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Abstract

Integrating open-source tools and machine learning (ML) pipelines into livestock data analysis transforms research, education, and decision-making
in animal science. This study presents a comprehensive, end-to-end regression pipeline implemented in Python, designed to predict outcome
variables from structured input data in livestock systems. The pipeline includes essential stages of data preparation, such as cleaning, normalization,
transformation, and exploratory data analysis, followed by model development, hyperparameter tuning, and interpretability analysis. Two real-world
case studies are used to demonstrate the pipeline’s adaptability and predictive capabilities in addressing domain-specific questions in livestock
production. The open-source nature of the pipeline serves multiple purposes. First, it promotes reproducibility, a critical requirement in scientific
research and data-intensive industry applications, by allowing others to verify and build upon the presented methodology. Second, it enhances
accessibility and equity in data science education, enabling students and professionals alike to explore ML applications without the barrier of
expensive software or proprietary code. Third, the pipeline is fully modular, encouraging users to adapt, integrate new ML algorithms, and extend
components for tasks such as classification, clustering, or time series forecasting in livestock datasets. Beyond its technical implementation, the
pipeline emphasizes interpretability, representing an often overlooked yet vital aspect of deploying ML in agricultural contexts. Through the impor-
tance of permuted features, residual analysis, and model diagnostics, users gain actionable insights into which variables drive predictions, sup-
porting more informed decisions in herd management, nutrition planning, and breeding programs. This focus ensures that ML outputs are not
just accurate, but also meaningful and aligned with real-world livestock production goals. In summary, this work contributes a versatile and
transparent machine learning resource tailored for animal science applications. Making the code openly available bridges the gap between meth-
odological advancement and practical deployment, empowering researchers, students, and practitioners to apply ML for better decision-making
and scientific discovery in livestock systems.

Lay Summary

This study demonstrated how programming languages like Python, alongside artificial intelligence technologies such as machine learning, can
help those working with farm animals models better understand and predict essential traits, including feeding behavior and growth patterns. We
created a step-by-step process (called a “pipeline”) that cleans and prepares animal data, builds and tests models, and explains which factors are
most important for making predictions. We tested this approach on two case studies (real examples) to show how it works. This work is special
because the tools and code are completely open and free for anyone to use, promoting collaboration and accessibility. This makes it easier for
researchers, students, and farmers to learn from data, try out ideas, and improve their own animal management or research projects. It also helps
make science more transparent and fair because anyone can check, refine, or build on what we've done. Additionally, we designed the system
to provide reliable results and clear explanations of its predictions. That way, users can trust the model’s predictions, understand its reasoning,
and make smarter, data-driven decisions regarding animal care, feeding, and breeding strategies.
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Introduction on capturing the relationship among variables and then apply-

Livestock data modeling is crucial to improving animal health, ~ ing it to describe and optimize existing systems or predict out-
productivity, and farm efficiency. The process typically focuses ~ come variable values. The modeling process is typically

Received May 30, 2025. Accepted September 4, 2025

© The Author(s) 2025. Published by Oxford University Press on behalf of the American Society of Animal Science.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

920z Arenuer g uo 1sanb Aq G/ €0V8/yiIeNs/SElEB0 L 0 L/10p/aIo1LE/SEl/WO00"dno-ojwapese//:sdny Wwoly papeojumoq


https://doi.org/10.1093/jas/skaf444
https://orcid.org/0000-0003-1100-646X
https://orcid.org/0000-0001-9092-7237
mailto:dtulpan@uoguelph.ca
https://creativecommons.org/licenses/by/4.0/

implemented using a plethora of modeling techniques, includ-
ing pure mathematical, dynamical, statistical, empirical, or
learning-based systems. Perhaps one of the most attractive
modeling types in livestock science is building models able to
predict variables of interest, such as production or genetic
traits, and various statistical and machine learning (ML) tech-
niques are available for this purpose. By leveraging machine
learning and statistical techniques, farmers can predict disease
outbreaks, optimize breeding strategies, enhance overall animal
welfare, and optimize the allocation of scarce resources to
improve profits. Accurate models help with the early detection
of health issues, reducing economic losses and improving sus-
tainability. Additionally, predictive modeling enables better
resource management, ensuring optimal feed utilization and
reducing environmental impact. As precision livestock farming
continues to evolve, data-driven insights will play a key role in
shaping the future of animal agriculture.

This study aims to provide a detailed computational and reason-
ing process to produce a simple and understandable regression-based
predictive analytic pipeline that integrates elements of machine
learning, statistical mechanisms, and practicality focused on deliv-
ering high-quality predictions produced by well-fitted, robust mod-
els with an outstanding generalization capability.

Data Acquisition and Preprocessing for
Livestock Modelling

Data acquisition and preprocessing are foundational steps in
livestock modeling using machine learning because they directly
influence the resulting models’ accuracy, reliability, and appli-
cability. High-quality, well-prepared data ensures that the
model can learn meaningful patterns rather than noise or
errors, which is especially important given the biological vari-
ability in livestock due to genetics, environment, and manage-
ment practices. Raw data from sensors, video, or farm records
often contain missing values, inconsistencies, or noise, which
must be addressed through preprocessing to enable robust anal-
ysis. Transforming raw inputs into meaningful features through
feature engineering enhances model performance and interpret-
ability. Proper preprocessing also helps prevent overfitting and
bias by ensuring balanced and standardized datasets.

The importance of data preparation in livestock modeling
starts with the “collect and respond” phase, which is often
overlooked and is crucial to establish the trustworthiness of
data before any analytics is performed (Tedeschi, 2022). That
work outlines practical strategies to identify and mitigate issues
such as outliers, leverage points, multicollinearity, and viola-
tions of distributional assumptions, using tools like DFFITS,
Cook’s Distance, variance inflation factors, and robust regres-
sion approaches such as Theil-Sen, RANdom SAmple Consen-
sus (RANSAC) or Huber estimators (Tedeschi, 2022; Tedeschi
and Galyean, 2024). Visualization techniques like Tukey’s
boxplot are powerful, assumption-free tools to uncover unex-
pected data behavior, but with limitted applicability to smaller
datasets. These preprocessing steps serve as a statistical neces-
sity and a strategic advantage in modern animal production
systems, where data quality directly informs the capacity to
extract actionable insights (Tedeschi, 2022). For significantly
larger datasets, traditional statistical outlier detection strategies
such as the z-score method are no longer appropriate and data
scalable approaches such as clustering (unsupervised machine
learning) techniques can be considered (Smiti, 2020).
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Ultimately, a strong focus on data acquisition and prepro-
cessing supports the development of scalable, accurate, and
practical ML models that can improve animal health, welfare,
and farm productivity.

Sources of livestock data

Livestock data is collected from diverse sources, including
wearable sensors and Internet of Things (IoT) devices that track
real-time physiological and behavioral factors (Lee and Seo,
2021), such as temperature, activity, and feeding patterns
(Neethirajan, 2020; Tedeschi et al., 2021; Chelotti et al., 2024),
automated monitoring systems consisting of cameras and com-
puter vision, which analyze movement and interactions among
animals (Curti et al., 2023) and manual records obtained via
traditional data collection from farm logs and veterinary
reports (Gorge et al., 2023; Baldin et al., 2025).

Data cleaning and handling missing values

Data cleaning is crucial in preparing data for machine learning,
as it ensures the quality and reliability of the input used to train
models. This process involves identifying and handling missing
values, correcting errors or inconsistencies, removing dupli-
cates, and standardizing formats (Tedeschi, 2022). Clean data
helps prevent biased or inaccurate model outputs and improves
overall performance and generalizability. In livestock applica-
tions, where data may come from sensors, manual records, or
automated systems, cleaning is especially important to address
noise, outliers, and irregular sampling (Schodl et al., 2024;
Boerman et al., 2025).

Outlier and extreme value detection is also vital in livestock
data modeling because such values can significantly distort
model training, leading to inaccurate predictions and unreliable
insights. Extreme values represent observations or data points
that are numerically far from the bulk of the data such as very
large or very small relative to the data distribution and repre-
sent perfectly valid values, which are expected under the
data-generating process. On the other hand, outliers represent
observations or data points that do not fit the assumed
data-generating process, the expected data distribution or the
model being used. These anomalies may result either from sen-
sor errors and data entry mistakes (typically considered outli-
ers) or from rare but genuine biological events (often labeled
as extreme values). Proper identification and management,
whether through correction, transformation, or removal, helps
maintain the integrity of the dataset, ensures model robustness,
and supports more accurate and generalizable results. In live-
stock systems, where variability is natural but data-driven deci-
sions are critical, managing outliers is essential for building
trustworthy models. For a more in-depth discussion on iden-
tifying and handling outliers in livestock science, refer to the
work of Tedeschi (2022).

Moreover, raw livestock data often contains missing values
due to sensor malfunctions or data transmission issues. Com-
mon techniques for handling missing data include deletion
methods that remove incomplete records. However, this may
reduce dataset size and introduce bias. An alternative strategy
that does not affect dataset size is to use imputation techniques
that rely on filling missing values using mean, median, mode,
or machine learning model predictions (Little and Rubin, 2019;
You et al., 2023), and interpolation and predictive modeling
that use regression or deep learning methods to estimate miss-
ing values (Donders et al., 2006).
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Feature engineering and feature selection

Feature engineering enhances model performance by creating,
transforming or encoding variables (features) from raw data into
meaningful features to better represent the underlying problem
to the model. Feature engineering techniques include a plethora
of approaches such as: 1) numerical transformations (e.g., scal-
ing, normalization, binning) to improve distributional properties
or capture nonlinear relationships, 2) encoding of categorical
features (e.g., One-hot encoding, label encoding, target encod-
ing, embeddings) to convert categorical variables into numerical
representations, 3) feature construction/combination/aggrega-
tion that creates new features from existing ones to capture
domain knowledge by applying mathematical functions and
operators, 4) text manipulations (e.g., Bag-of-Words, TF-IDF,
N-grams, word embeddings) to represent unstructured text as
numerical features, 5) time series and sequential feature engi-
neering (e.g., lag features for past-to-present predictions, rolling
statistics, seasonality indicators, frequency-domain features such
as Fourier or wavelet transforms) to extract temporal patterns
and dynamics extractions, and 6) image feature extraction/cre-
ation (e.g., flattened arrays with raw pixel intensities, color his-
tograms, SIFT or HOG texture descriptors, deep learning feature
embeddings such as Convolutional Neural Networks-extracted
features) that convert image data into structured representations.
For a more detailed overview of feature engineering approaches
please consult Heaton (2016) and Verdonck et al. (2024).

On the other hand, feature selection, which is typically con-
sidered a subset of feature engineering, is the process of choos-
ing a subset of relevant features from an existing set of features.
It aims is to reduce dimensionality, avoid overfitting, improve
interpretability, and speed up computation. Feature selection
techniques include dimensionality reduction, which uses Prin-
cipal Component Analysis (PCA) or forward/backward feature
selection methods like Recursive Feature Elimination (RFE) to
select features that alone or in combination improve the overall
prediction performance of the models (Guyon and Elisseeff,
2003). Nevertheless, we must be aware that principal compo-
nents enhance computational performance and reduce redun-
dancy, but they obscure domain understanding and limit
explanatory insights. Principal components can be powerful
features in machine learning because they reduce dimensional-
ity, mitigate multicollinearity, and often improve model effi-
ciency and generalization by concentrating most of the data
variance into a smaller set of uncorrelated variables. However,
the trade-off is interpretability, since principal components are
abstract linear combinations of the original features, making
it difficult to relate model outputs back to meaningful,
domain-specific variables. They are also data- and
scale-dependent, so their definitions can shift across datasets,
and they may fail to capture nonlinear structures in the data.

Discriminant analysis methods, such as Linear Discriminant
Analysis (LDA), further support the feature engineering process
by projecting data onto axes that maximize class separability,
effectively highlighting the most relevant features. Clustering
techniques, such as k-means or hierarchical clustering, can
reveal structure in the data, guiding the creation of new features
or the selection of representative variables. Feature engineering
should be considered when a potential prediction quality gain
or reduced overfitting can be secured. This typically occurs
when the collected data includes: 1) complex variables that
require splitting into simpler variables with more prediction
power, 2) multiple variables that require aggregation to form

new variables with enhanced prediction capabilities, or 3) a
larger number of variables that requires subsetting to help
reduce overfitting.

Data normalization and transformation

Data normalization and transformation are critical preprocess-
ing steps that enhance data consistency, reduce variability in
input scales, and improve the performance of many machine
learning algorithms, especially those sensitive to feature mag-
nitudes, such as k-Nearest Neighbors, Support Vector
Machines, shrinkage-based methods such as Ridge Regression,
LASSO, or Elastic Net, and gradient descent-based models.
Normalization ensures data consistency, reduces variable scale
variations, and improves model performance, particularly for
algorithms sensitive to scale differences among inputs. Com-
mon methods include min-max scaling that rescales data to
values in the range [0,1] and Z-score standardization, which
centers data around mean zero with unit variance
(Cabello-Solorzano et al., 2023). In some cases, log transfor-
mations, Box-Cox (Box and Cox, 1964), or power transforms
may also be applied to handle skewed distributions or reduce
the influence of outliers. A careful descriptive statistics analysis
of the data and solid knowledge of machine learning algorithm
propensity and sensitivity to input scale differences are required
to gain insights into whether normalization is necessary.

The resilience of machine learning regression models to
abnormal data patterns, such as outliers, skewness, or scale
discrepancies, varies significantly across algorithms. Models
like Decision Tree (DT) and Random Forest (RF) tend to be
more robust, based on data splitting rather than distance or
gradient calculations. In contrast, models like linear regression
(LR), Support Vector Machine Regression (SVM), and Artificial
Neural Networks (ANN) are more vulnerable to these irregu-
larities, leading to inaccurate model coefficients, slow conver-
gence, or unstable training. Although some models incorporate
regularization techniques or robust loss functions to mitigate
the effects of abnormal data, proper normalization and trans-
formation remain essential to ensure accurate, reliable, and
generalizable predictions. These preprocessing steps ultimately
contribute to more interpretable outputs and improved model
robustness in the presence of real-world data challenges.

Fundamentals of Supervised Machine
Learning Regression

Overview of regression techniques

Regression is a fundamental technique in supervised machine
learning that models the relationship between input variables
(features) and one or more continuous output variables (tar-
gets). It is widely used in predictive modeling to estimate
numerical outcomes based on historical data. Regression tech-
niques can be broadly classified into linear and nonlinear meth-
ods. Linear regression assumes a linear relationship between
input and target variables, making it computationally efficient
and interpretable (Hastie et al., 2009). Nonlinear regression
models, such as ANN and SVR, capture complex relationships
that cannot be accurately represented using a straight line.

Commonly used regression algorithms

In machine learning, regression algorithms are central to pre-
dictive modeling, each offering unique strengths depending on

920z Arenuer g uo 1sanb Aq G/ €0V8/yiIeNs/SElEB0 L 0 L/10p/aIo1LE/SEl/WO00"dno-ojwapese//:sdny Wwoly papeojumoq



the nature of the data and the problem at hand. Among the
most foundational is linear regression, which models the target
variable as a linear function of input features. It serves as a
useful baseline due to its simplicity and interpretability (James
et al., 2013). However, simple or multiple linear regression
assumes homoscedasticity, independence and linearity, which
often do not hold in real-world data. When these assumptions
are violated, extensions such as Weighted Least Squares (WLS)
for heteroscedasticity and Generalized Least Squares (GLS) for
correlated errors can be applied. Additionally, regularized
regression methods such as Ridge (L2) and Lasso (L1) have
been developed to address other limitations such as overfitting,
generalization and multicollinearity, while they are not able to
address violations of independence assumptions or non-linearity
in the data. These methods add penalty terms to the loss func-
tion, shrinking coefficients to reduce overfitting and enhance
model generalization (Tibshirani, 1996). Elastic Net, a com-
promise between Ridge and LASSO, is particularly effective
when predictors are highly correlated (Zou and Hastie, 2005).

Beyond linear models, tree-based algorithms offer a powerful
alternative for modeling complex, nonlinear relationships.
Decision Tree regression builds hierarchical models by recur-
sively partitioning the data, while Random Forest regression,
an ensemble of decision trees, aggregates predictions from mul-
tiple trees to improve accuracy and robustness (Breiman, 2001).
These models are effective in capturing nonlinearities and inter-
actions among features and are also relatively interpretable
compared to many other ML approaches because their struc-
ture closely mirrors human reasoning.

Further improvements to tree-based methods are Gradient
Boosting Machines (GBM) and Extreme Gradient Boosting
(XGBoost). These ensemble techniques build models sequen-
tially, where each subsequent model attempts to correct the
errors of the previous ones, using gradient descent to minimize
the loss function (Chen and Guestrin, 2016). Their ability to
model subtle patterns in data has made them highly popular
in data science competitions and real-world applications alike.

The ANN represent another class of flexible and powerful
regression tools, capable of modeling highly intricate and non-
linear relationships, particularly when trained on large datasets
(McCulloch and Pitts, 1943; Goodfellow et al., 2016). Variants
such as Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN) further specialize in structured and
temporal data, respectively. A more biologically grounded
extension, Bayesian Regularized Artificial Neural Networks
(BRANN), incorporates Bayesian inference into ANN training
by assigning prior distributions to network weights. This
approach helps regularize the model and yields more stable
estimates, particularly valuable in applications like genome-wide
association studies (Pérez-Rodriguez et al., 2013; Gloria
et al., 2016).

In addition to these, SVM regression offers a robust,
margin-based learning framework that fits a function within a
specified error margin using a kernel trick to handle nonlinear-
ity (Smola and Scholkopf, 2004). Similarly, K-Nearest Neigh-
bors (KNN) regression provides a simple, instance-based
approach by predicting values based on the average of the
nearest data points (Cover and Hart, 1967). While KNN is
easy to implement and interpret, its performance is sensitive to
the choice of the distance measure and the distribution of data.
Gaussian Process regression (GPR), on the other hand, employs
a Bayesian, non-parametric approach to model distributions
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over functions. GPR is particularly suitable for small datasets
and offers valuable uncertainty quantification (Rasmussen and
Williams, 2005).

Although each of these algorithms has unique advantages,
such as interpretability, computational efficiency, or predictive
power, they also come with limitations. No single method guar-
antees optimality across all contexts. Therefore, the process of
selecting the most appropriate regression model is multifaceted.
It requires thoughtful data preprocessing, including cleaning
and sampling, rigorous model tuning and evaluation, and
robust validation strategies. Ultimately, successful predictive
modeling hinges on a deep understanding of both the data and
the algorithmic tools available.

Evaluation measures for regression models

The evaluation of predictive performance for regression models
is assessed using various performance measures, which are
often mistakenly referred to as “metrics,” despite most not
meeting the strict mathematical definition of a metric. Strictly
speaking, a function d(x,y), where x and y are two inputs,
qualifies as a metric only if it satisfies three mathematical con-
ditions: 1) non-negativity: d (x,y) > 0, with equality if and only
if x =y, 2) symmetry: d(x,y) = d(y, x), and 3) triangle inequal-
ity: d(x,y) <d(x,z)+d(z,y), for any third point z. However,
most commonly used performance measures in machine learn-
ing do not satisfy all of these conditions. For instance, the
Pearson correlation coefficient violates the non-negativity con-
dition as it can take negative values, while standard regression
measures such as mean absolute error (MAE) and root mean
squared error (RMSE) typically fail the triangle inequality.
Similarly, classification accuracy, often mislabelled as a metric,
also does not meet this criterion. Therefore, while these mea-
sures serve as practical tools for evaluating model performance,
they should not be mistaken for true mathematical metrics.

Regression model evaluation measures can generally be clas-
sified into three categories based on their purpose: error-based
measures, correlation-based measures and explanatory coeffi-
cients. For a more detailed overview of evaluation measures
used in mathematical modeling within livestock science, refer
to Tedeschi (2006). Common error-based measures include the
MAE, which measures the average absolute difference between
actual and predicted values, the mean squared error (MSE) and
RMSE, which penalize larger errors more heavily than MAE,
and the mean absolute percentage error (MAPE), which
expresses errors as a percentage of actual values and it partic-
ularly useful for enhanced interpretability.

Common correlation-based measures include the Pearson
product-moment correlation coefficient (PCC or p), which mea-
sures the linear correlation between the raw values of two vari-
ables (Pearson, 1895). The coefficient represents the ratio
between the covariance of two variables and the product of
their standard deviations and has values between -1 (strong
inverse correlation) and 1 (strong direct correlation), while a
value of 0 represents no correlation. Another popular correla-
tion measure is Lin’s concordance correlation coefficient
(CCC), which measures the agreement between the raw values
of two variables. CCC is equivalent to 1 minus the ratio of the
expected orthogonal squared distance from the 45-degree line
(y=x) and the expected orthogonal squared distance from the
45° line (y=x), assuming independence (Lin, 1989). This allows
CCC to capture not only the correlation between the two vari-
ables but also the slope of the general direction of the correlated
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values, thus exceeding the capabilities of the PCC. CCC has
values between -1, which indicates strong discordance and 1,
which represents perfect concordance, while a value of 0 indi-
cates no concordance.

Common explanatory coefficients include R? and adjusted
R?, which indicate the proportion of variance explained by the
model (James et al., 2013). In standard linear regression,
R-squared represents the proportion of the variation in the
response (dependent on inputs) variable that is predictable from
the explanatory (typically independent of each other) variables
and typically takes values between 0 (independent variables do
not explain the predicted dependent variable) and 1 (indepen-
dent variables explain perfectly the predicted dependent vari-
able). Occasionally, a regression model can produce values of
R? outside the range 0 to 1, which typically signals that the
model fits the data worse than the worst possible least squares
predictor. A negative R? indicates that the model performs
worse than a baseline model that predicts the mean of the
response variable for all observations, and thus, explains less
variance than predicting the mean, indicating a poor fit. This
situation arises when the residual sum of squares exceeds the
total sum of squares, leading to an R? value less than zero. This
typically indicates a poor model choice or other model or
data-related issues during the modeling steps. However, when
applied to non-linear models or mixed-effects models with both
fixed and random effects, the interpretation of R? is less
straightforward. In these cases, different formulations of R?
such as marginal R? for fixed effects and conditional R? for
both fixed and random effects have been proposed, and values
may not carry the same intuitive meaning as in simple linear
regression (Nakagawa and Schielzeth, 2013). Thus, while R?
remains a useful summary statistic, its interpretation depends
on the modeling framework and should be applied with caution
outside standard linear regression.

The adjusted R?> measures are typically employed to address
the inflation of R? scores caused by an increase in input vari-
ables. Therefore, adjusted R? is highly recommended to be used
when performing comparisons among regressor predictions
produced by models with different numbers of input variables.

Model Evaluation and Pipeline Construction
for Regression Modelling

Defining the pipeline workflow

A regression pipeline integrates data preprocessing, feature
selection, model training, model optimization and evaluation
steps into a streamlined process that requires careful design
and consideration (Kuhn and Johnson, 2013). A generalized
regression pipeline that includes all these steps is presented in
Figure 1, and supporting Python code for implementing this
computational pipeline is provided in Supplemental Materials.

Data splitting strategies (train-test, cross-validation)
Constructing modeling pipelines and model evaluation for pre-
dictive purposes requires careful consideration of data splitting
strategies, particularly when datasets have complex structures.
The ML modeling often considers two common complemen-
tary approaches supporting model evaluation and construction:
train-test split and k-fold cross-validation (CV).

An initial train-test split approach is performed, dividing the
dataset into training and test sets. While there is no general rule

on what is the optimal ratio that should be used for the split
(typically 80-20%), the decision is typically made based on the
size of the dataset, where larger training set percentages are
recommended for smaller datasets to increase the model per-
formance. Due to inherent variability in data splits caused by
data distributions, the train-test split process is recommended
to be performed more than once, and the average and standard
deviation of the final results must be reported. Alternatively,
resampling methods, such as bootstrapping or jackknifing tech-
niques can also be used.

Once a training set is defined, the model construction process
can begin. A k-fold cross-validation process is employed, rep-
resenting a robust method to evaluate model performance by
dividing data into k subsets, training k-1 subsets, and validating
them on the remaining subset (James et al., 2013). The process
is repeated k times, and the average and standard deviation of
the results are reported and analyzed to evaluate the model
performance. A robust model will have a prediction perfor-
mance characterized by a high average and low standard devi-
ation. The number of folds, k, will decide the size of the data
subset used for model construction and the number of models
that need to be built to properly validate their performance.
Choosing the number of folds (k) is typically made based on
the overall size of the dataset (lower k for larger datasets), the
availability of computing power (lower k for limited computing
power), and the time limitations inherent to all projects (lower
k for tighter project deadlines).

Importantly, when datasets exhibit complex hierarchical or
clustered structures, such as multiple farms, animals nested
within farms, repeated measurements per animal, different
breeds, or varying treatments, standard random splitting may
lead to information leakage and overly optimistic performance
estimates. In such cases, the data splitting strategy must account
for the dependencies in the data. Such strategies include:

¢ Grouped cross-validation, which ensures that all obser-
vations from the same group (e.g., the same animal, farm,
or breed) appear entirely in either the training or test set.
This prevents the model from “seeing” correlated obser-
vations in both training and validation, which could arti-
ficially inflate predictive performance.

¢ Repeated measures/nested CV: For longitudinal data with
repeated measurements per animal, nested CV or
leave-one-animal-out strategies can be applied to respect
within-animal correlation.

¢ Stratified sampling: When outcomes are unbalanced
across treatments, breeds, or farms, stratification ensures
that each fold reflects the overall distribution of these
factors.

Several studies in animal science and dairy research have
emphasized the importance of considering hierarchical struc-
tures in CV design (Coelho Ribeiro et al., 2021; Yilmaz Adkin-
son et al., 2024; Wang et al., 2025), highlighting that ignoring
these dependencies can bias performance measures and lead to
misleading conclusions. Implementing structure-aware CV
strategies improves the robustness and generalizability of pre-
dictive models in real-world, multilevel datasets.

In summary, while traditional train-test splits and k-fold CV
remain fundamental tools, careful consideration of the data
structure, clustering, and repeated measures is essential for
valid performance estimation. Adopting grouped, stratified, or
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Figure 1. Machine learning regression pipeline. The pipeline includes some of the most prominent steps required to be completed when modelling a

dataset with the aid of machine learning.

nested CV strategies ensures that evaluation measures accu-
rately reflect the predictive ability of models on independent
data, particularly in the context of complex biological or agri-
cultural datasets.

Model selection and hyperparameter tuning

In ML modeling, parameters are the values the model learns
during training, such as weights and biases in neural networks,
the feature entropy and information gain in decision trees, the
complexity parameter in regularized regression and the decay
parameter in kernel regression. These values are automatically
updated during training to minimize a loss function. Hyperpa-
rameters are external settings data scientists set before training,
influencing the model’s structure, learning process, and perfor-
mance. Examples include the learning rate and the number of
layers in a neural network or the maximum depth of a decision
tree. Selecting the best model involves hyperparameter optimi-
zation techniques like Grid Search, which exhaustively searches
for the best combination of values for the hyperparameters of
a model, Random Search, which performs a randomized search
of various hyperparameter combinations and Bayesian

Optimization, which applies a probabilistic approach to find
optimal hyperparameter settings (Snoek et al., 2012). For a
larger selection of optimization algorithms including simulated
annealing, genetic algorithms and tabu search we recommend
the reader to consult the work of Hoos and Stuetzle (2005).

Hyperparameter tuning is often applied with k-fold cross-
validation (a process known as double or nested cross-validation)
to avoid optimistically biased model performance evaluations
caused by using the same cross-validation procedure and dataset
to both tune and select a model. Nevertheless, while the use of
nested cross-validation could be beneficial and increase the gen-
eralizability while avoiding over-fitting of your models (Cawley
and Talbot, 2010), it comes at a high computational cost, requires
significantly larger datasets and sometimes shows limited benefits
and its necessity should be seriously considered for practical sce-
narios (Wainer and Cawley, 2018).

Model fitting analysis

The analysis of the ability of a model to fit the data can be
achieved using various techniques such as learning curves
(Webb et al., 2011). Verifying the fitting quality of machine
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Figure 2. Learning curves depicting model overfitting (left), good fit (center) and underfitting (right). Testing/validation curves are depicted with orange

while training curves are colored in blue.

learning predictive models is highly recommended and neces-
sary regardless of the theoretical guarantees associated with
some prediction algorithms (Viering and Loog, 2023).

A learning curve represents the performance of a model over
a predefined and incremental number of iterations or as a func-
tion of the training set size, and it is used to diagnose issues
such as underfitting or overfitting. A graphical representation
of learning curves, as shown in Figure 2, typically includes a
training learning curve depicting the model performance during
model training and a validation or a testing learning curve
showing the model performance on an unseen dataset. The
presence of a significantly large gap between the training and
the validation/testing curves signals overfitting where the train-
ing error is typically low and the validation/testing error is high
(Figure 2—Tleft plot). From the perspective of the bias-variance
trade-off, this indicates high variance: the model is overly com-
plex relative to the data and captures noise along with the
signal, leading to poor generalization. In contrast, high training
and validation errors indicate underfitting (Figure 2—right
plot) since the model is too simple to capture the patterns in
the data. This scenario corresponds to high bias, where the
model assumptions prevent it from representing the true under-
lying relationships. If the two curves converge at a low error
level, this indicates a good fit (Figure 2—center plot).

The shape of the learning curves (decreasing or increasing
from low to high set sizes or training times) depends on the
measure used for model evaluation typically represented on the
y-axis. For instance, if a measure like R? is plotted, which
increases with model performance, learning curves will show an
upward trend with increasing training size or time. Moreover,
learning curves may sometimes appear jagged or irregular. This
variability can result from factors such as high data variance, an
inappropriate learning rate, small batch sizes, or poorly repre-
sentative training and validation datasets. Here, we recommend
practitioners to investigate the fitting of the models before and
after optimization steps to carefully direct the optimization pro-
cess towards the models that require it the most while gauging
and reporting the benefit of the optimization concerning perfor-
mance and over- and under-fitting.

Model feature importance, interpretability and
explainability

Feature importance in machine learning refers to techniques
that assign scores to input features based on their contribution

to a model’s predictive performance. They often help with
model explainability by providing insights into the features that
influence model predictions (Ribeiro et al., 2016; Lundberg
and Lee, 2017). Feature importance also helps with under-
standing the model, improving its performance, and reducing
the dimensionality of the dataset.

There are three main categories of feature importance tech-
niques, and they differ depending on the type of model used in
the study: 1) model-specific, 2) model-agnostic, and 3)
regularization-based.

Models-specific feature importance techniques work only
with certain model types such as tree-based models (e.g., DT,
RF, XGBoost) and linear models (LR). In regression decision
tree models, the reduction in variance at each split measures
how much each numerical feature decreases the prediction
error, providing an indication of the importance of that partic-
ular feature. In the XGBoost algorithm, the performance gain
representing the improvement in accuracy brought by a feature
to the branches it is on also reflects feature importance. In linear
models, feature importance can be assessed using the magni-
tude of the coefficients, typically after data normalization.
However, one may also consider the coefficients relative to their
standard errors (t-statistics) or their P-values to account for
uncertainty and statistical significance, rather than relying
solely on their absolute or nominal values.

Model-agnostic techniques have a larger utility span and can
be applied to any ML model. For example, one of the most
popular approaches, Permutation Feature Importance (PFI) is
applied to identify the features most relevant to the output for
each model. Each feature is randomly shuffled while keeping
all the other features unchanged, and the increase in prediction
error is measured. Features that cause a larger increase in error
are considered more important to the model. Another popular
technique based on cooperative game theory, SHapley Additive
exPlanations (SHAP), assigns each feature an importance value
based on its contribution to a specific prediction. The technique
uses concepts from game theory—specifically Shapley
values—to fairly distribute the prediction outcome among all
features by averaging their marginal contributions across all
possible combinations. SHAP is model-agnostic (with special-
ized versions for tree, linear, and deep models), provides both
local and global interpretability, and produces intuitive visu-
alizations, making it one of the most robust and consistent
tools for understanding model behavior.
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Embedded and regularization-based feature selection integrate
the selection process directly into model training, allowing the
algorithm to automatically identify and weigh important fea-
tures. These methods often rely on regularization techniques,
such as L1 regularization in the least absolute shrinkage and
selection operator (LASSO) and L2 regularization in Ridge
Regression (Tibshirani, 1996), which add a penalty to the mod-
el’s loss function to constrain the magnitude of the coefficients
and reduce overfitting. L1 regularization tends to produce sparse
models by driving some coefficients exactly to zero, effectively
performing feature selection, whereas L2 regularization shrinks
all coefficients toward zero without eliminating any, which sta-
bilizes estimates but retains all features. This not only improves
model generalization but also reduces complexity. Embedded
methods are efficient and model-specific, commonly used in lin-
ear models, decision trees, and some ensemble algorithms such
as Light Gradient-Boosting Machine (LightGBM), where feature
importance is inherently evaluated during the learning process.

The use of agnostic models is highly recommended due to
their increased versatility and reduced model selection limita-
tions; nevertheless, other techniques can be also considered
when applicable. The case studies below are intended to pro-
vide concrete examples of how generic regression ML pipelines
can be applied to different livestock-related datasets to build
and evaluate effective predictive models.

Case Studies and Applications in Livestock
Research

In the following sections, we present examples to demonstrate
how open-source Python code can be used to streamline data
processing steps, statistically analyze data, train, validate, and
test predictive models using machine learning algorithms
applied to body weight prediction in pigs and dry matter intake
prediction in hair sheep.

To investigate predictive modeling based on morphometric
or other numerical data, we developed a machine learning pipe-
line tailored for regression problems where only a single mea-
surement per animal is available. The pipeline was implemented
in Python (version 3.11.9) using Scikit-learn version 1.5
(Pedregosa et al., 2011) and additional scientific and graphic
libraries such as scipy (version 1.13.1), statsmodels (version
0.14.2), numpy (version 1.26.4), pandas (version 2.2.2), mat-
plotlib and seaborn, and it automates model training, optimi-
zation, evaluation, and comparison across four regression
algorithms. The pipeline can be easily extended to include more
algorithms and evaluation measures and it is made publicly
available in the Supplemental Materials.

Data preparation: The script performs basic quality control
steps such as identifying and removing duplicated rows and
columns, and encoding categorical input variables. It assumes
that significant data cleaning is conducted prior to execution.
Input datasets must contain only numerical values and be free
of missing entries or formatting inconsistencies. For simplicity,
convenience and easiness to use our code, the response variable
(ie, the target for regression) is expected to be located in the
last column of the dataset. Data is read from a CSV-formated
file using the Python pandas library. After reading the dataset,
the pipeline performs a series of preprocessing operations:

e Train-test split: The data is randomly split into training
and test subsets (default: 80/20), ensuring reproducibility
with a fixed seed (random_state = 1).
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® Feature scaling and encoding: Standardization is applied to
all predictor variables. Categorical variables are encoded
into consecutive integer numerical values using the sklearn
LabelEncoder function. While this approach is computa-
tionally efficient and ensures numerical values will replace
categorical ones in the dataset, it is not without limitations.
For example, it is not recommended for features with nom-
inal values since it can imply a false order and lead to results
misinterpretations. Instead, the one-hot encoding should
be used where each unique category is represented by a
binary column with a value of 1 indicating its presence and
0 indicating its absence. By default, StandardScaler is used
to center the data and scale to unit variance, which improves
the convergence and performance of many regression algo-
rithms. Alternatives such as MinMaxScaler and RobustS-
caler are included in the code but commented out, allowing
flexibility depending on the presence of outliers.

® Data shuffling: Shuffling is enabled during splitting to
avoid any inherent ordering bias in the dataset.

These preprocessing steps ensure the dataset is normalized and
well-prepared for model training, reducing bias and improving
generalization performance.

Model training and evaluation: The pipeline splits the data-
set into training and testing sets and standardizes the features
using one of several available scalers (StandardScaler, MinMax-
Scaler, RobustScaler). It supports several regression algorithms,
including linear regression, DT regressor, KNN, and SVR. Each
model is trained using either cross-validation or a combination
of random/grid search and repeated k-fold validation to opti-
mize hyperparameters. Performance evaluation measures
include MAE, MSE, RMSE, MAPE, and R2. Additionally, the
script calculates CCC for assessing model agreement.

Model interpretability and saving: The pipeline includes
tools for visualizing learning curves and variable importance
via permutation feature importance. It also generates
quantile-quantile (Q-Q) plots for assessing normality of resid-
uals. Unlike classical statistical models, where the assumption
of normally distributed residuals underpins valid inference and
hypothesis testing, most machine learning models do not rely
on residual normality. It is not necessary to check residual
normality in ML for predictive tasks, since predictive algo-
rithms don’t rely on it. However, while assessing residuals in
ML is not required for predictive validity, residual analysis
remains useful for understanding model limitations, error pat-
terns, and overlooked data structures, especially in applied
fields like animal science where prediction errors may carry
practical implications. For example, systematic patterns in
residuals may indicate non-linearity, omitted features, or
unmodeled interactions, while a changing residual spread can
reveal heteroscedasticity. Residual autocorrelation may signal
temporal or spatial dependence, and large deviations can high-
light outliers or influential points. Moreover, clustered or strat-
ified residual patterns may uncover hierarchical structures (e.g.,
farms, herds, breeds) or repeated measures effects that the
model failed to capture. Trained models and associated scalers
are serialized using the Python joblib (version 1.4.2) library for
future use or deployment.

Case study 1: Swine body weight prediction

Live body weight (LBW) is a key indicator used to estimate
growth, feed conversion efficiency, body condition, and disease
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presence and to guide decisions related to housing, nutrition,
and health management across different stages of livestock
development. Estimating swine body weight using body mea-
surements is valuable because it provides a low-cost and acces-
sible alternative to weighing scales, which can be expensive or
impractical in smallholder or remote settings. Body measure-
ments are typically taken manually with a measuring tape (e.g.,
heart girth, body length, or leg length), requiring minimal
equipment and setup compared to moving animals onto a scale.
Although this method still involves some handling, it can be
less stressful than weighing, as animals do not need to be
restrained or forced onto a platform. In addition, it enables
more frequent or large-scale monitoring when scales are
unavailable. It also empowers farmers to make informed deci-
sions about feeding, medication, and marketing and provides
valuable data for research, genetic improvement, and herd
management.

This case study uses data from Marshall et al. (2023), col-
lected from 765 pigs of various ages, sexes, and breeds across
157 smallholder households in five Ugandan districts to

capture regional variation in pig characteristics. Within each
district, administrative units with high pig populations and no
active African Swine Fever outbreaks were identified, and
households with at least two pigs were randomly selected for
participation. All eligible pigs were measured, excluding visibly
pregnant, aggressive, sick, or injured animals, with a limit of
three randomly chosen piglets per litter. Data collection took
place between November 29, 2021, and January 5, 2022,
involving adult household members, 56% of whom were
female. Pig live weight was recorded using a digital scale, while
body measurements—including heart girth, height, and
length—were taken in centimeters using tape and measuring
sticks. Additional data included pig characteristics (sex, age,
breed type, castration/pregnancy status, parity, housing type,
and body condition score), as well as farmer demographics
and measured pig weight. Breed was categorized as “local” or
“exotic” based on enumerator observation. Due to data spar-
sity in some variables, this study focuses on five input
features—age, heart girth, height, length, and body condition
score—and uses live weight as the output variable. After

Figure 3. Case study 1—Variable distributions. The histograms represent the distribution of age (months), heart girth, height, length, body condition
score and body weight (kg) collected from 752 pigs in a study by Marshall et al. (2023).
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Figure 4. Case study 1—Pearson product-moment correlation scores for pairs of variables. The figure depicts Pearson correlation scores among all pairs
of variables representing the age (months), heart girth, height, length, body condition score and the body weight of 752 pigs used in a study by Marshall

etal. (2023).

Table 1. Case study 1—List of hyperparameters, ranges of values and best settings for five ML algorithms

Algorithm hyperparameters Range of values Best value
Linear Regression

fit_intercept [True, False] True
K-Nearest Neighbour

n_neighbors [1:10]—integers 10

Decision Tree

criterion [‘friedman_mse’, ‘absolute_error’, ‘poisson’, ‘squared_error’] ‘absolute_error’
max_depth [1: 9]—integers 5

Support Vector Machine

C [0 : 1.6]—increments of 0.2 1.4

Random Forest

n_estimators [20, 50, 100, 150, 200] 200
max_depth [2 : 10]—integers 5

The best values for each hyperparameters were obtained using a grid search approach where all possible hyperparameter value combinations are attempted
for each algorithm. The mean absolute error was used in this optimization process.

removing one record with a zero-length measurement, the final
dataset consists of 764 pigs. The goal of this case study is to
process the raw data, train and evaluate machine learning
models, and predict live body weight.

Data preparation: During the data preparation phase, raw
files are imported into Python, where extraneous header infor-
mation is removed, and any duplicate records or columns are
eliminated. Outliers are identified and excluded for all numer-
ical variables using the Z-score method, which filters out
records that fall more than four standard deviations from the

mean. The resulting cleaned dataset, containing 752 records,
is saved to a new file for use in subsequent analyses.

Data visualization: Distributions of individual variables are
visualized (Figure 3), and Pearson product-moment correlation
coefficients are computed for all variable pairs, with the results
presented in a correlation plot (Figure 4). Heart girth, body
length, and height show a strong correlation (0.85-0.91) with
body weight, while age demonstrates a moderate correlation
(0.72), and body condition score (BCS) shows a weak associ-
ation (0.23) with the outcome variable.
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Model development and evaluation: The training dataset
comprises 601 records (80% of the total), using five input
variables—age (in months), heart girth, height, and length (in
centimeters), and body condition score (on a scale of 1 to 5)—
to predict the output variable, body weight (in kilograms). Five
commonly used machine learning algorithms (KNN, LR, DT,
RE and SVM) are applied. Model performance is evaluated
using repeated 5-fold cross-validation (3 repeats) and a separate
test set containing the remaining 20% of the data (151 records).
In this example, model performance is assessed using MAE,
though other evaluation measures may also be considered.

Hyperparameter optimization (HPO): Each machine learn-
ing model includes user-defined parameters, known as hyper-
parameters, which can be tuned to improve performance. In
this example, a grid search approach evaluating all possible
parameter combinations is used to identify the optimal settings.
A complete list of the hyperparameter values tested and their
best-performing values is provided in Table 1.

Prediction results and fitting analysis: Among the five algo-
rithms tested, Random Forest achieved the best performance,
with the lowest MAE of approximately 4.80kg during
cross-validation (both before and after hyperparameter opti-
mization), and 4.68kg on the test set. It was followed by
k-nearest neighbors and decision tree, while support vector
machine and linear regression performed the worst, both with
MAE values exceeding 6.72 kg. Detailed results are presented
in Table 2 and Figure 5. To evaluate model generalization,
learning curves were used (Figure 6), revealing varying degrees
of overfitting among the top-performing models, especially
prior to hyperparameter optimization. Overfitting levels were
visually assessed based on the gap between training and vali-
dation curves using MAE-based thresholds: No (0-2 MAE),
Low (2-4 MAE), Medium (4-6 MAE), and High (>6 MAE).
In contrast, Support Vector Regression and Linear Regression
showed minimal signs of overfitting. Hyperparameter tuning
significantly improved the performance and generalization of
the top four models.

Scatter plots and quantile-quantile (Q-Q) plots were gener-
ated to further explore prediction accuracy and error behavior
(Figures 7 and 8). All five models performed well on small to
medium-sized pigs but consistently under-predicted the weight
of larger pigs. The Q-Q plots confirmed deviations from the
expected normal distribution of errors, suggesting the models
struggle to generalize across the full range of body weights,
particularly at the higher end, for which fewer datapoints were
available (Figure 3—bottom right).

These findings emphasize the importance of conducting fit
diagnostics, even for well-established algorithms with strong
theoretical foundations. However, this case study does not

Table 2. Case study 1—Algorithms cross-validation and testing performance

"

include a formal robustness analysis of the predictions on test
data. Such analysis can be performed by repeating the modeling
process with multiple randomized train-test splits (while keep-
ing the same proportions) and averaging the results, though
this comes at the cost of reduced reproducibility. To enable
this, one can simply remove the random_state=1 setting from
the train_test_split() function in the Python script.

Feature importance analysis: To better understand the influ-
ence of each input variable on body weight predictions, we
used permutation feature importance across all five algorithms.
As shown in Figure 9, heart girth and body length consistently
emerged as the most important predictors, while height, age,
and body condition score contributed far less to the models’
predictive performance. These findings align with prior research
on swine body weight estimation, which also identified heart
girth and length, often modeled with linear or quadratic terms,
as key predictors (Groesbeck et al., 2002; Sungirai et al., 2014;
Marshall et al., 2023; Thapar et al., 2023).

Case study 2: Dry matter intake prediction
in hair sheep

Modeling dry matter intake (DMI) in livestock is essential for
optimizing nutritional management, improving feed efficiency,
and supporting animal health and productivity. Accurate DMI
predictions allow producers to formulate balanced diets, reduce
feed waste, and enhance economic returns. In the context of

Figure 5. Case study 1—Cross-validation algorithm performance before
and after hyperparameter optimization. The figure depicts box plots
representing the MAE results for BW predictions obtained with five ML
algorithms (Linear Regression, K-Nearest Neighbour, Decision Tree,
Support Vector Machine and Random Forest) applied on a dataset
published by Marshall et al. (2023).

Algorithm Cross-validation Opverfitting Cross-validation Overfitting Testing MAE
MAE (std) before HPO MAE (std) after HPO after HPO

Random Forest 4.81(0.48) High 4.80 (0.56) Medium 4.68

K-Nearest Neighbour 5.51 (0.65) Medium 5.40 (0.59) Low 4.63

Decision Tree 6.39 (0.72) High 5.47 (0.69) Low 517

Support Vector Machine 7.65(0.91) No 6.94 (0.84) No 6.72

Linear Regression 7.65 (0.64) No 7.65 (0.64) No 7.27

For each of the 5 algorithms we report the validation MAE (kg) and overfitting results before and after hyperparameter optimization and the testing MAE
results. HPO, hyperparameter optimization; MAE, means absolute error; std, standard deviation.
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Figure 6. Case study 1—Learning curves depicting fitting performance
for five machine learning algorithms predicting BW. The five machine
learning models are Linear Regression, K-Nearest Neighbour, Decision
Tree, Support Vector Machine and Random Forest.

hair sheep, which are increasingly valued for their adaptability
and low-input requirements, modeling DMI is particularly
important due to their diverse genetic backgrounds, variable
grazing behaviors, and sensitivity to environmental conditions.
Understanding and predicting DMI in hair sheep helps tailor
feeding strategies that align with their unique physiological and
production traits, contributing to more sustainable and efficient
sheep production systems.

This case study uses data from a meta-analysis study pub-
lished by de Oliveira et al. (2020). The data was collected
from 61 studies, comprising 413 experimental units, to inves-
tigate dry matter intake (DMI) in hair sheep. The studies were
sourced from public databases and Brazilian theses using
keywords such as “dry matter intake,” “lambs,” and “sheep
in tropical environments.” All studies published between
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2002 and 2019 focused on hair sheep in the growing and
finishing phases under tropical conditions and included rele-
vant quantitative data such as neutral detergent fiber (NDF)
levels, body weight, average daily gain (ADG), and fiber
intake. Most studies focused on dietary changes and feed
additives. Data were extracted independently, and additional
variables like fiber digestibility were used to estimate rumen
fill, accounting for intake differences between smaller and
larger lambs due to variations in body weight and rumen
capacity.

Data preparation: The raw file made available by de Oliveira
et al. (2020) has been pre-manually processed such that only
six columns are kept (breed, sex, NDF, ADG, body weight, and
DMI), and five records with missing values were deleted. The
file is imported into Python, where duplicate records are sought
and removed (none present). Outliers are identified and
excluded using the Z-score method, which filters out records
that fall more than four standard deviations from the mean.
The resulting cleaned dataset, containing 408 records, is saved
to a new file for use in subsequent analyses.

Data visualization: The distributions of individual variables
are illustrated using histograms (Figure 10), while Pearson
product-moment correlation coefficients are calculated for all
pairs of variables and displayed in a correlation matrix plot
(Figure 11). Body weight and ADG exhibit a moderate correla-
tion with DMI, whereas the remaining variables display either
weak or no correlation.

Model development and evaluation: The training dataset
consists of 326 records, representing 80% of the total data,
and includes five input variables—breed, sex, height, NDF,
ADG, and body weight—used to predict the target variable,
DMI in grams. Five widely used machine learning algorithms
are implemented: KNN, LR, DT, RF, and SVM. Model perfor-
mance is assessed using repeated 5-fold cross-validation with
three repetitions and evaluation on an independent test set
comprising the remaining 20% of the data (82 records). In this
case, performance is measured using MAE, although additional
evaluation measures can also be applied.

Hyperparameter optimization: Each machine learning
model includes user-defined parameters, known as hyperpa-
rameters, which can be tuned to improve performance. In this
example, a grid search approach evaluating all possible param-
eter combinations is used to identify the optimal settings. A
complete list of the hyperparameter values tested and their
best-performing values is provided in Table 3.

Prediction results and fitting analysis: Among the five algo-
rithms evaluated, Random Forest delivered the best perfor-
mance, achieving the lowest MAE during cross-validation, with
111.64 g/day before HPO and 112.86 g/day after HPO, and an
MAE of 128.82 g/day on the test set. It was followed by KNN,
DT, and LR, while SVM performed the poorest, with an MAE
of 187.91 g/day. Detailed performance measures are presented
in Table 4 and Figure 12. Overfitting levels were visually
assessed based on the gap between training and validation
curves using MAE-based thresholds: No (0-2 MAE), Low (2—4
MAE), Medium (4-6 MAE), and High (>6 MAE). Learning
curves (Figure 13) were used to assess model generalization,
revealing medium to high overfitting in the top-performing
models, whereas Support Vector Regression and Linear Regres-
sion showed minimal signs of overfitting. Hyperparameter
tuning slightly improved the Decision Tree model’s perfor-
mance and generalization.
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Figure 7. Case study 1—Scatter plots representing the predictions of five machine learning algorithms on the testing set. The five machine learning
models are Linear Regression, K-Nearest Neighbour, Decision Tree, Support Vector Machine and Random Forest. Each plot represents predicted versus
ground truth body weights (measured in kilograms) of 151 pigs from a study by Marshall et al. (2023).

Scatter plots and quantile-quantile (Q-Q) plots were gener-
ated to investigate predictive performance and error distribu-
tion further (Figures 14 and 15). The top four models
demonstrated low to moderate predictive performance for
DMI, while SVM struggled with this dataset. However, the
Q-Q plots indicated minimal deviation from the expected nor-
mal distribution of residuals, suggesting that while overall
accuracy was limited, the models maintained reasonable

generalization across the DMI range. These results highlight
the importance of thorough fit diagnostics, even when using
established algorithms with strong theoretical underpinnings.

Feature importance analysis: To better understand the influ-
ence of each input variable on dry matter intake predictions,
we used permutation feature importance across all five algo-
rithms. As shown in Figure 16, body weight and ADG consis-
tently emerged as the most important predictors, while NDF,
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Figure 8. Case study 1—Quantile-Quantile plots for errors resulting from the five machine learning models applied on the testing set. The five machine
learning models are Linear Regression, K-Nearest Neighbour, Decision Tree, Support Vector Machine and Random Forest. In each plot, the red line
represents f(x) =x, which indicates where points would fall if the data followed the theoretical distribution (t-distribution) exactly. The blue dots represent
the body weight residual values. The body weights were predicted based on a test set including 151 pigs from a study by Marshall et al. (2023).
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Figure 9. Case study 1—Feature importance for the five machine learning algorithms applied on the training set. Each plot depicts the feature impor-
tance score representing the change in the model’s performance measure (MAE) after randomly shuffling the values of each feature. The five input
features are the age (months), heart girth, height, length, body condition score and the body weight of pigs made available by Marshall et al. (2023).

breed, and especially sex contributed far less to the models’
predictive performance.

Body weight is the most important and reliable predictor of
DMI. Heavier animals have greater maintenance energy
requirements and larger rumen capacity, increasing dry matter
intake. Prediction models such as those from the NRC and
CNCPS routinely include BW or metabolic BW (BW"7) as key

inputs due to their physiological relevance (Soest, 1994; Tedes-
chi, 2006). ADG, which reflects growth rate and nutrient
demand, also plays a significant role (Cannas et al., 2004;
Castro-Montoya and Dickhoefer, 2020). Animals with higher
ADG typically consume more to support tissue accretion, mak-
ing it a valuable predictor when modeling intake in growing
animals. NDF, representing the fiber content of the diet,
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Figure 10. Case study 2—Variable distributions. The histograms represent the distribution of breed, sex (0 =castrated male, 1 =female, 2 =non-castrated
male), NDF, ADG, body weight and dry matter intake (kg) collected from 408 hair sheep published by de Oliveira et al. (2020).

influences DMI through its effects on rumen fill and digestion
kinetics (Mertens, 1994; Fox et al., 2004). High-NDF diets are
bulkier and slower to digest, which can physically limit intake,
especially in forages with low digestibility. Consequently, NDF
is a crucial dietary variable when modeling intake capacity,
particularly in ruminants. The breed also affects DMI, as
genetic differences influence size, metabolism, and feed effi-
ciency (Goetsch et al., 2011). For instance, hair sheep often
consume less than wool breeds due to their smaller frame and
lower maintenance requirements. Lastly, sex has a modest but
notable effect on DMI (Jaborek et al., 2018). Males generally
eat more than females due to differences in growth rate and
hormonal influences, though this effect is less pronounced than
other factors like BW or ADG.

In summary, the application of our computational pipeline
suggests that effective modeling of DMI in livestock, especially
in species like hair sheep, should prioritize variables such as
body weight, ADG, and NDF while considering breed and sex
as secondary predictors. Incorporating these variables can
improve prediction performance and help design feeding sys-
tems tailored to the specific nutritional needs of diverse animal
populations.

Conclusions

This study highlights the value of using open-source machine
learning pipelines to streamline predictive modeling in animal
science. Through a practical example focused on swine body
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Figure 11. Case study 2—Pearson product-moment correlation scores for pairs of variables. The figure depicts Pearson correlation scores among all pairs
of variables representing the breed, sex, NDF, ADG, body weight and dry matter intake of 408 hair sheep used in a study by de Oliveira et al. (2020).

Table 3. Case study 2—List of hyperparameters, ranges of values and best settings for five ML algorithms

Algorithm hyperparameters Range of values Best value
Linear Regression

fit_intercept [True, False] True
K-Nearest Neighbour

n_neighbors [1: 10]—integers 3

Decision Tree

criterion [“friedman_mse’, ‘absolute_error’, ‘poisson’, ‘squared_error’] ‘squared_error’
max_depth [1: 9]—integers 6

Support Vector Machine

C [0 : 1.6]—increments of 0.2 1.41

Random Forest

n_estimators [20, 50, 100, 150, 200] 200
max_depth [2 : 10]—integers 10

The best values for each hyperparameters were obtained using a grid search approach where all possible hyperparameter value combinations are attempted
for each algorithm. The mean absolute error was used in this optimization process.

weight prediction, we demonstrate that machine learning models
like Random Forest and K-Nearest Neighbors can effectively
utilize simple morphometric inputs to produce accurate, inter-
pretable predictions. The open-source nature of the pipeline
allows for transparency, reproducibility, and easy adaptation,
making it a valuable tool for researchers, educators, and students

alike. Importantly, such tools serve as practical educational plat-
forms, helping bridge the gap between traditional animal science
training and the growing demand for data-driven decision-making
in precision livestock farming. Echoing the recommendations of
Brennan et al. (2023), this work illustrates how openly shared
computational workflows can enhance digital literacy, improve
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Table 4. Case study 2—Algorithms cross-validation and testing performance
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Algorithm Cross-validation MAE (std)  Overfitting Cross-validation MAE (std) Opverfitting Testing MAE
before HPO after HPO after HPO
Random Forest 111.64 (16.02) High 112.86 (15.15) High 128.82
K-Nearest Neighbour 123.86 (12.86) Medium 118.86 (15.56) Medium 131.49
Decision Tree 137.37 (15.97) High 131.69 (13.68) Medium 131.90
Linear Regression 132.88 (12.64) No 132.88 (12.64) No 149.99
Support Vector Machine 182.87 (18.77) No 180.06 (18.74) No 187.91

For each of the § algorithms we report the validation MAE (g/day) and overfitting results before and after hyperparameter optimization and the testing
MAE results. HPO, hyperparameter optimization; MAE, means absolute error; std, standard deviation.

Figure 12. Case study 2—Cross-validation algorithm performance before
and after hyperparameter optimization. The figure depicts box plots
representing the MAE results for DMI predictions obtained with five ML
algorithms (Linear Regression, K-Nearest Neighbour, Decision Tree,
Support Vector Machine and Random Forest) applied on a dataset
published by de Oliveira et al. (2020).

model transparency, and empower animal scientists to engage
confidently with big data and predictive modeling.

Challenges and Future Directions

Future work should focus on expanding the scope and impact
of machine learning applications in animal science by integrat-
ing diverse data types, such as sensor, behavioral, genomic, or
environmental data, into in-line and real-time ML predictive
pipelines. Such multi-modal approaches enable earlier detec-
tion of health and performance issues while supporting more
robust and actionable decision-making. For instance, Ferreira
etal. (2024) demonstrated how combining heterogeneous data
streams in a cloud-based machine learning framework
improved the early detection of metabolic disorders in dairy
cows, underscoring the potential of integrated, real-time solu-
tions to transform livestock management. This would enhance
the depth of analysis and support broader applications.

At the same time, it is important to recognize that prediction
and actionable insight are not equivalent. While predictive
models can identify at-risk animals or forecast outcomes, causal
inference provides the foundation for efficient intervention by
revealing which factors truly drive changes in livestock systems.
The interpretation of regression models differs significantly
depending on whether data arise from randomized trials or
observational studies, and overlooking this distinction risks
drawing misleading conclusions. Even with observational data,

Figure 13. Case study 2—Learning curves depicting fitting performance
for five machine learning algorithms predicting DMI. The five machine
learning models are Linear Regression, K-Nearest Neighbour, Decision
Tree, Support Vector Machine and Random Forest.

however, a range of regression-based causal inference frame-
works exists to help disentangle association from causation
(Bello et al., 2018; Sargeant et al., 2024). Incorporating such
approaches into ML pipelines could substantially increase their
utility, moving from systems that only flag potential issues to
those that can also inform intervention strategies.
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Figure 14. Case study 2—Scatter plots representing the predictions of the five machine learning algorithms on the testing set. The five machine learning
models are Linear Regression, K-Nearest Neighbour, Decision Tree, Support Vector Machine and Random Forest. Each plot represents predicted versus
ground truth dry matter intake of 82 hair sheep from a study by de Oliveira et al. (2020).

Additionally, efforts should be directed at testing the robust-
ness and generalizability of these models through repeated
train-test sampling and external validation across various farms
or regions. Interactive learning modules, such as embedding
open-source code in platforms like Jupyter Notebooks or R Shiny
apps, can facilitate hands-on learning and practical applications
for students and researchers. Promoting collaborative code devel-
opment via platforms like GitHub will allow for continuous

improvement and adaptation of the pipeline to different livestock
contexts. Furthermore, incorporating model explainability tools,
such as SHAP or LIME, will ensure a better understanding of
predictions, particularly for applications influencing animal wel-
fare or resource management. By embracing open-source devel-
opment practices, this approach will drive collaboration,
innovation, and skill-building, empowering the next generation
of researchers to harness big data effectively in animal science.
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Figure 15. Case study 2—Quantile-Quantile plots for errors resulting from the five machine learning models applied on the testing set. The five machine
learning models are Linear Regression, K-Nearest Neighbour, Decision Tree, Support Vector Machine and Random Forest. In each plot, the red line
represents f(x) =x, which indicates where points would fall if the data followed the theoretical distribution (t-distribution) exactly. The blue dots represent
the DM residual values. The DMI values were predicted based on a test set including 82 hair sheep from a study by de Oliveira et al. (2020).
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Figure 16. Case study 2—Feature importance for the five machine learning algorithms. Each plot depicts the feature importance score representing the
change in the model’s performance measure (MAE) after randomly shuffling the values of each feature. The five input features are breed, sex, NDF, ADG,
body weight and dry matter intake of hair sheep made available by de Oliveira et al. (2020).
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