardware constraints while leveraging quantum 
advantages for suitable sub-problems. In the limited-scale 
quantum hardware, researchers access actual quantum proces-
sors through cloud services provided by companies like IBM, 
Google, Amazon, and others. These systems allow testing of 
real quantum algorithms but with significant constraints on 
qubit count, coherence time, and error rates.

Agriculture presents a unique confluence of computational 
challenges that align remarkably well with QC’s strengths. 
Unlike many industrial applications that involve straightfor-
ward optimization, agricultural systems encompass 
quantum-mechanical processes at the molecular level (soil 
chemistry, photosynthesis, nitrogen fixation), exponentially 
complex optimization problems (resource allocation across 

time, space, and uncertain weather conditions), and massive 
multivariate datasets from genomics, phenomics, and environ-
mental sensors. These characteristics—quantum processes, 
combinatorial explosion, and high-dimensional data—precisely 
represent the domains where quantum computers promise 
advantages over classical systems. Furthermore, agriculture’s 
pressing need for sustainability solutions demands computa-
tional breakthroughs to optimize resource use, minimize envi-
ronmental impact, and feed a growing global population within 
planetary boundaries. To illustrate the potential alignment 
between agricultural computational challenges and QC capa-
bilities, Table 2 summarizes key application areas across molec-
ular simulations, optimization problems, genomics, data 
analysis, and integrated systems. While these applications show 
theoretical promise, it is crucial to recognize that practical 
implementation awaits significant advances in quantum hard-
ware, as discussed throughout this review.

Applications in Agricultural Sciences
Given the current stage of development of QC, the most prob-
able applications within the next 5- to 10-year timeframe 
(Bharti et al., 2022) include quantum chemical simulation of 
molecular structures and reactions where quantum mechanical 
effects significantly influence system behavior, particularly rel-
evant for pharmaceutical development and materials science 
(McArdle et al., 2020), optimization of specialized problems 
using combinatorial optimization applications in logistics, sup-
ply chain management, and financial portfolio construction 
where current heuristic approaches demonstrate suboptimal 
performance (Harrigan et al., 2021), and applications to 
advancing theoretical understanding of quantum algorithms, 
error correction methodologies, and computational complexity 
classifications (Aaronson, 2015). For most commercial orga-
nizations and individual consumers, QC benefits will initially 
manifest indirectly through improved products, materials, and 
services rather than through direct quantum computational 
interaction (NASEM, 2019).

Fundamental sciences
Biology and chemistry are perhaps the most foundational sci-
entific disciplines poised to benefit significantly from QC due 
to their reliance on complex quantum mechanical interactions 
that are difficult to simulate classically. Quantum computing 
offers unprecedented potential for accurately modeling molec-
ular electronic structures and solving the Schrödinger equation 
(Nielsen and Chuang, 2010; Griffiths and Schroeter, 2018) for 
large, interacting systems, tasks that are infeasible with classical 
methods (Cao et al., 2019; Baiardi et al., 2023). In chemistry, 
QC enables more precise calculations of ground and excited 
states of molecular systems using algorithms like quantum 
phase estimation and variational quantum eigensolvers, which 
are especially relevant in areas like catalyst design and reaction 
mechanism elucidation (Cao et al., 2019; McArdle et al., 2020). 
Complex configurational searches in materials like graphene 
can be reformulated into quantum-amenable optimization 
problems using quantum annealing (Camino et al., 2023). In 
biology, QC is expected to revolutionize areas such as drug 
discovery, where quantum algorithms could vastly improve the 
prediction of binding affinities, protein folding, and the map-
ping of biochemical interactions at atomistic resolution (Baiardi 
et al., 2023).
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Agricultural sciences
A critical question for agricultural research is whether QC 
offers solutions to fundamental (existing) problems that CC 
systems, including supercomputers and AI, cannot resolve. 
While CC continues to advance agricultural sciences through 
ML models, digital farm twins, and complex optimization algo-
rithms (Tedeschi, 2019), particular agricultural challenges may 
benefit from quantum approaches. Recent comprehensive 
reviews have identified several promising QC applications 
across agricultural and life sciences domains, including bioin-
formatics, remote sensing, climate modeling, and smart farming 
(de Souza et al., 2024; Pook et al., 2025).

Quantum computers could potentially provide unique 
advantages in complex molecular simulations, such as model-
ing nitrogen fixation and soil chemistry processes at the quan-
tum level through Hamiltonian simulation approaches for 
resource recovery from agricultural waste streams, enabling 
the development of more efficient fertilizers and sustainable 
soil management strategies towards sustainability. These 
molecular simulations involve quantum mechanical interac-
tions that classical computers struggle to model accurately. 
Quantum algorithms such as QAOA might better handle the 
exponentially complex optimization problems in large-scale 
agricultural planning involving numerous variables like water 
usage, crop rotation, and resource allocation, particularly in 
agri-food supply chain management where perishable products 
create highly complex nondeterministic polynomial time 
(NP-hard) optimization problems (Chen et al., 2015; Saheb-
jamnia et al., 2018; Chouhan et al., 2021), i.e., it involves the 
optimization of multiple variables and may include 
multi-objective programming in which the number of possible 
combinations grow exponentially.

Additional promising applications include solving large-scale 
linear equation systems in animal breeding for estimating genetic 
merits across millions of animals, quantum-enhanced ML 
approaches for satellite image classification in land-use analysis, 
and quantum search algorithms for genome assembly to effi-
ciently piece together DNA segments. Climate modeling is crit-
ical to on-farm decision-making and could also see improvements 
through QC’s ability to process multiple variables simultane-
ously; however, significant challenges remain, including under-
standing climate, defining sustainability metrics, and the nascent 
state of QC technology. Applications in the applied sciences, 
specifically agricultural sciences, including animal sciences, are 
vast and promising, but they are still theoretical or in the early 
stages of development, with most practical applications not 
expected in the near future due to current quantum hardware 
limitations(Tedeschi, 2024; Pook et al., 2025).

Animal science
Animal nutrition and welfare
In animal nutrition, QC could revolutionize our ability to 
model complex biological systems by simulating quantum-level 
interactions among microbial communities, dietary com-
pounds, and host tissues. In rumen microbiome analysis, QC 
could enable the exploration of dynamic interactions among 
thousands of microbial species, fermentation products, and 
host genetic responses, i.e., factors that influence nutrient uti-
lization, microbial crossfeeding behavior, microbial protein 
synthesis, and methane emissions. For instance, the enzyme 
nitrogenase, crucial for microbial protein synthesis in the 

rumen, contains iron-molybdenum cofactors where electron 
transfer occurs through quantum tunneling (Hoffman et al., 
2014). Current metagenomic and metabolomic studies produce 
terabytes of data that require extensive classical processing (Li 
et al., 2019). Quantum algorithms, such as quantum search 
and simulation methods, could reduce processing times and 
help identify microbial consortia optimized for feed efficiency 
and reduced emissions (Pook et al., 2025). These tools may 
also facilitate the screening of novel feed additives or com-
pounds by modeling their effects on microbial metabolism and 
host responses, supporting more precise and sustainable nutri-
tion strategies. Specifically, QC could model how methane 
inhibitors, such as 3-nitrooxypropanol (or other halogenated 
haloforms), interact with methyl-coenzyme M reductase at the 
quantum level, potentially identifying more effective inhibitor 
designs. Furthermore, quantum algorithms for solving partial 
differential equations have demonstrated potential in climate 
and environmental modeling, which could inform real-time 
heat stress predictions and guide the design of ventilation sys-
tems in livestock housing (Pook et al., 2025). Quantum prin-
cipal component analysis has also shown promise in identifying 
key environmental and physiological features related to ther-
mal comfort and facility design in livestock operations (Mar-
aveas et al., 2024; Pook et al., 2025). This could optimize the 
interaction of multiple variables, including the 
temperature-humidity index, air velocity, radiant heat load, 
and animal-specific factors such as body weight and production 
level (Tedeschi and Fox, 2020a, b). Together, these applications 
illustrate how QC may enhance both the nutritional and envi-
ronmental dimensions of precision livestock systems.

Animal breeding and genomics
In animal breeding specifically, QC has been proposed as a 
potential tool for certain computational challenges, though 
significant practical limitations remain. Current mixed model 
equations used in genetic evaluation require solving systems 
with billions of equations, as breeding programs now routinely 
evaluate millions of animals across multiple traits simultane-
ously (Vandenplas et al., 2023; Pook et al., 2025). The com-
putational complexity of these systems has become a major 
bottleneck, with some evaluations requiring days of processing 
on high-performance computing clusters (Freudenberg et al., 
2023). The Harrow-Hassidim-Lloyd quantum algorithm could 
theoretically provide speedups for solving certain linear sys-
tems, with runtime that is polynomial in log(N) and the con-
dition number κ, provided the coefficient matrix is sparse and 
well-conditioned (Harrow et al., 2009). However, this approach 
is limited to estimating specific properties of the solution (such 
as expectation values) rather than computing individual breed-
ing values directly. To address such limitations, Mukherjee and 
Basu Mallik (2025) recently introduced a hybrid 
quantum-classical algorithm designed to solve linear systems 
with reduced quantum resource demands, offering a potentially 
more practical alternative to Harrow-Hassidim-Lloyd for sci-
entific computing problems requiring full solution vectors. 
Similarly, quantum-inspired classical algorithms have shown 
promise for low-rank linear systems with logarithmic depen-
dence on dimension, though they still have polynomial depen-
dence on other parameters like rank and condition number 
(Chia et al., 2020). Given that breeding value estimation typ-
ically requires the full solution vector and often involves poorly 
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conditioned systems, the practical applicability of these quan-
tum approaches to real breeding programs remains an open 
question, requiring further research (Pook et al., 2025). The 
applications of QC in livestock genomics extend beyond tra-
ditional sequence analysis to encompass the integration of 
complex multi-omics data. Grover’s algorithm provides qua-
dratic speedup for genome assembly, reducing search complex-
ity from O N( ) to O N√( ) for assembling fragmented DNA 
sequences (Sarkar et al., 2021; Fang et al., 2024). This qua-
dratic speedup—where a classical search through N fragments 
requires N operations while Grover’s algorithm needs only √N 
operations—means that assembling a genome from 1 million 
fragments could theoretically require just 1,000 quantum oper-
ations instead of 1 million classical ones. This advancement is 
particularly relevant for livestock breeding programs where de 
novo assembly of reference genomes for indigenous breeds 
remains computationally challenging (Crysnanto et al., 2021), 
as also emphasized by Pook et al. (2025) in their assessment 
of QC applications in agriculture.

Precision livestock farming
The recent review by Maraveas et al. (2024) expands the dis-
cussion of QC in agriculture, specifically highlighting how QC, 
when combined with AI, could transform precision livestock 
farming (PLF). The transition to “smart agriculture” necessi-
tates data-centric approaches, where the strategic integration 
of QC and AI offers unprecedented capabilities to enhance 
predictive analytics, optimize resource allocation, and model 
complex biological systems under real-world constraints (Mar-
aveas et al., 2024; Tedeschi, 2024). A particularly promising 
area is QML, a rapidly advancing field at the intersection of 
QC and classical ML. The QML field leverages 
quantum-enhanced algorithms such as quantum neural net-
works, quantum kernel methods, and hybrid quantum–classical 
models to process high-dimensional datasets common in PLF. 
These include real-time sensor data on animal behavior, rumen 
fermentation dynamics, feed composition variability, and envi-
ronmental conditions (Neethirajan, 2020; Tedeschi et al., 
2021). Research in QML has also explored quantum general-
izations of established ML models like Boltzmann machines, 
generative adversarial networks, and autoencoders (Allcock 
and Zhang, 2019), which may offer computational advantages 
for non-linear and complex agricultural datasets. Such 
approaches could support advanced pattern recognition, pre-
dictive modeling, and adaptive learning in data-intensive live-
stock systems. QML has the potential to enhance decision 
support systems that integrate mechanistic modeling with 
AI-driven inference—referred to as hybrid intelligent mecha-
nistic models (Tedeschi, 2022; 2023). These systems may iden-
tify optimal feed interventions, mitigate emissions, or predict 
welfare risks under fluctuating conditions. While these 
quantum-enhanced methods remain largely conceptual, they 
offer a novel computational layer beyond what is currently 
achievable with classical AI, and represent a key frontier as 
quantum technology matures. In parallel, quantum optimiza-
tion algorithms show promise for solving logistical and oper-
ational challenges in livestock systems. For instance, the QAOA 
could be applied to optimize feed delivery routes across mul-
tiple barns, reducing labor costs and ensuring timely feeding 
(Farhi et al., 2014). In integrated crop-livestock systems, quan-
tum optimization could balance nutrient flows between crop 
and animal units, maximizing whole-farm resource efficiency 

while minimizing environmental impacts (Pook et al., 2025). 
Additionally, quantum digital twins represent an emerging and 
transformative application in PLF. These high-fidelity virtual 
replicas can simulate entire livestock production systems by 
integrating genomic, nutritional, health, environmental, and 
economic variables. Such models offer the potential for 
real-time optimization of animal management strategies, sup-
porting individualized care and enhanced resource use. As 
described by Neethirajan and Kemp (2021), digital twins could 
enable predictive monitoring of animal health and welfare, 
leading to more responsive and sustainable farming practices. 
Maraveas et al. (2024) further suggest that quantum-enhanced 
simulations could significantly improve the fidelity and scal-
ability of such digital twin systems. Together, these quantum 
technologies, QML, optimization, and digital twins, signal a 
paradigm shift in PLF, enabling systems that are more predic-
tive, adaptive, and efficient than those relying solely on CC.

In summary, the value proposition of QC in agriculture ulti-
mately depends on whether the field’s most pressing challenges 
involve quantum mechanical processes that classical computers 
fundamentally cannot simulate efficiently or optimization prob-
lems of such complexity that quantum algorithms would pro-
vide substantial speedups compared to classical approaches.

Future considerations
Beyond the technical capabilities, we must also consider the 
social and economic implications of adopting QC in agricul-
ture. The trajectory mirrors the early evolution of CC, when 
mainframes were exclusively accessible to military installations, 
research laboratories, and large corporations (Ceruzzi, 2003) 
due to their enormous cost and specialized maintenance 
requirements. Similarly, the high costs of quantum infrastruc-
ture may limit access to wealthy institutions and corporations, 
potentially widening the digital divide between large industrial 
farming operations and small-scale farmers. Questions of data 
ownership, algorithmic transparency, and the concentration of 
technological power become increasingly relevant. Addition-
ally, the carbon footprint of QC facilities should be weighed 
against their potential environmental benefits in agricultural 
applications. Current QC systems, particularly those using 
superconducting qubits, require cryogenic cooling to ∼10–15 
mK and complex control electronics that consume significant 
amounts of energy (Arute et al., 2019), that end up favoring 
CC for handling simple problems (Desdentado et al., 2024). 
While computational benefits for certain problem classes may 
be substantial, it is essential to consider whether these energy 
demands could offset environmental gains achieved through 
improved predictions or optimizations. Future QC adoption 
in agriculture will need to weigh computational benefits against 
energy costs to ensure net sustainability gains. A further con-
sideration is the growing demand for robust quantum software 
and benchmarking tools to support reliable, scalable applica-
tions. System-level software is critical to translate quantum 
algorithms into executable instructions while managing con-
trol, error correction, and noise mitigation, which are tasks 
that remain computationally intensive and largely reliant on 
classical preprocessing. Importantly, software and hardware 
must evolve in unison. The effectiveness of QC hinges on tight 
integration between software capabilities and the physical con-
straints and architecture of quantum hardware. Without this 
co-development, advances in one domain may be bottlenecked 
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by limitations in the other. Finally, a critical challenge is edu-
cation: preparing the next generation of agricultural scientists 
with the interdisciplinary knowledge spanning quantum phys-
ics, computer science, and agricultural systems necessary to 
develop and implement quantum solutions. This educational 
transformation will require significant revisions to existing 
curricula and the development of specialized training programs 
that bridge the gap between quantum theory and practical agri-
cultural applications.

Conclusion
Quantum computing is not simply a faster version of CC, as it 
represents a new computational paradigm with the potential 
to solve classes of problems that remain out of reach for even 
the most advanced classical systems. Its promise lies in how it 
redefines problem-solving, especially for applications involving 
quantum mechanical systems, massive optimization spaces, or 
probabilistic modeling. Despite current limitations in hardware 
scalability, error correction, and coherence times, the theoret-
ical and algorithmic groundwork continues to progress rapidly, 
laying the foundation for transformative applications once 
suitable quantum hardware becomes viable.

For agricultural sciences, including animal science, the poten-
tial of QC is both intriguing and largely speculative. Many of 
its proposed benefits remain largely theoretical, such as mod-
eling rumen microbial interactions at the molecular level, opti-
mizing feed formulations under dynamic environmental 
constraints, or integrating high-dimensional sensor data in 
real-time. Yet, the trajectory mirrors early CC: conceptual 
exploration preceding hardware readiness. A critical consider-
ation remains whether QC truly offers solutions to fundamental 
agricultural problems that classical systems, including super-
computers and AI, cannot resolve. This question must guide 
research priorities as we evaluate potential quantum applica-
tions against existing classical approaches. Hybrid approaches, 
including quantum-enhanced AI, quantum simulators, and 
quantum-classical workflows, offer more immediate entry 
points into agricultural applications, especially for PLF and 
sustainability. We believe that QC is not positioned to replace 
CC but to complement it. Classical methods will remain the 
backbone for most agricultural systems, but QC may augment 
their capabilities in specific domains such as complex system 
modeling, resource optimization, and molecular simulation.

To prepare, applied science communities must begin building 
quantum readiness. This includes investing in quantum literacy 
among researchers, fostering interdisciplinary collaborations, 
identifying meaningful agricultural use cases, and engaging 
with quantum hardware and software ecosystem developers. 
Moreover, we must proactively address the social and economic 
implications of QC adoption in agriculture. The high costs of 
quantum infrastructure may limit access to wealthy institutions 
and corporations, potentially exacerbating the digital divide 
between large industrial farming operations and small-scale 
farmers. Questions of data ownership, algorithmic transpar-
ency, and the concentration of technological power become 
increasingly relevant and must be addressed through thoughtful 
policy development and inclusive stakeholder engagement. As 
we stand at the intersection of theory and implementation, the 
agricultural sciences have a rare opportunity to shape the tra-
jectory of QC applications from the outset. The road ahead is 

long, but the potential returns, both scientifically and econom-
ically, as well as environmentally, make this journey well worth 
the investment.
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