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Abstract
Integrating open-source tools and machine learning (ML) pipelines into livestock data analysis transforms research, education, and decision-making 
in animal science. This study presents a comprehensive, end-to-end regression pipeline implemented in Python, designed to predict outcome 
variables from structured input data in livestock systems. The pipeline includes essential stages of data preparation, such as cleaning, normalization, 
transformation, and exploratory data analysis, followed by model development, hyperparameter tuning, and interpretability analysis. Two real-world 
case studies are used to demonstrate the pipeline’s adaptability and predictive capabilities in addressing domain-specific questions in livestock 
production. The open-source nature of the pipeline serves multiple purposes. First, it promotes reproducibility, a critical requirement in scientific 
research and data-intensive industry applications, by allowing others to verify and build upon the presented methodology. Second, it enhances 
accessibility and equity in data science education, enabling students and professionals alike to explore ML applications without the barrier of 
expensive software or proprietary code. Third, the pipeline is fully modular, encouraging users to adapt, integrate new ML algorithms, and extend 
components for tasks such as classification, clustering, or time series forecasting in livestock datasets. Beyond its technical implementation, the 
pipeline emphasizes interpretability, representing an often overlooked yet vital aspect of deploying ML in agricultural contexts. Through the impor-
tance of permuted features, residual analysis, and model diagnostics, users gain actionable insights into which variables drive predictions, sup-
porting more informed decisions in herd management, nutrition planning, and breeding programs. This focus ensures that ML outputs are not 
just accurate, but also meaningful and aligned with real-world livestock production goals. In summary, this work contributes a versatile and 
transparent machine learning resource tailored for animal science applications. Making the code openly available bridges the gap between meth-
odological advancement and practical deployment, empowering researchers, students, and practitioners to apply ML for better decision-making 
and scientific discovery in livestock systems.

Lay Summary
This study demonstrated how programming languages like Python, alongside artificial intelligence technologies such as machine learning, can 
help those working with farm animals models better understand and predict essential traits, including feeding behavior and growth patterns. We 
created a step-by-step process (called a “pipeline”) that cleans and prepares animal data, builds and tests models, and explains which factors are 
most important for making predictions. We tested this approach on two case studies (real examples) to show how it works. This work is special 
because the tools and code are completely open and free for anyone to use, promoting collaboration and accessibility. This makes it easier for 
researchers, students, and farmers to learn from data, try out ideas, and improve their own animal management or research projects. It also helps 
make science more transparent and fair because anyone can check, refine, or build on what we’ve done. Additionally, we designed the system 
to provide reliable results and clear explanations of its predictions. That way, users can trust the model’s predictions, understand its reasoning, 
and make smarter, data-driven decisions regarding animal care, feeding, and breeding strategies.
Key words: Animal production, animal science, artificial intelligence, computing, education, machine learning, research, simulation
Abbreviations: DL: Deep Learning DT: Decision Tree FN: False Negatives FP: False Positives IoT: Internet of Things KNN: K-Nearest Neighbors LDA: Linear 
Discriminant Analysis (LDA) LightGBM: Light Gradient-Boosting Machine LR: Linear Regression ML: Machine Learning PCA: Principal Component Analysis RF: 
Random Forest RFE: Recursive Feature Elimination ROC: Receiver Operating Characteristic SVM: Support Vector Machines TN: True Negatives TP: True Positives 
XGBoost: eXtreme Gradient Boost

Introduction
Livestock data modeling is crucial to improving animal health, 
productivity, and farm efficiency. The process typically focuses 

on capturing the relationship among variables and then apply-
ing it to describe and optimize existing systems or predict out-
come variable values. The modeling process is typically 
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implemented using a plethora of modeling techniques, includ-
ing pure mathematical, dynamical, statistical, empirical, or 
learning-based systems. Perhaps one of the most attractive 
modeling types in livestock science is building models able to 
predict variables of interest, such as production or genetic 
traits, and various statistical and machine learning (ML) tech-
niques are available for this purpose. By leveraging machine 
learning and statistical techniques, farmers can predict disease 
outbreaks, optimize breeding strategies, enhance overall animal 
welfare, and optimize the allocation of scarce resources to 
improve profits. Accurate models help with the early detection 
of health issues, reducing economic losses and improving sus-
tainability. Additionally, predictive modeling enables better 
resource management, ensuring optimal feed utilization and 
reducing environmental impact. As precision livestock farming 
continues to evolve, data-driven insights will play a key role in 
shaping the future of animal agriculture.

This study aims to provide a detailed computational and reason-
ing process to produce a simple and understandable regression-based 
predictive analytic pipeline that integrates elements of machine 
learning, statistical mechanisms, and practicality focused on deliv-
ering high-quality predictions produced by well-fitted, robust mod-
els with an outstanding generalization capability.

Data Acquisition and Preprocessing for 
Livestock Modelling
Data acquisition and preprocessing are foundational steps in 
livestock modeling using machine learning because they directly 
influence the resulting models’ accuracy, reliability, and appli-
cability. High-quality, well-prepared data ensures that the 
model can learn meaningful patterns rather than noise or 
errors, which is especially important given the biological vari-
ability in livestock due to genetics, environment, and manage-
ment practices. Raw data from sensors, video, or farm records 
often contain missing values, inconsistencies, or noise, which 
must be addressed through preprocessing to enable robust anal-
ysis. Transforming raw inputs into meaningful features through 
feature engineering enhances model performance and interpret-
ability. Proper preprocessing also helps prevent overfitting and 
bias by ensuring balanced and standardized datasets.

The importance of data preparation in livestock modeling 
starts with the “collect and respond” phase, which is often 
overlooked and is crucial to establish the trustworthiness of 
data before any analytics is performed (Tedeschi, 2022). That 
work outlines practical strategies to identify and mitigate issues 
such as outliers, leverage points, multicollinearity, and viola-
tions of distributional assumptions, using tools like DFFITS, 
Cook’s Distance, variance inflation factors, and robust regres-
sion approaches such as Theil-Sen, RANdom SAmple Consen-
sus (RANSAC) or Huber estimators (Tedeschi, 2022; Tedeschi 
and Galyean, 2024). Visualization techniques like Tukey’s 
boxplot are powerful, assumption-free tools to uncover unex-
pected data behavior, but with limitted applicability to smaller 
datasets. These preprocessing steps serve as a statistical neces-
sity and a strategic advantage in modern animal production 
systems, where data quality directly informs the capacity to 
extract actionable insights (Tedeschi, 2022). For significantly 
larger datasets, traditional statistical outlier detection strategies 
such as the z-score method are no longer appropriate and data 
scalable approaches such as clustering (unsupervised machine 
learning) techniques can be considered (Smiti, 2020).

Ultimately, a strong focus on data acquisition and prepro-
cessing supports the development of scalable, accurate, and 
practical ML models that can improve animal health, welfare, 
and farm productivity.

Sources of livestock data
Livestock data is collected from diverse sources, including 
wearable sensors and Internet of Things (IoT) devices that track 
real-time physiological and behavioral factors (Lee and Seo, 
2021), such as temperature, activity, and feeding patterns 
(Neethirajan, 2020; Tedeschi et al., 2021; Chelotti et al., 2024), 
automated monitoring systems consisting of cameras and com-
puter vision, which analyze movement and interactions among 
animals (Curti et al., 2023) and manual records obtained via 
traditional data collection from farm logs and veterinary 
reports (Görge et al., 2023; Baldin et al., 2025).

Data cleaning and handling missing values
Data cleaning is crucial in preparing data for machine learning, 
as it ensures the quality and reliability of the input used to train 
models. This process involves identifying and handling missing 
values, correcting errors or inconsistencies, removing dupli-
cates, and standardizing formats (Tedeschi, 2022). Clean data 
helps prevent biased or inaccurate model outputs and improves 
overall performance and generalizability. In livestock applica-
tions, where data may come from sensors, manual records, or 
automated systems, cleaning is especially important to address 
noise, outliers, and irregular sampling (Schodl et al., 2024; 
Boerman et al., 2025).

Outlier and extreme value detection is also vital in livestock 
data modeling because such values can significantly distort 
model training, leading to inaccurate predictions and unreliable 
insights. Extreme values represent observations or data points 
that are numerically far from the bulk of the data such as very 
large or very small relative to the data distribution and repre-
sent perfectly valid values, which are expected under the 
data-generating process. On the other hand, outliers represent 
observations or data points that do not fit the assumed 
data-generating process, the expected data distribution or the 
model being used. These anomalies may result either from sen-
sor errors and data entry mistakes (typically considered outli-
ers) or from rare but genuine biological events (often labeled 
as extreme values). Proper identification and management, 
whether through correction, transformation, or removal, helps 
maintain the integrity of the dataset, ensures model robustness, 
and supports more accurate and generalizable results. In live-
stock systems, where variability is natural but data-driven deci-
sions are critical, managing outliers is essential for building 
trustworthy models. For a more in-depth discussion on iden-
tifying and handling outliers in livestock science, refer to the 
work of Tedeschi (2022).

Moreover, raw livestock data often contains missing values 
due to sensor malfunctions or data transmission issues. Com-
mon techniques for handling missing data include deletion 
methods that remove incomplete records. However, this may 
reduce dataset size and introduce bias. An alternative strategy 
that does not affect dataset size is to use imputation techniques 
that rely on filling missing values using mean, median, mode, 
or machine learning model predictions (Little and Rubin, 2019; 
You et al., 2023), and interpolation and predictive modeling 
that use regression or deep learning methods to estimate miss-
ing values (Donders et al., 2006).

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article/doi/10.1093/jas/skaf444/8403745 by guest on 19 January 2026



Tulpan et al.﻿� 3

Feature engineering and feature selection
Feature engineering enhances model performance by creating, 
transforming or encoding variables (features) from raw data into 
meaningful features to better represent the underlying problem 
to the model. Feature engineering techniques include a plethora 
of approaches such as: 1) numerical transformations (e.g., scal-
ing, normalization, binning) to improve distributional properties 
or capture nonlinear relationships, 2) encoding of categorical 
features (e.g., One-hot encoding, label encoding, target encod-
ing, embeddings) to convert categorical variables into numerical 
representations, 3) feature construction/combination/aggrega-
tion that creates new features from existing ones to capture 
domain knowledge by applying mathematical functions and 
operators, 4) text manipulations (e.g., Bag-of-Words, TF-IDF, 
N-grams, word embeddings) to represent unstructured text as 
numerical features, 5) time series and sequential feature engi-
neering (e.g., lag features for past-to-present predictions, rolling 
statistics, seasonality indicators, frequency-domain features such 
as Fourier or wavelet transforms) to extract temporal patterns 
and dynamics extractions, and 6) image feature extraction/cre-
ation (e.g., flattened arrays with raw pixel intensities, color his-
tograms, SIFT or HOG texture descriptors, deep learning feature 
embeddings such as Convolutional Neural Networks-extracted 
features) that convert image data into structured representations. 
For a more detailed overview of feature engineering approaches 
please consult Heaton (2016) and Verdonck et al. (2024).

On the other hand, feature selection, which is typically con-
sidered a subset of feature engineering, is the process of choos-
ing a subset of relevant features from an existing set of features. 
It aims is to reduce dimensionality, avoid overfitting, improve 
interpretability, and speed up computation. Feature selection 
techniques include dimensionality reduction, which uses Prin-
cipal Component Analysis (PCA) or forward/backward feature 
selection methods like Recursive Feature Elimination (RFE) to 
select features that alone or in combination improve the overall 
prediction performance of the models (Guyon and Elisseeff, 
2003). Nevertheless, we must be aware that principal compo-
nents enhance computational performance and reduce redun-
dancy, but they obscure domain understanding and limit 
explanatory insights. Principal components can be powerful 
features in machine learning because they reduce dimensional-
ity, mitigate multicollinearity, and often improve model effi-
ciency and generalization by concentrating most of the data 
variance into a smaller set of uncorrelated variables. However, 
the trade-off is interpretability, since principal components are 
abstract linear combinations of the original features, making 
it difficult to relate model outputs back to meaningful, 
domain-specific variables. They are also data- and 
scale-dependent, so their definitions can shift across datasets, 
and they may fail to capture nonlinear structures in the data.

Discriminant analysis methods, such as Linear Discriminant 
Analysis (LDA), further support the feature engineering process 
by projecting data onto axes that maximize class separability, 
effectively highlighting the most relevant features. Clustering 
techniques, such as k-means or hierarchical clustering, can 
reveal structure in the data, guiding the creation of new features 
or the selection of representative variables. Feature engineering 
should be considered when a potential prediction quality gain 
or reduced overfitting can be secured. This typically occurs 
when the collected data includes: 1) complex variables that 
require splitting into simpler variables with more prediction 
power, 2) multiple variables that require aggregation to form 

new variables with enhanced prediction capabilities, or 3) a 
larger number of variables that requires subsetting to help 
reduce overfitting.

Data normalization and transformation
Data normalization and transformation are critical preprocess-
ing steps that enhance data consistency, reduce variability in 
input scales, and improve the performance of many machine 
learning algorithms, especially those sensitive to feature mag-
nitudes, such as k-Nearest Neighbors, Support Vector 
Machines, shrinkage-based methods such as Ridge Regression, 
LASSO, or Elastic Net, and gradient descent-based models. 
Normalization ensures data consistency, reduces variable scale 
variations, and improves model performance, particularly for 
algorithms sensitive to scale differences among inputs. Com-
mon methods include min-max scaling that rescales data to 
values in the range [0,1] and Z-score standardization, which 
centers data around mean zero with unit variance 
(Cabello-Solorzano et al., 2023). In some cases, log transfor-
mations, Box-Cox (Box and Cox, 1964), or power transforms 
may also be applied to handle skewed distributions or reduce 
the influence of outliers. A careful descriptive statistics analysis 
of the data and solid knowledge of machine learning algorithm 
propensity and sensitivity to input scale differences are required 
to gain insights into whether normalization is necessary.

The resilience of machine learning regression models to 
abnormal data patterns, such as outliers, skewness, or scale 
discrepancies, varies significantly across algorithms. Models 
like Decision Tree (DT) and Random Forest (RF) tend to be 
more robust, based on data splitting rather than distance or 
gradient calculations. In contrast, models like linear regression 
(LR), Support Vector Machine Regression (SVM), and Artificial 
Neural Networks (ANN) are more vulnerable to these irregu-
larities, leading to inaccurate model coefficients, slow conver-
gence, or unstable training. Although some models incorporate 
regularization techniques or robust loss functions to mitigate 
the effects of abnormal data, proper normalization and trans-
formation remain essential to ensure accurate, reliable, and 
generalizable predictions. These preprocessing steps ultimately 
contribute to more interpretable outputs and improved model 
robustness in the presence of real-world data challenges.

Fundamentals of Supervised Machine 
Learning Regression
Overview of regression techniques
Regression is a fundamental technique in supervised machine 
learning that models the relationship between input variables 
(features) and one or more continuous output variables (tar-
gets). It is widely used in predictive modeling to estimate 
numerical outcomes based on historical data. Regression tech-
niques can be broadly classified into linear and nonlinear meth-
ods. Linear regression assumes a linear relationship between 
input and target variables, making it computationally efficient 
and interpretable (Hastie et al., 2009). Nonlinear regression 
models, such as ANN and SVR, capture complex relationships 
that cannot be accurately represented using a straight line.

Commonly used regression algorithms
In machine learning, regression algorithms are central to pre-
dictive modeling, each offering unique strengths depending on 
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the nature of the data and the problem at hand. Among the 
most foundational is linear regression, which models the target 
variable as a linear function of input features. It serves as a 
useful baseline due to its simplicity and interpretability (James 
et al., 2013). However, simple or multiple linear regression 
assumes homoscedasticity, independence and linearity, which 
often do not hold in real-world data. When these assumptions 
are violated, extensions such as Weighted Least Squares (WLS) 
for heteroscedasticity and Generalized Least Squares (GLS) for 
correlated errors can be applied. Additionally, regularized 
regression methods such as Ridge (L2) and Lasso (L1) have 
been developed to address other limitations such as overfitting, 
generalization and multicollinearity, while they are not able to 
address violations of independence assumptions or non-linearity 
in the data. These methods add penalty terms to the loss func-
tion, shrinking coefficients to reduce overfitting and enhance 
model generalization (Tibshirani, 1996). Elastic Net, a com-
promise between Ridge and LASSO, is particularly effective 
when predictors are highly correlated (Zou and Hastie, 2005).

Beyond linear models, tree-based algorithms offer a powerful 
alternative for modeling complex, nonlinear relationships. 
Decision Tree regression builds hierarchical models by recur-
sively partitioning the data, while Random Forest regression, 
an ensemble of decision trees, aggregates predictions from mul-
tiple trees to improve accuracy and robustness (Breiman, 2001). 
These models are effective in capturing nonlinearities and inter-
actions among features and are also relatively interpretable 
compared to many other ML approaches because their struc-
ture closely mirrors human reasoning.

Further improvements to tree-based methods are Gradient 
Boosting Machines (GBM) and Extreme Gradient Boosting 
(XGBoost). These ensemble techniques build models sequen-
tially, where each subsequent model attempts to correct the 
errors of the previous ones, using gradient descent to minimize 
the loss function (Chen and Guestrin, 2016). Their ability to 
model subtle patterns in data has made them highly popular 
in data science competitions and real-world applications alike.

The ANN represent another class of flexible and powerful 
regression tools, capable of modeling highly intricate and non-
linear relationships, particularly when trained on large datasets 
(McCulloch and Pitts, 1943; Goodfellow et al., 2016). Variants 
such as Convolutional Neural Networks (CNN) and Recurrent 
Neural Networks (RNN) further specialize in structured and 
temporal data, respectively. A more biologically grounded 
extension, Bayesian Regularized Artificial Neural Networks 
(BRANN), incorporates Bayesian inference into ANN training 
by assigning prior distributions to network weights. This 
approach helps regularize the model and yields more stable 
estimates, particularly valuable in applications like genome-wide 
association studies (Pérez-Rodríguez et al., 2013; Glória  
et al., 2016).

In addition to these, SVM regression offers a robust, 
margin-based learning framework that fits a function within a 
specified error margin using a kernel trick to handle nonlinear-
ity (Smola and Schölkopf, 2004). Similarly, K-Nearest Neigh-
bors (KNN) regression provides a simple, instance-based 
approach by predicting values based on the average of the 
nearest data points (Cover and Hart, 1967). While KNN is 
easy to implement and interpret, its performance is sensitive to 
the choice of the distance measure and the distribution of data. 
Gaussian Process regression (GPR), on the other hand, employs 
a Bayesian, non-parametric approach to model distributions 

over functions. GPR is particularly suitable for small datasets 
and offers valuable uncertainty quantification (Rasmussen and 
Williams, 2005).

Although each of these algorithms has unique advantages, 
such as interpretability, computational efficiency, or predictive 
power, they also come with limitations. No single method guar-
antees optimality across all contexts. Therefore, the process of 
selecting the most appropriate regression model is multifaceted. 
It requires thoughtful data preprocessing, including cleaning 
and sampling, rigorous model tuning and evaluation, and 
robust validation strategies. Ultimately, successful predictive 
modeling hinges on a deep understanding of both the data and 
the algorithmic tools available.

Evaluation measures for regression models
The evaluation of predictive performance for regression models 
is assessed using various performance measures, which are 
often mistakenly referred to as “metrics,” despite most not 
meeting the strict mathematical definition of a metric. Strictly 
speaking, a function d x y,( ), where x and y are two inputs, 
qualifies as a metric only if it satisfies three mathematical con-
ditions: 1) non-negativity: d x y,( ) ≥ 0, with equality if and only 
if x y= , 2) symmetry: d x y d y x, ,( ) = ( ), and 3) triangle inequal-
ity: d x y d x z d z y, , ,( ) ≤ ( ) + ( ), for any third point z. However, 
most commonly used performance measures in machine learn-
ing do not satisfy all of these conditions. For instance, the 
Pearson correlation coefficient violates the non-negativity con-
dition as it can take negative values, while standard regression 
measures such as mean absolute error (MAE) and root mean 
squared error (RMSE) typically fail the triangle inequality. 
Similarly, classification accuracy, often mislabelled as a metric, 
also does not meet this criterion. Therefore, while these mea-
sures serve as practical tools for evaluating model performance, 
they should not be mistaken for true mathematical metrics.

Regression model evaluation measures can generally be clas-
sified into three categories based on their purpose: error-based 
measures, correlation-based measures and explanatory coeffi-
cients. For a more detailed overview of evaluation measures 
used in mathematical modeling within livestock science, refer 
to Tedeschi (2006). Common error-based measures include the 
MAE, which measures the average absolute difference between 
actual and predicted values, the mean squared error (MSE) and 
RMSE, which penalize larger errors more heavily than MAE, 
and the mean absolute percentage error (MAPE), which 
expresses errors as a percentage of actual values and it partic-
ularly useful for enhanced interpretability.

Common correlation-based measures include the Pearson 
product-moment correlation coefficient (PCC or ρ), which mea-
sures the linear correlation between the raw values of two vari-
ables (Pearson, 1895). The coefficient represents the ratio 
between the covariance of two variables and the product of 
their standard deviations and has values between −1 (strong 
inverse correlation) and 1 (strong direct correlation), while a 
value of 0 represents no correlation. Another popular correla-
tion measure is Lin’s concordance correlation coefficient 
(CCC), which measures the agreement between the raw values 
of two variables. CCC is equivalent to 1 minus the ratio of the 
expected orthogonal squared distance from the 45-degree line 
(y = x) and the expected orthogonal squared distance from the 
45° line (y = x), assuming independence (Lin, 1989). This allows 
CCC to capture not only the correlation between the two vari-
ables but also the slope of the general direction of the correlated 
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values, thus exceeding the capabilities of the PCC. CCC has 
values between −1, which indicates strong discordance and 1, 
which represents perfect concordance, while a value of 0 indi-
cates no concordance.

Common explanatory coefficients include R2 and adjusted 
R2, which indicate the proportion of variance explained by the 
model (James et al., 2013). In standard linear regression, 
R-squared represents the proportion of the variation in the 
response (dependent on inputs) variable that is predictable from 
the explanatory (typically independent of each other) variables 
and typically takes values between 0 (independent variables do 
not explain the predicted dependent variable) and 1 (indepen-
dent variables explain perfectly the predicted dependent vari-
able). Occasionally, a regression model can produce values of 
R2 outside the range 0 to 1, which typically signals that the 
model fits the data worse than the worst possible least squares 
predictor. A negative R2 indicates that the model performs 
worse than a baseline model that predicts the mean of the 
response variable for all observations, and thus, explains less 
variance than predicting the mean, indicating a poor fit. This 
situation arises when the residual sum of squares exceeds the 
total sum of squares, leading to an R2 value less than zero. This 
typically indicates a poor model choice or other model or 
data-related issues during the modeling steps. However, when 
applied to non-linear models or mixed-effects models with both 
fixed and random effects, the interpretation of R2 is less 
straightforward. In these cases, different formulations of R2 
such as marginal R2 for fixed effects and conditional R2 for 
both fixed and random effects have been proposed, and values 
may not carry the same intuitive meaning as in simple linear 
regression (Nakagawa and Schielzeth, 2013). Thus, while R2 
remains a useful summary statistic, its interpretation depends 
on the modeling framework and should be applied with caution 
outside standard linear regression.

The adjusted R2 measures are typically employed to address 
the inflation of R2 scores caused by an increase in input vari-
ables. Therefore, adjusted R2 is highly recommended to be used 
when performing comparisons among regressor predictions 
produced by models with different numbers of input variables.

Model Evaluation and Pipeline Construction 
for Regression Modelling
Defining the pipeline workflow
A regression pipeline integrates data preprocessing, feature 
selection, model training, model optimization and evaluation 
steps into a streamlined process that requires careful design 
and consideration (Kuhn and Johnson, 2013). A generalized 
regression pipeline that includes all these steps is presented in 
Figure 1, and supporting Python code for implementing this 
computational pipeline is provided in Supplemental Materials.

Data splitting strategies (train-test, cross-validation)
Constructing modeling pipelines and model evaluation for pre-
dictive purposes requires careful consideration of data splitting 
strategies, particularly when datasets have complex structures. 
The ML modeling often considers two common complemen-
tary approaches supporting model evaluation and construction: 
train-test split and k-fold cross-validation (CV).

An initial train-test split approach is performed, dividing the 
dataset into training and test sets. While there is no general rule 

on what is the optimal ratio that should be used for the split 
(typically 80–20%), the decision is typically made based on the 
size of the dataset, where larger training set percentages are 
recommended for smaller datasets to increase the model per-
formance. Due to inherent variability in data splits caused by 
data distributions, the train-test split process is recommended 
to be performed more than once, and the average and standard 
deviation of the final results must be reported. Alternatively, 
resampling methods, such as bootstrapping or jackknifing tech-
niques can also be used.

Once a training set is defined, the model construction process 
can begin. A k-fold cross-validation process is employed, rep-
resenting a robust method to evaluate model performance by 
dividing data into k subsets, training k-1 subsets, and validating 
them on the remaining subset (James et al., 2013). The process 
is repeated k times, and the average and standard deviation of 
the results are reported and analyzed to evaluate the model 
performance. A robust model will have a prediction perfor-
mance characterized by a high average and low standard devi-
ation. The number of folds, k, will decide the size of the data 
subset used for model construction and the number of models 
that need to be built to properly validate their performance. 
Choosing the number of folds (k) is typically made based on 
the overall size of the dataset (lower k for larger datasets), the 
availability of computing power (lower k for limited computing 
power), and the time limitations inherent to all projects (lower 
k for tighter project deadlines).

Importantly, when datasets exhibit complex hierarchical or 
clustered structures, such as multiple farms, animals nested 
within farms, repeated measurements per animal, different 
breeds, or varying treatments, standard random splitting may 
lead to information leakage and overly optimistic performance 
estimates. In such cases, the data splitting strategy must account 
for the dependencies in the data. Such strategies include:

•	 Grouped cross-validation, which ensures that all obser-
vations from the same group (e.g., the same animal, farm, 
or breed) appear entirely in either the training or test set. 
This prevents the model from “seeing” correlated obser-
vations in both training and validation, which could arti-
ficially inflate predictive performance.

•	 Repeated measures/nested CV: For longitudinal data with 
repeated measurements per animal, nested CV or 
leave-one-animal-out strategies can be applied to respect 
within-animal correlation.

•	 Stratified sampling: When outcomes are unbalanced 
across treatments, breeds, or farms, stratification ensures 
that each fold reflects the overall distribution of these 
factors.

Several studies in animal science and dairy research have 
emphasized the importance of considering hierarchical struc-
tures in CV design (Coelho Ribeiro et al., 2021; Yilmaz Adkin-
son et al., 2024; Wang et al., 2025), highlighting that ignoring 
these dependencies can bias performance measures and lead to 
misleading conclusions. Implementing structure-aware CV 
strategies improves the robustness and generalizability of pre-
dictive models in real-world, multilevel datasets.

In summary, while traditional train-test splits and k-fold CV 
remain fundamental tools, careful consideration of the data 
structure, clustering, and repeated measures is essential for 
valid performance estimation. Adopting grouped, stratified, or 
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nested CV strategies ensures that evaluation measures accu-
rately reflect the predictive ability of models on independent 
data, particularly in the context of complex biological or agri-
cultural datasets.

Model selection and hyperparameter tuning
In ML modeling, parameters are the values the model learns 
during training, such as weights and biases in neural networks, 
the feature entropy and information gain in decision trees, the 
complexity parameter in regularized regression and the decay 
parameter in kernel regression. These values are automatically 
updated during training to minimize a loss function. Hyperpa-
rameters are external settings data scientists set before training, 
influencing the model’s structure, learning process, and perfor-
mance. Examples include the learning rate and the number of 
layers in a neural network or the maximum depth of a decision 
tree. Selecting the best model involves hyperparameter optimi-
zation techniques like Grid Search, which exhaustively searches 
for the best combination of values for the hyperparameters of 
a model, Random Search, which performs a randomized search 
of various hyperparameter combinations and Bayesian 

Optimization, which applies a probabilistic approach to find 
optimal hyperparameter settings (Snoek et al., 2012). For a 
larger selection of optimization algorithms including simulated 
annealing, genetic algorithms and tabu search we recommend 
the reader to consult the work of Hoos and Stuetzle (2005).

Hyperparameter tuning is often applied with k-fold cross- 
validation (a process known as double or nested cross-validation) 
to avoid optimistically biased model performance evaluations 
caused by using the same cross-validation procedure and dataset 
to both tune and select a model. Nevertheless, while the use of 
nested cross-validation could be beneficial and increase the gen-
eralizability while avoiding over-fitting of your models (Cawley 
and Talbot, 2010), it comes at a high computational cost, requires 
significantly larger datasets and sometimes shows limited benefits 
and its necessity should be seriously considered for practical sce-
narios (Wainer and Cawley, 2018).

Model fitting analysis
The analysis of the ability of a model to fit the data can be 
achieved using various techniques such as learning curves 
(Webb et al., 2011). Verifying the fitting quality of machine 

Figure 1.  Machine learning regression pipeline. The pipeline includes some of the most prominent steps required to be completed when modelling a 
dataset with the aid of machine learning.
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learning predictive models is highly recommended and neces-
sary regardless of the theoretical guarantees associated with 
some prediction algorithms (Viering and Loog, 2023).

A learning curve represents the performance of a model over 
a predefined and incremental number of iterations or as a func-
tion of the training set size, and it is used to diagnose issues 
such as underfitting or overfitting. A graphical representation 
of learning curves, as shown in Figure 2, typically includes a 
training learning curve depicting the model performance during 
model training and a validation or a testing learning curve 
showing the model performance on an unseen dataset. The 
presence of a significantly large gap between the training and 
the validation/testing curves signals overfitting where the train-
ing error is typically low and the validation/testing error is high 
(Figure 2—left plot). From the perspective of the bias-variance 
trade-off, this indicates high variance: the model is overly com-
plex relative to the data and captures noise along with the 
signal, leading to poor generalization. In contrast, high training 
and validation errors indicate underfitting (Figure 2—right 
plot) since the model is too simple to capture the patterns in 
the data. This scenario corresponds to high bias, where the 
model assumptions prevent it from representing the true under-
lying relationships. If the two curves converge at a low error 
level, this indicates a good fit (Figure 2—center plot).

The shape of the learning curves (decreasing or increasing 
from low to high set sizes or training times) depends on the 
measure used for model evaluation typically represented on the 
y-axis. For instance, if a measure like R2 is plotted, which 
increases with model performance, learning curves will show an 
upward trend with increasing training size or time. Moreover, 
learning curves may sometimes appear jagged or irregular. This 
variability can result from factors such as high data variance, an 
inappropriate learning rate, small batch sizes, or poorly repre-
sentative training and validation datasets. Here, we recommend 
practitioners to investigate the fitting of the models before and 
after optimization steps to carefully direct the optimization pro-
cess towards the models that require it the most while gauging 
and reporting the benefit of the optimization concerning perfor-
mance and over- and under-fitting.

Model feature importance, interpretability and 
explainability
Feature importance in machine learning refers to techniques 
that assign scores to input features based on their contribution 

to a model’s predictive performance. They often help with 
model explainability by providing insights into the features that 
influence model predictions (Ribeiro et al., 2016; Lundberg 
and Lee, 2017). Feature importance also helps with under-
standing the model, improving its performance, and reducing 
the dimensionality of the dataset.

There are three main categories of feature importance tech-
niques, and they differ depending on the type of model used in 
the study: 1) model-specific, 2) model-agnostic, and 3) 
regularization-based.

Models-specific feature importance techniques work only 
with certain model types such as tree-based models (e.g., DT, 
RF, XGBoost) and linear models (LR). In regression decision 
tree models, the reduction in variance at each split measures 
how much each numerical feature decreases the prediction 
error, providing an indication of the importance of that partic-
ular feature. In the XGBoost algorithm, the performance gain 
representing the improvement in accuracy brought by a feature 
to the branches it is on also reflects feature importance. In linear 
models, feature importance can be assessed using the magni-
tude of the coefficients, typically after data normalization. 
However, one may also consider the coefficients relative to their 
standard errors (t-statistics) or their P-values to account for 
uncertainty and statistical significance, rather than relying 
solely on their absolute or nominal values.

Model-agnostic techniques have a larger utility span and can 
be applied to any ML model. For example, one of the most 
popular approaches, Permutation Feature Importance (PFI) is 
applied to identify the features most relevant to the output for 
each model. Each feature is randomly shuffled while keeping 
all the other features unchanged, and the increase in prediction 
error is measured. Features that cause a larger increase in error 
are considered more important to the model. Another popular 
technique based on cooperative game theory, SHapley Additive 
exPlanations (SHAP), assigns each feature an importance value 
based on its contribution to a specific prediction. The technique 
uses concepts from game theory—specifically Shapley 
values—to fairly distribute the prediction outcome among all 
features by averaging their marginal contributions across all 
possible combinations. SHAP is model-agnostic (with special-
ized versions for tree, linear, and deep models), provides both 
local and global interpretability, and produces intuitive visu-
alizations, making it one of the most robust and consistent 
tools for understanding model behavior.

Figure 2.  Learning curves depicting model overfitting (left), good fit (center) and underfitting (right). Testing/validation curves are depicted with orange 
while training curves are colored in blue.
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Embedded and regularization-based feature selection integrate 
the selection process directly into model training, allowing the 
algorithm to automatically identify and weigh important fea-
tures. These methods often rely on regularization techniques, 
such as L1 regularization in the least absolute shrinkage and 
selection operator (LASSO) and L2 regularization in Ridge 
Regression (Tibshirani, 1996), which add a penalty to the mod-
el’s loss function to constrain the magnitude of the coefficients 
and reduce overfitting. L1 regularization tends to produce sparse 
models by driving some coefficients exactly to zero, effectively 
performing feature selection, whereas L2 regularization shrinks 
all coefficients toward zero without eliminating any, which sta-
bilizes estimates but retains all features. This not only improves 
model generalization but also reduces complexity. Embedded 
methods are efficient and model-specific, commonly used in lin-
ear models, decision trees, and some ensemble algorithms such 
as Light Gradient-Boosting Machine (LightGBM), where feature 
importance is inherently evaluated during the learning process.

The use of agnostic models is highly recommended due to 
their increased versatility and reduced model selection limita-
tions; nevertheless, other techniques can be also considered 
when applicable. The case studies below are intended to pro-
vide concrete examples of how generic regression ML pipelines 
can be applied to different livestock-related datasets to build 
and evaluate effective predictive models.

Case Studies and Applications in Livestock 
Research
In the following sections, we present examples to demonstrate 
how open-source Python code can be used to streamline data 
processing steps, statistically analyze data, train, validate, and 
test predictive models using machine learning algorithms 
applied to body weight prediction in pigs and dry matter intake 
prediction in hair sheep.

To investigate predictive modeling based on morphometric 
or other numerical data, we developed a machine learning pipe-
line tailored for regression problems where only a single mea-
surement per animal is available. The pipeline was implemented 
in Python (version 3.11.9) using Scikit-learn version 1.5 
(Pedregosa et al., 2011) and additional scientific and graphic 
libraries such as scipy (version 1.13.1), statsmodels (version 
0.14.2), numpy (version 1.26.4), pandas (version 2.2.2), mat-
plotlib and seaborn, and it automates model training, optimi-
zation, evaluation, and comparison across four regression 
algorithms. The pipeline can be easily extended to include more 
algorithms and evaluation measures and it is made publicly 
available in the Supplemental Materials.

Data preparation: The script performs basic quality control 
steps such as identifying and removing duplicated rows and 
columns, and encoding categorical input variables. It assumes 
that significant data cleaning is conducted prior to execution. 
Input datasets must contain only numerical values and be free 
of missing entries or formatting inconsistencies. For simplicity, 
convenience and easiness to use our code, the response variable 
(ie, the target for regression) is expected to be located in the 
last column of the dataset. Data is read from a CSV-formated 
file using the Python pandas library. After reading the dataset, 
the pipeline performs a series of preprocessing operations:

•	 Train-test split: The data is randomly split into training 
and test subsets (default: 80/20), ensuring reproducibility 
with a fixed seed (random_state = 1).

•	 Feature scaling and encoding: Standardization is applied to 
all predictor variables. Categorical variables are encoded 
into consecutive integer numerical values using the sklearn 
LabelEncoder function. While this approach is computa-
tionally efficient and ensures numerical values will replace 
categorical ones in the dataset, it is not without limitations. 
For example, it is not recommended for features with nom-
inal values since it can imply a false order and lead to results 
misinterpretations. Instead, the one-hot encoding should 
be used where each unique category is represented by a 
binary column with a value of 1 indicating its presence and 
0 indicating its absence. By default, StandardScaler is used 
to center the data and scale to unit variance, which improves 
the convergence and performance of many regression algo-
rithms. Alternatives such as MinMaxScaler and RobustS-
caler are included in the code but commented out, allowing 
flexibility depending on the presence of outliers.

•	 Data shuffling: Shuffling is enabled during splitting to 
avoid any inherent ordering bias in the dataset.

These preprocessing steps ensure the dataset is normalized and 
well-prepared for model training, reducing bias and improving 
generalization performance.

Model training and evaluation: The pipeline splits the data-
set into training and testing sets and standardizes the features 
using one of several available scalers (StandardScaler, MinMax-
Scaler, RobustScaler). It supports several regression algorithms, 
including linear regression, DT regressor, KNN, and SVR. Each 
model is trained using either cross-validation or a combination 
of random/grid search and repeated k-fold validation to opti-
mize hyperparameters. Performance evaluation measures 
include MAE, MSE, RMSE, MAPE, and R2. Additionally, the 
script calculates CCC for assessing model agreement.

Model interpretability and saving: The pipeline includes 
tools for visualizing learning curves and variable importance 
via permutation feature importance. It also generates 
quantile-quantile (Q-Q) plots for assessing normality of resid-
uals. Unlike classical statistical models, where the assumption 
of normally distributed residuals underpins valid inference and 
hypothesis testing, most machine learning models do not rely 
on residual normality. It is not necessary to check residual 
normality in ML for predictive tasks, since predictive algo-
rithms don’t rely on it. However, while assessing residuals in 
ML is not required for predictive validity, residual analysis 
remains useful for understanding model limitations, error pat-
terns, and overlooked data structures, especially in applied 
fields like animal science where prediction errors may carry 
practical implications. For example, systematic patterns in 
residuals may indicate non-linearity, omitted features, or 
unmodeled interactions, while a changing residual spread can 
reveal heteroscedasticity. Residual autocorrelation may signal 
temporal or spatial dependence, and large deviations can high-
light outliers or influential points. Moreover, clustered or strat-
ified residual patterns may uncover hierarchical structures (e.g., 
farms, herds, breeds) or repeated measures effects that the 
model failed to capture. Trained models and associated scalers 
are serialized using the Python joblib (version 1.4.2) library for 
future use or deployment.

Case study 1: Swine body weight prediction
Live body weight (LBW) is a key indicator used to estimate 
growth, feed conversion efficiency, body condition, and disease 
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presence and to guide decisions related to housing, nutrition, 
and health management across different stages of livestock 
development. Estimating swine body weight using body mea-
surements is valuable because it provides a low-cost and acces-
sible alternative to weighing scales, which can be expensive or 
impractical in smallholder or remote settings. Body measure-
ments are typically taken manually with a measuring tape (e.g., 
heart girth, body length, or leg length), requiring minimal 
equipment and setup compared to moving animals onto a scale. 
Although this method still involves some handling, it can be 
less stressful than weighing, as animals do not need to be 
restrained or forced onto a platform. In addition, it enables 
more frequent or large-scale monitoring when scales are 
unavailable. It also empowers farmers to make informed deci-
sions about feeding, medication, and marketing and provides 
valuable data for research, genetic improvement, and herd 
management.

This case study uses data from Marshall et al. (2023), col-
lected from 765 pigs of various ages, sexes, and breeds across 
157 smallholder households in five Ugandan districts to 

capture regional variation in pig characteristics. Within each 
district, administrative units with high pig populations and no 
active African Swine Fever outbreaks were identified, and 
households with at least two pigs were randomly selected for 
participation. All eligible pigs were measured, excluding visibly 
pregnant, aggressive, sick, or injured animals, with a limit of 
three randomly chosen piglets per litter. Data collection took 
place between November 29, 2021, and January 5, 2022, 
involving adult household members, 56% of whom were 
female. Pig live weight was recorded using a digital scale, while 
body measurements—including heart girth, height, and 
length—were taken in centimeters using tape and measuring 
sticks. Additional data included pig characteristics (sex, age, 
breed type, castration/pregnancy status, parity, housing type, 
and body condition score), as well as farmer demographics 
and measured pig weight. Breed was categorized as “local” or 
“exotic” based on enumerator observation. Due to data spar-
sity in some variables, this study focuses on five input 
features—age, heart girth, height, length, and body condition 
score—and uses live weight as the output variable. After 

Figure 3.  Case study 1—Variable distributions. The histograms represent the distribution of age (months), heart girth, height, length, body condition 
score and body weight (kg) collected from 752 pigs in a study by Marshall et al. (2023).
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removing one record with a zero-length measurement, the final 
dataset consists of 764 pigs. The goal of this case study is to 
process the raw data, train and evaluate machine learning 
models, and predict live body weight.

Data preparation: During the data preparation phase, raw 
files are imported into Python, where extraneous header infor-
mation is removed, and any duplicate records or columns are 
eliminated. Outliers are identified and excluded for all numer-
ical variables using the Z-score method, which filters out 
records that fall more than four standard deviations from the 

mean. The resulting cleaned dataset, containing 752 records, 
is saved to a new file for use in subsequent analyses.

Data visualization: Distributions of individual variables are 
visualized (Figure 3), and Pearson product-moment correlation 
coefficients are computed for all variable pairs, with the results 
presented in a correlation plot (Figure 4). Heart girth, body 
length, and height show a strong correlation (0.85–0.91) with 
body weight, while age demonstrates a moderate correlation 
(0.72), and body condition score (BCS) shows a weak associ-
ation (0.23) with the outcome variable.

Figure 4.  Case study 1—Pearson product-moment correlation scores for pairs of variables. The figure depicts Pearson correlation scores among all pairs 
of variables representing the age (months), heart girth, height, length, body condition score and the body weight of 752 pigs used in a study by Marshall 
et al. (2023).

Table 1.  Case study 1—List of hyperparameters, ranges of values and best settings for five ML algorithms

Algorithm hyperparameters Range of values Best value

Linear Regression
fit_intercept [True, False] True
K-Nearest Neighbour
n_neighbors [1 : 10]—integers 10
Decision Tree
criterion [‘friedman_mse’, ‘absolute_error’, ‘poisson’, ‘squared_error’] ‘absolute_error’
max_depth [1 : 9]—integers 5
Support Vector Machine
C [0 : 1.6]—increments of 0.2 1.4
Random Forest
n_estimators [20, 50, 100, 150, 200] 200
max_depth [2 : 10]—integers 5

The best values for each hyperparameters were obtained using a grid search approach where all possible hyperparameter value combinations are attempted 
for each algorithm. The mean absolute error was used in this optimization process.
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Model development and evaluation: The training dataset 
comprises 601 records (80% of the total), using five input 
variables—age (in months), heart girth, height, and length (in 
centimeters), and body condition score (on a scale of 1 to 5)—
to predict the output variable, body weight (in kilograms). Five 
commonly used machine learning algorithms (KNN, LR, DT, 
RF, and SVM) are applied. Model performance is evaluated 
using repeated 5-fold cross-validation (3 repeats) and a separate 
test set containing the remaining 20% of the data (151 records). 
In this example, model performance is assessed using MAE, 
though other evaluation measures may also be considered.

Hyperparameter optimization (HPO): Each machine learn-
ing model includes user-defined parameters, known as hyper-
parameters, which can be tuned to improve performance. In 
this example, a grid search approach evaluating all possible 
parameter combinations is used to identify the optimal settings. 
A complete list of the hyperparameter values tested and their 
best-performing values is provided in Table 1.

Prediction results and fitting analysis: Among the five algo-
rithms tested, Random Forest achieved the best performance, 
with the lowest MAE of approximately 4.80 kg during 
cross-validation (both before and after hyperparameter opti-
mization), and 4.68 kg on the test set. It was followed by 
k-nearest neighbors and decision tree, while support vector 
machine and linear regression performed the worst, both with 
MAE values exceeding 6.72 kg. Detailed results are presented 
in Table 2 and Figure 5. To evaluate model generalization, 
learning curves were used (Figure 6), revealing varying degrees 
of overfitting among the top-performing models, especially 
prior to hyperparameter optimization. Overfitting levels were 
visually assessed based on the gap between training and vali-
dation curves using MAE-based thresholds: No (0–2 MAE), 
Low (2–4 MAE), Medium (4–6 MAE), and High (>6 MAE). 
In contrast, Support Vector Regression and Linear Regression 
showed minimal signs of overfitting. Hyperparameter tuning 
significantly improved the performance and generalization of 
the top four models.

Scatter plots and quantile-quantile (Q–Q) plots were gener-
ated to further explore prediction accuracy and error behavior 
(Figures 7 and 8). All five models performed well on small to 
medium-sized pigs but consistently under-predicted the weight 
of larger pigs. The Q-Q plots confirmed deviations from the 
expected normal distribution of errors, suggesting the models 
struggle to generalize across the full range of body weights, 
particularly at the higher end, for which fewer datapoints were 
available (Figure 3—bottom right).

These findings emphasize the importance of conducting fit 
diagnostics, even for well-established algorithms with strong 
theoretical foundations. However, this case study does not 

include a formal robustness analysis of the predictions on test 
data. Such analysis can be performed by repeating the modeling 
process with multiple randomized train-test splits (while keep-
ing the same proportions) and averaging the results, though 
this comes at the cost of reduced reproducibility. To enable 
this, one can simply remove the random_state = 1 setting from 
the train_test_split() function in the Python script.

Feature importance analysis: To better understand the influ-
ence of each input variable on body weight predictions, we 
used permutation feature importance across all five algorithms. 
As shown in Figure 9, heart girth and body length consistently 
emerged as the most important predictors, while height, age, 
and body condition score contributed far less to the models’ 
predictive performance. These findings align with prior research 
on swine body weight estimation, which also identified heart 
girth and length, often modeled with linear or quadratic terms, 
as key predictors (Groesbeck et al., 2002; Sungirai et al., 2014; 
Marshall et al., 2023; Thapar et al., 2023).

Case study 2: Dry matter intake prediction  
in hair sheep
Modeling dry matter intake (DMI) in livestock is essential for 
optimizing nutritional management, improving feed efficiency, 
and supporting animal health and productivity. Accurate DMI 
predictions allow producers to formulate balanced diets, reduce 
feed waste, and enhance economic returns. In the context of 

Figure 5.  Case study 1—Cross-validation algorithm performance before 
and after hyperparameter optimization. The figure depicts box plots 
representing the MAE results for BW predictions obtained with five ML 
algorithms (Linear Regression, K-Nearest Neighbour, Decision Tree, 
Support Vector Machine and Random Forest) applied on a dataset 
published by Marshall et al. (2023).

Table 2.  Case study 1—Algorithms cross-validation and testing performance

Algorithm Cross-validation  
MAE (std) before HPO

Overfitting Cross-validation  
MAE (std) after HPO

Overfitting Testing MAE 
after HPO

Random Forest 4.81 (0.48) High 4.80 (0.56) Medium 4.68
K-Nearest Neighbour 5.51 (0.65) Medium 5.40 (0.59) Low 4.63
Decision Tree 6.39 (0.72) High 5.47 (0.69) Low 5.17
Support Vector Machine 7.65 (0.91) No 6.94 (0.84) No 6.72
Linear Regression 7.65 (0.64) No 7.65 (0.64) No 7.27

For each of the 5 algorithms we report the validation MAE (kg) and overfitting results before and after hyperparameter optimization and the testing MAE 
results. HPO, hyperparameter optimization; MAE, means absolute error; std, standard deviation.
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hair sheep, which are increasingly valued for their adaptability 
and low-input requirements, modeling DMI is particularly 
important due to their diverse genetic backgrounds, variable 
grazing behaviors, and sensitivity to environmental conditions. 
Understanding and predicting DMI in hair sheep helps tailor 
feeding strategies that align with their unique physiological and 
production traits, contributing to more sustainable and efficient 
sheep production systems.

This case study uses data from a meta-analysis study pub-
lished by de Oliveira et al. (2020). The data was collected 
from 61 studies, comprising 413 experimental units, to inves-
tigate dry matter intake (DMI) in hair sheep. The studies were 
sourced from public databases and Brazilian theses using 
keywords such as “dry matter intake,” “lambs,” and “sheep 
in tropical environments.” All studies published between 

2002 and 2019 focused on hair sheep in the growing and 
finishing phases under tropical conditions and included rele-
vant quantitative data such as neutral detergent fiber (NDF) 
levels, body weight, average daily gain (ADG), and fiber 
intake. Most studies focused on dietary changes and feed 
additives. Data were extracted independently, and additional 
variables like fiber digestibility were used to estimate rumen 
fill, accounting for intake differences between smaller and 
larger lambs due to variations in body weight and rumen 
capacity.

Data preparation: The raw file made available by de Oliveira 
et al. (2020) has been pre-manually processed such that only 
six columns are kept (breed, sex, NDF, ADG, body weight, and 
DMI), and five records with missing values were deleted. The 
file is imported into Python, where duplicate records are sought 
and removed (none present). Outliers are identified and 
excluded using the Z-score method, which filters out records 
that fall more than four standard deviations from the mean. 
The resulting cleaned dataset, containing 408 records, is saved 
to a new file for use in subsequent analyses.

Data visualization: The distributions of individual variables 
are illustrated using histograms (Figure 10), while Pearson 
product-moment correlation coefficients are calculated for all 
pairs of variables and displayed in a correlation matrix plot 
(Figure 11). Body weight and ADG exhibit a moderate correla-
tion with DMI, whereas the remaining variables display either 
weak or no correlation.

Model development and evaluation: The training dataset 
consists of 326 records, representing 80% of the total data, 
and includes five input variables—breed, sex, height, NDF, 
ADG, and body weight—used to predict the target variable, 
DMI in grams. Five widely used machine learning algorithms 
are implemented: KNN, LR, DT, RF, and SVM. Model perfor-
mance is assessed using repeated 5-fold cross-validation with 
three repetitions and evaluation on an independent test set 
comprising the remaining 20% of the data (82 records). In this 
case, performance is measured using MAE, although additional 
evaluation measures can also be applied.

Hyperparameter optimization: Each machine learning 
model includes user-defined parameters, known as hyperpa-
rameters, which can be tuned to improve performance. In this 
example, a grid search approach evaluating all possible param-
eter combinations is used to identify the optimal settings. A 
complete list of the hyperparameter values tested and their 
best-performing values is provided in Table 3.

Prediction results and fitting analysis: Among the five algo-
rithms evaluated, Random Forest delivered the best perfor-
mance, achieving the lowest MAE during cross-validation, with 
111.64 g/day before HPO and 112.86 g/day after HPO, and an 
MAE of 128.82 g/day on the test set. It was followed by KNN, 
DT, and LR, while SVM performed the poorest, with an MAE 
of 187.91 g/day. Detailed performance measures are presented 
in Table 4 and Figure 12. Overfitting levels were visually 
assessed based on the gap between training and validation 
curves using MAE-based thresholds: No (0–2 MAE), Low (2–4 
MAE), Medium (4–6 MAE), and High (>6 MAE). Learning 
curves (Figure 13) were used to assess model generalization, 
revealing medium to high overfitting in the top-performing 
models, whereas Support Vector Regression and Linear Regres-
sion showed minimal signs of overfitting. Hyperparameter 
tuning slightly improved the Decision Tree model’s perfor-
mance and generalization.

Figure 6.  Case study 1—Learning curves depicting fitting performance 
for five machine learning algorithms predicting BW. The five machine 
learning models are Linear Regression, K-Nearest Neighbour, Decision 
Tree, Support Vector Machine and Random Forest.
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Scatter plots and quantile-quantile (Q-Q) plots were gener-
ated to investigate predictive performance and error distribu-
tion further (Figures 14 and 15). The top four models 
demonstrated low to moderate predictive performance for 
DMI, while SVM struggled with this dataset. However, the 
Q-Q plots indicated minimal deviation from the expected nor-
mal distribution of residuals, suggesting that while overall 
accuracy was limited, the models maintained reasonable 

generalization across the DMI range. These results highlight 
the importance of thorough fit diagnostics, even when using 
established algorithms with strong theoretical underpinnings.

Feature importance analysis: To better understand the influ-
ence of each input variable on dry matter intake predictions, 
we used permutation feature importance across all five algo-
rithms. As shown in Figure 16, body weight and ADG consis-
tently emerged as the most important predictors, while NDF, 

Figure 7.  Case study 1—Scatter plots representing the predictions of five machine learning algorithms on the testing set. The five machine learning 
models are Linear Regression, K-Nearest Neighbour, Decision Tree, Support Vector Machine and Random Forest. Each plot represents predicted versus 
ground truth body weights (measured in kilograms) of 151 pigs from a study by Marshall et al. (2023).
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Figure 8.  Case study 1—Quantile-Quantile plots for errors resulting from the five machine learning models applied on the testing set. The five machine 
learning models are Linear Regression, K-Nearest Neighbour, Decision Tree, Support Vector Machine and Random Forest. In each plot, the red line 
represents f(x) = x, which indicates where points would fall if the data followed the theoretical distribution (t-distribution) exactly. The blue dots represent 
the body weight residual values. The body weights were predicted based on a test set including 151 pigs from a study by Marshall et al. (2023).
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breed, and especially sex contributed far less to the models’ 
predictive performance.

Body weight is the most important and reliable predictor of 
DMI. Heavier animals have greater maintenance energy 
requirements and larger rumen capacity, increasing dry matter 
intake. Prediction models such as those from the NRC and 
CNCPS routinely include BW or metabolic BW (BW 0 75. ) as key 

inputs due to their physiological relevance (Soest, 1994; Tedes-
chi, 2006). ADG, which reflects growth rate and nutrient 
demand, also plays a significant role (Cannas et al., 2004; 
Castro-Montoya and Dickhoefer, 2020). Animals with higher 
ADG typically consume more to support tissue accretion, mak-
ing it a valuable predictor when modeling intake in growing 
animals. NDF, representing the fiber content of the diet, 

Figure 9.  Case study 1—Feature importance for the five machine learning algorithms applied on the training set. Each plot depicts the feature impor-
tance score representing the change in the model’s performance measure (MAE) after randomly shuffling the values of each feature. The five input 
features are the age (months), heart girth, height, length, body condition score and the body weight of pigs made available by Marshall et al. (2023).
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influences DMI through its effects on rumen fill and digestion 
kinetics (Mertens, 1994; Fox et al., 2004). High-NDF diets are 
bulkier and slower to digest, which can physically limit intake, 
especially in forages with low digestibility. Consequently, NDF 
is a crucial dietary variable when modeling intake capacity, 
particularly in ruminants. The breed also affects DMI, as 
genetic differences influence size, metabolism, and feed effi-
ciency (Goetsch et al., 2011). For instance, hair sheep often 
consume less than wool breeds due to their smaller frame and 
lower maintenance requirements. Lastly, sex has a modest but 
notable effect on DMI (Jaborek et al., 2018). Males generally 
eat more than females due to differences in growth rate and 
hormonal influences, though this effect is less pronounced than 
other factors like BW or ADG.

In summary, the application of our computational pipeline 
suggests that effective modeling of DMI in livestock, especially 
in species like hair sheep, should prioritize variables such as 
body weight, ADG, and NDF while considering breed and sex 
as secondary predictors. Incorporating these variables can 
improve prediction performance and help design feeding sys-
tems tailored to the specific nutritional needs of diverse animal 
populations.

Conclusions
This study highlights the value of using open-source machine 
learning pipelines to streamline predictive modeling in animal 
science. Through a practical example focused on swine body 

Figure 10.  Case study 2—Variable distributions. The histograms represent the distribution of breed, sex (0 = castrated male, 1 = female, 2 = non-castrated 
male), NDF, ADG, body weight and dry matter intake (kg) collected from 408 hair sheep published by de Oliveira et al. (2020).
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weight prediction, we demonstrate that machine learning models 
like Random Forest and K-Nearest Neighbors can effectively 
utilize simple morphometric inputs to produce accurate, inter-
pretable predictions. The open-source nature of the pipeline 
allows for transparency, reproducibility, and easy adaptation, 
making it a valuable tool for researchers, educators, and students 

alike. Importantly, such tools serve as practical educational plat-
forms, helping bridge the gap between traditional animal science 
training and the growing demand for data-driven decision-making 
in precision livestock farming. Echoing the recommendations of 
Brennan et al. (2023), this work illustrates how openly shared 
computational workflows can enhance digital literacy, improve 

Figure 11.  Case study 2—Pearson product-moment correlation scores for pairs of variables. The figure depicts Pearson correlation scores among all pairs 
of variables representing the breed, sex, NDF, ADG, body weight and dry matter intake of 408 hair sheep used in a study by de Oliveira et al. (2020).

Table 3.  Case study 2—List of hyperparameters, ranges of values and best settings for five ML algorithms

Algorithm hyperparameters Range of values Best value

Linear Regression
fit_intercept [True, False] True
K-Nearest Neighbour
n_neighbors [1 : 10]—integers 3
Decision Tree
criterion [‘friedman_mse’, ‘absolute_error’, ‘poisson’, ‘squared_error’] ‘squared_error’
max_depth [1 : 9]—integers 6
Support Vector Machine
C [0 : 1.6]—increments of 0.2 1.41
Random Forest
n_estimators [20, 50, 100, 150, 200] 200
max_depth [2 : 10]—integers 10

The best values for each hyperparameters were obtained using a grid search approach where all possible hyperparameter value combinations are attempted 
for each algorithm. The mean absolute error was used in this optimization process.
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model transparency, and empower animal scientists to engage 
confidently with big data and predictive modeling.

Challenges and Future Directions
Future work should focus on expanding the scope and impact 
of machine learning applications in animal science by integrat-
ing diverse data types, such as sensor, behavioral, genomic, or 
environmental data, into in-line and real-time ML predictive 
pipelines. Such multi-modal approaches enable earlier detec-
tion of health and performance issues while supporting more 
robust and actionable decision-making. For instance, Ferreira 
et al. (2024) demonstrated how combining heterogeneous data 
streams in a cloud-based machine learning framework 
improved the early detection of metabolic disorders in dairy 
cows, underscoring the potential of integrated, real-time solu-
tions to transform livestock management. This would enhance 
the depth of analysis and support broader applications.

At the same time, it is important to recognize that prediction 
and actionable insight are not equivalent. While predictive 
models can identify at-risk animals or forecast outcomes, causal 
inference provides the foundation for efficient intervention by 
revealing which factors truly drive changes in livestock systems. 
The interpretation of regression models differs significantly 
depending on whether data arise from randomized trials or 
observational studies, and overlooking this distinction risks 
drawing misleading conclusions. Even with observational data, 

however, a range of regression-based causal inference frame-
works exists to help disentangle association from causation 
(Bello et al., 2018; Sargeant et al., 2024). Incorporating such 
approaches into ML pipelines could substantially increase their 
utility, moving from systems that only flag potential issues to 
those that can also inform intervention strategies.

Figure 12.  Case study 2—Cross-validation algorithm performance before 
and after hyperparameter optimization. The figure depicts box plots 
representing the MAE results for DMI predictions obtained with five ML 
algorithms (Linear Regression, K-Nearest Neighbour, Decision Tree, 
Support Vector Machine and Random Forest) applied on a dataset 
published by de Oliveira et al. (2020).

Figure 13.  Case study 2—Learning curves depicting fitting performance 
for five machine learning algorithms predicting DMI. The five machine 
learning models are Linear Regression, K-Nearest Neighbour, Decision 
Tree, Support Vector Machine and Random Forest.

Table 4.  Case study 2—Algorithms cross-validation and testing performance

Algorithm Cross-validation MAE (std) 
before HPO

Overfitting Cross-validation MAE (std) 
after HPO

Overfitting Testing MAE 
after HPO

Random Forest 111.64 (16.02) High 112.86 (15.15) High 128.82
K-Nearest Neighbour 123.86 (12.86) Medium 118.86 (15.56) Medium 131.49
Decision Tree 137.37 (15.97) High 131.69 (13.68) Medium 131.90
Linear Regression 132.88 (12.64) No 132.88 (12.64) No 149.99
Support Vector Machine 182.87 (18.77) No 180.06 (18.74) No 187.91

For each of the 5 algorithms we report the validation MAE (g/day) and overfitting results before and after hyperparameter optimization and the testing 
MAE results. HPO, hyperparameter optimization; MAE, means absolute error; std, standard deviation.
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Additionally, efforts should be directed at testing the robust-
ness and generalizability of these models through repeated 
train-test sampling and external validation across various farms 
or regions. Interactive learning modules, such as embedding 
open-source code in platforms like Jupyter Notebooks or R Shiny 
apps, can facilitate hands-on learning and practical applications 
for students and researchers. Promoting collaborative code devel-
opment via platforms like GitHub will allow for continuous 

improvement and adaptation of the pipeline to different livestock 
contexts. Furthermore, incorporating model explainability tools, 
such as SHAP or LIME, will ensure a better understanding of 
predictions, particularly for applications influencing animal wel-
fare or resource management. By embracing open-source devel-
opment practices, this approach will drive collaboration, 
innovation, and skill-building, empowering the next generation 
of researchers to harness big data effectively in animal science.

Figure 14.  Case study 2—Scatter plots representing the predictions of the five machine learning algorithms on the testing set. The five machine learning 
models are Linear Regression, K-Nearest Neighbour, Decision Tree, Support Vector Machine and Random Forest. Each plot represents predicted versus 
ground truth dry matter intake of 82 hair sheep from a study by de Oliveira et al. (2020).

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article/doi/10.1093/jas/skaf444/8403745 by guest on 19 January 2026



20� Journal of Animal Science, 2026, Vol. 104, No. 1

Figure 15.  Case study 2—Quantile-Quantile plots for errors resulting from the five machine learning models applied on the testing set. The five machine 
learning models are Linear Regression, K-Nearest Neighbour, Decision Tree, Support Vector Machine and Random Forest. In each plot, the red line 
represents f(x) = x, which indicates where points would fall if the data followed the theoretical distribution (t-distribution) exactly. The blue dots represent 
the DMI residual values. The DMI values were predicted based on a test set including 82 hair sheep from a study by de Oliveira et al. (2020).
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