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ABSTRACT: This paper outlines typical termin-
ology for modeling and highlights key historical
and forthcoming aspects of mathematical mod-
eling. Mathematical models (MM) are mental
conceptualizations, enclosed in a virtual domain,
whose purpose is to translate real-life situations
into mathematical formulations to describe ex-
isting patterns or forecast future behaviors in
real-life situations. The appropriateness of the
virtual representation of real-life situations
through MM depends on the modeler’s ability to
synthesize essential concepts and associate their
interrelationships with measured data. The devel-
opment of MM paralleled the evolution of digital
computing. The scientific community has only
slightly accepted and used MM, in part because
scientists are trained in experimental research
and not systems thinking. The scientific advance-
ments in ruminant production have been tangible
but incipient because we are still learning how to
connect experimental research data and concepts
through MM, a process that is still obscure to
many scientists. Our inability to ask the right ques-
tions and to define the boundaries of our problem
when developing models might have limited
the breadth and depth of MM in agriculture.
Artificial intelligence (AI) has been developed in

tandem with the need to analyze big data using
high-performance computing. However, the
emergence of Al, a computational technology
that is data-intensive and requires less systems
thinking of how things are interrelated, may fur-
ther reduce the interest in mechanistic, concep-
tual MM. Artificial intelligence might provide,
however, a paradigm shift in MM, including
nutrition modeling, by creating novel opportun-
ities to understand the underlying mechanisms
when integrating large amounts of quantifiable
data. Associating Al with mechanistic models
may eventually lead to the development of hy-
brid mechanistic machine-learning modeling.
Modelers must learn how to integrate powerful
data-driven tools and knowledge-driven ap-
proaches into functional models that are sustain-
able and resilient. The successful future of MM
might rely on the development of redesigned
models that can integrate existing technological
advancements in data analytics to take advantage
of accumulated scientific knowledge. However,
the next evolution may require the creation of
novel technologies for data gathering and ana-
lyses and the rethinking of innovative MM con-
cepts rather than spending resources in collecting
futile data or amending old technologies.
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INTRODUCTION

Mathematical models (MM) are mental con-
ceptualizations, enclosed in a virtual domain,
whose purpose is to translate real-life situations into
mathematical formulations (symbolically or nu-
merically) to describe existing patterns or forecast
future behaviors in the real-life situations (Figure
1). The development of MM is a cyclical process
that occurs iteratively and continuously. More re-
cently, their application in research is referred to
as in silico experimentation (Tedeschi and Fox,
2018). Although Ludwig von Bertalanffy intro-
duced the systems theory concept in the 1940s (von
Bertalanfty, 1969), the acceptance and use of sys-
tems-oriented research by the scientific community
have been difficult to attain and of limited reach.
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Figure 1. Illustration of the cooperation between the real world and
virtual world (the world of models) to solve problems encountered in
the real world. The large blue arrows (development, simulation, and
application) represent the only possible route for solving the problem.
The circles represent the variables of interest, the square represents the
solution, the arrows between variables represent causal relationships,
and the vertical dashed line represents the boundaries between real and
virtual worlds. Colors represent different domains.
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Scientists, in general, have been trained in experi-
mental research and not systems thinking, and the
concept of virtualization of reality has been con-
fined to the design of controlled experimentation.
The appropriateness of the virtual representation
of real-life situations through mathematical mode-
ling depends on the modeler’s ability to synthesize
essential concepts and associate their interrelation-
ships with measured data. In this sense, MM often
serve as decision-support systems (DSS), and even
when a solution does not present itself in the virtual
world, the model can ease the identification of pos-
sible solutions or expose the boundaries and gaps
of the scientific knowledge, as shown in Figure 1.
The user can obtain a feasible solution for the real-
world problem by using other operational research
tools such as optimization, or use the outputs of
the model for meta-modeling purposes, or the cre-
ation of MM based on the outputs of other inde-
pendent models. In general, the development of
DSS has only been possible with the advancement
of digital computing and data analysis, which en-
abled the first technological wave in mathematical
modeling.

For about 50 yr, mathematical modeling has
been used to develop DSS to assist with many
aspects of livestock production in diverse envir-
onmental conditions. During the 1940s and 1950s,
several important livestock-related experiments
were planned and conducted by different, mostly
university-associated and governmental organ-
izations around the world. Together, their data
and results formed the common base of our sci-
entific knowledge. Experimental results were pub-
lished in scientific papers (Leroy, 1954; Blaxter and
Graham, 1955; Blaxter and Wainman, 1961), re-
ports (National Research Council, 1944a, 1944b,
1945a, 1945b, 1945¢c, 1949), and books (Brody,
1945; Kleiber, 1961; Blaxter, 1962). The publication
of these experiment results raised more questions,
which prompted the formation and establishment of
public, governmental research entities to investigate
further the recent findings by the scientific commu-
nity and to promote discoveries. The accumulation
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of data and knowledge compelled scientists to de-
velop ways to combine and apply the new informa-
tion being generated by these research entities with
the old information of animal nutrition. For quite
some time, the release of scientific publications (e.g.,
papers, reports, and extension bulletins) containing
newly acquired information and recommendations
in tabular form was enough. However, as the know-
ledge increased, its management and dissemination
through static tabular forms were neither sufficient
to contain the vast amount of information being ac-
cumulated nor quick enough to allow stakeholders
to develop recommendations for production con-
ditions outside those in which the data were gener-
ated. Computer models containing the knowledge
in mathematical formulations (e.g., equations) were
needed to solve the problem of the ever-growing
body of data and knowledge being generated by the
scientific community. Unfortunately, the develop-
ment of computerized DSS did not become a reality
until the mid-1960s, when the perception of the mas-
sive capability of such systems started to flourish
for applications such as communications-driven,
data-driven, document-driven, knowledge-driven,
and model-driven DSS (Power, 2008). With the ad-
vancement of computing in the 1960s, mathemat-
ical modeling became feasible, and nutrition models
have been developed since then (Tedeschi et al.,
2014a).

The objectives of this paper are to illustrate the
application of DSS in ruminant nutrition by char-
acterizing different paradigms and approaches used
in developing MM, briefly describe the evolution of
different lines of thoughts in nutrition modeling,
and exemplify the progression of an applied DSS
in large- and small-ruminants nutrition, and to
provide some initiatives to push forward the math-
ematical modeling field in animal science given
recent advancements in predictive data analytics, a
potential second technological wave in the evolu-
tion of mathematical modeling.

MATHEMATICAL MODELING
APPROACHES AND PARADIGMS

Definitions

In this paper, data-crunching is the process in-
volved in the management and preparation of large
amounts of data and information (e.g., big data)
for an analytical purpose; data analytics is the pro-
cess of examining data sets to obtain relationships
among variables and to draw conclusions from the
information therein, and it is typically achieved

with statistical tools; and predictive analytics is the
process of making predictions and forecastings,
typically achieved with modeling tools, about un-
known future events. The following definitions
and notations commonly used in system dynamics
modeling (Forrester, 1961; Sterman, 2000) were
adopted throughout this paper for clarification
and standardization. Level, state, or stock variables
accumulate values over time; they hold the con-
tents from one time to another during simulation,
serving as the memory of the system; and they can
only be changed (increased or decreased) by rate
or flow variables, which represents inflows or out-
flows, respectively, to and from the level (state or
stock) variables. The rate (flow) variables have the
same dimension as the level (state or stock) per unit
of the time period. All other variables in the model
are auxiliary and, from a reductionist perspective,
they can be eliminated. They only help the mod-
eler to visualize and build the model. Consequently,
a MM can be collapsed to level and rate variables
(and time in dynamic models). Endogenous vari-
ables are variables that affect and are affected by
other variables in the model, whereas exogenous
variables can affect but cannot be affected by vari-
ables in the model because they are outside of the
model boundaries. The number of level (state or
stock) variables in the model dictates its order. For
instance, a MM with one independent level variable
is deemed a first-order model, two independent
level variables a second-order model, and so on. A
MM is deemed linear when the rate (flow) variables
are linear combinations of the level (state or stock)
variables and any exogenous variables. The graph-
ical representation of level vs. rate will always yield
a straight line for linear models, whereas for nonlin-
ear models it will yield curved lines. The graphical
representation of levels over time, however, may de-
pict a nonlinear behavior even for linear models.

Applications

Mathematical models, in general, have an im-
portant role in solving problems, especially in those
conditions in which unforeseen variable relation-
ships exist and stakeholders need to make decisions
to improve production. Specific applications of MM
include the improvement of animal performance,
reduction of production cost, and reduction of ex-
cretion of nutrients by accounting for more of the
variation in predicting requirements and feed util-
ization (Tedeschi et al., 2005). The public’s lack
of awareness and limited knowledge about MM
are the main culprits of the negative perception of
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modeling and simulation, which has hindered their
development and broader application (Tedeschi et
al., 2015b). Mathematical models are not immune to
failures, and unintended consequences arise when a
model’s limitations are misunderstood during the as-
sessment of its appropriateness to solve a perceived
problem. Despite their fallibility, MM are great tools
for biological systems because they help us to iden-
tify areas in the scientific knowledge that have limited
information and need additional research.

Approaches

Models can be categorized in many ways,
depending on their scope and purpose (France and
Thornley, 1984; Haefner, 1996; Meerschaert, 2007;
Thornley and France, 2007). Such categorizations
include descriptive vs. prescriptive (i.e., elucidative
vs. predictive) when the modeling context is appli-
cation; static (i.e., steady state) vs. dynamic, which
can be further categorized as discrete vs. continuous,
when the modeling context is time; deterministic vs.
stochastic (i.e., probabilistic) when the modeling
context is prediction (Guttorp, 1995); or empirical
vs. mechanistic (i.e., theoretical or rational) when
the modeling context is the nature of the model.
The different approaches to developing an MM can
be mixed (e.g., a deterministic, dynamic, mechanis-
tic model). Within the predictive analytics context,
Miller (2014) considered 3 general approaches: the
traditional approach uses linear regressions to esti-
mate parameters through fitting models to data
(similar to the empirical category); the data-adap-
tive or data-driven approach searches through data
to find useful predictors (similar to artificial intel-
ligence—Al); and the model-dependent approach
defines the model (similar to the mechanistic cate-
gory) and uses it to generate data (e.g., meta-mod-
eling), predictions, or recommendations. Others
have proposed additional approaches to categoriz-
ing MM such as teleonomic vs. teleologic models
and functional models (France and Kebreab, 2008;
Tedeschi and Fox, 2018).

Categorizing the MM sets the stage for the
tasks of model development, such as determining
model boundaries, assumptions, and what type of
data and data analytics are needed. However, un-
necessary modeling complexity and nonessential
categorization can easily overwhelm users or even
knowledgeable modelers, entangling them in de-
tails, obscuring the bigger picture, and causing them
to lose sight of the forest for the trees (Tedeschi and
Fox, 2018). Figure 2 depicts critical components
and steps of three major approaches for model

development (empirical, mechanistic or knowl-
edge-driven, and Al or data-driven).

Hybridization of these approaches is possible
and may be employed more often in practice than
has been recognized. The combination of models
and methods usually works best in the predictive
context (Miller, 2014). The empirical approach
relies largely on the goodness of fit through statisti-
cal analyses and data selection, whereas the mech-
anistic approach (i.e., knowledge-driven) requires
the conceptualization of hypotheses of what and
how endogenous variables are interconnected (i.e.,
affect and are affected by other variables) and some
data mining. The Al approach (i.e., data-driven)
is at its core empirical, but recent development in
this field (i.e., machine learning and deep learning)
can be thought of as having some mechanistic ele-
ments. The Al approach relies almost exclusively
on neural network analysis as the base for estab-
lishing the nodes (i.c., neurons) structure and lay-
ers. Figure 2 shows important steps in the model
development:

1) Data management indicates the development of
databases following pre-established criteria for
data acceptance.

2) Model conceptualization indicates the logical
arrangement of important variables towards a
common purpose.

3) Model coding indicates the parameterization
process of variables purely statistically or ideo-
logically.

4) Training and evaluation, intrinsic processes
in the Al approach, train the neural network
formulation and establish the adequacy of its
prediction. If the adequacy of the prediction
is suboptimum, the algorithm seeks out addi-
tional resources to improve its predictability or
alters the neural network formulation (layers)
by itself.

5) Model evaluation indicates how well the MM
precisely and accurately makes predictions giv-
en its purpose (Tedeschi, 2006).

Divergences

The separation between mechanistic vs. empirical
is not always clear. At times, the difference has been
contentious among researchers who have used it, im-
properly, to indicate the superiority of mechanistic
over empirical models. For our purposes, the super-
iority of a model is related to its ability to satisfac-
torily perform (e.g., describe or predict) based on its
intended purpose and development context (Tedeschi,
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Figure 2. Illustration of pathways for the development of mathematical models using different approaches and paradigms: red is empirical, blue

is mechanistic, and green is artificial intelligence.

2006). Similarly, model validation is not a valid state-
ment in mathematical modeling because it has often
been misused to prove the rightness and legitimacy of
models and promote their acceptance and usability
(Oreskes et al., 1994; Sterman, 2002). The misuse has
even led to alternative terminology such as “evaluda-
tion” as an attempt to clarify the issue (Augusiak et
al., 2014). The term model evaluation or model testing
is preferred instead (Tedeschi, 2006).

A mechanistic model is usually represented as a
model made of a nested (i.e., vertical) structure of
entities (i.e., objects) that are localized at different
strata (i.e., ranks). This nested structure implies that
an object of a higher rank depends on the outcome
of one or more objects from one or more lower or
nested ranks. For instance, the response of cells (rank
#1) to a given stimulus (i.e., change of status) will af-
fect the response of an organ (rank #2) that is made
up of these cells. In this case, cell organelles could be
assigned to rank #0 and the animal body (a group
of organs) to rank #3, and so forth. Mechanistic
models can also be represented by a hierarchical

representation of phenomena, but in a horizontal
structure rather than a vertical one, in which the re-
sponse of an object depends on the outcome of a
previous object within the same rank. For instance,
in ruminants, compartmental modeling (digesta
passing through the rumen to the small intestine to
the large intestine) states that what happens to the
digesta in the large intestine, for instance, depends
on what happened to it in the rumen before the large
intestine can initiate its series of events (e.g., diges-
tion and absorption). Within this context, MM that
intrinsically rely on time are naturally categorized as
mechanistic if each time step represents a change of
status of level variables. Consequently, the nested/
vertical structure relies on the necessary mechan-
isms employed or required by the parts to make the
whole, whereas the hierarchical/horizontal structure
conveys the sequential mechanisms that objects need
to go through in order to reach an end: that is, the
parts follow a supply chain process to yield the final
product. Both types of models have intrinsic mech-
anisms that ordain the logic of the calculation. In
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contrast, the main premise in the relatively new dis-
cipline of systems biology modeling is that the sum
of the parts is not necessarily equal to the whole.
In other words, modeling the parts independently
may not yield the outcome observed with the whole,
which contrasts with the underlying principle of
mechanistic modeling. In this case, a holistic view-
point is necessary, and inverse problem modeling
(IPM) is employed to develop the MM (Engl et al.,
2009; Vargas-Villamil and Tedeschi, 2014; Guzzi et
al., 2018).

Paradigms

The creation of MM can be accomplished with
different paradigms. Some paradigms are more
appropriate than others depending on the purpose
and nature of the model, which is largely imposed
by the degree of abstraction (global vs. individual).
Models with global, or high, abstraction are less
detailed-oriented and have a macro scale. Models
with individual, or low, abstraction are more
detailed-oriented (complex) and have a micro scale.
Individual-abstraction models usually have a short
time step and sometimes have multiple time scales,
further complicating the computational process.
The four commonly used types of paradigms are
discrete-events modeling (DEM) (Fishman, 2001;
Law, 2007), dynamic systems, agent-based (or indi-
vidual-based) modeling (ABM) (Hellweger and
Bucci, 2009; Crooks and Hailegiorgis, 2014), and
system dynamics (or feedback-based systems) mod-
eling (SDM) (Ford, 1999; Sterman, 2000; Morecroft,
2007). The DEM relies heavily on stochasticity to
create time points (i.e., events) at which variables
change their value or state rather than change con-
tinuously with time (Fishman, 2001). The ABM
relies on self-governing, individual agents made of
properties, behavioral rules, memory, and resources
that allow each agent to independently make deci-
sions upon the occurrence of an event (Macal and
North, 2005), usually triggered by a probabilistic
distribution and randomness generators. The SDM
is concerned with the behavior of complex systems,
and it relies on the theory of nonlinear dynam-
ics and feedback processes in which the structure
of the system (variable associations) gives rise to
specific behavior over time (Tedeschi et al., 2011).
Conceptually, SDM and IPM both determine the
model’s internal structure that is responsible for
the behavior of the system. From a simplistic view-
point, the goal of SDM and IPM is to build a model
with the fewest number of variables that obey their
causal relationships and that can accurately mirror

the system’s behavior. Early proponents and adop-
ters of systems thinking have used SDM to develop
DSS in agricultural sciences (Bawden, 1991; Yin
and Struik, 2010; Tedeschi et al., 2013). The SDM
is usually employed to solve high-abstraction prob-
lems and dynamic systems find their way with
low-abstraction problems, but both are mainly for
continuous-type problems. The DEM and ABM
have a broader scope of abstraction but require
discrete-type problems. Hybridization of para-
digms for model development is also possible, and
common examples include discrete-event dynamic
modeling (Sandefur, 1991, 1993) and hybrid agent-
based system dynamic modeling (Vincenot et al.,
2011; Wallentin and Neuwirth, 2017; Kim et al.,
2019).

EXTANT MATHEMATICAL MODELS IN
RUMINANT PRODUCTION

Many MM for ruminants exist, and they differ
significantly in numerous ways. Figure 3 depicts the
chronological evolution of influential MM for nu-
trition (Tedeschi et al., 2014a; Tedeschi and Fox,
2018) and, more specifically, for producing grazing
ruminants (Tedeschietal., 2019) and their derivative
works. Around the world, the most commonly used
static and deterministic nutrition models are based
on the National Research Council (NRC, 2000,
2001, 2007) in the United States, the Agricultural
Research Council (ARC, 1965) and Agricultural
and Food Research Council (AFRC, 1993) in
the United Kingdom, the Institut National de la
Recherche Agronomique (INRA, 1989) in France,
the Commonwealth Scientific and Industrial
Research Organization (CSIRO, 1990, 2007) in
Australia, the Rostock Feed Evaluation System
(Jentsch et al., 2003; Chudy, 2006) in Germany, the
DVE/OEB [DarmVerteerbaar Eiwit (ileal digestible
protein)/Onbestendig Eiwit Balans (rumen degrad-
able protein balance)]system (Tammingaetal., 1994;
Van Duinkerken et al., 2011) in the Netherlands,
and the Nordic Feed Evaluation System [NorFor;
Volden (2011)] in Scandinavia. Other nutrition
models containing mechanistic or dynamic elem-
ents include the Cornell Net Carbohydrate and
Protein System [CNCPS; Fox et al. (2004); Tylutki
et al. (2008)], Ruminant (Herrero, 1997; Herrero
et al., 2013), Molly (Baldwin, 1995), and Karoline
(Danfer et al., 2006a, b). These nutrition models
have been modified to account for specific produc-
tion concerns of their eras by including novel or
revised submodels, subsequently leading to many
derivative models. For instance, the INRA (1989)
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went through significant overhauls in 2007 (INRA,
2007) and 2018 (INRA, 2018) with the intent of
revisiting the calculations of available dietary en-
ergy and protein by including digestive dynamics
(ruminal degradation and passage rates) and mi-
crobial growth (Sauvant et al., 2014; Sauvant and
Noziere, 2016). The Ruminant Nutrition System
[RNS; Tedeschi and Fox (2018)], a CNCPS-based
model, incorporated many additional submodels
and revised equations as discussed below. Dumas
et al. (2008) portrayed a historical perspective of
how early ruminant nutrition knowledge led scien-
tists to dwell on MM in the search for unanswered
questions. Some review papers have compared and
highlighted the modern state of agricultural system
models (Jones et al., 2017). Others have contrasted
the different ways nutrition models represent im-
portant elements in predicting the requirements
and dietary supplies of energy and nutrients to im-
prove ruminant production while providing a more
contemporary perspective of mathematical mod-
eling in the field of ruminant nutrition (Serensen,
1998:; Tedeschi et al., 2005; Tedeschi et al., 2014a;
Tedeschi et al., 2015a) as well as some prerequisites
to advance the utility of animal systems modeling
(McNamara et al., 2016a).

Mathematical Nutrition Models

Ruminant production DSS became fully embod-
ied and more evident after the 1960s (Figure 3),
though many mathematical modeling efforts
took place prior to 1925 (Dumas et al., 2008). In
the United States, the first, and ultimately unsuc-
cessful, request to study nutrient requirements
of food animals, especially protein, was issued in
1910 by Henry P. Armsby (Christensen, 1932). The
National Research Council (NRC) underwrote a
second request in 1917. The resulting Cooperative
Experiments upon the Protein Requirements for
Growth of Cattle had several participating experi-
mental stations across the country from 1918 to
1923 (Christensen, 1932) and culminated with the
publications of two reports summarizing the experi-
mental results (NRC, 1921, 1924). Several reports
were released by the then-called National Academy
of Sciences—National Research Council, includ-
ing the first attempt to establish nutrient require-
ments of beef cattle (NRC, 1945a) and dairy cattle
(NRC, 1945b). In 1974, a report on the Research
Needs in Animal Nutrition was released (NRC,
1974) with the intent to address important issues
for ruminant nutrition at that time, such as non-
protein nitrogen utilization, better understanding

of rumen fermentation, nutrient requirements of
“exotic” breeds, and factors affecting feed intake
and utilization, among many others. As discussed
above, computer modeling was not even brought
up during these early deliberations because experi-
mental data were still being collected and digital
computing was in its infancy with few practical ap-
plications (Power, 2008).

Today, precision feeding is possibly the most
relevant application of nutrition models for the
livestock industry. The primary reason is mid-1990s
federal and state regulations that required feeding
programs to be more protective of water and air
quality by minimizing excess of nutrients in the
environment. Consequently, precision feeding (a
technical misnomer—from a modeling perspective
it should be called accurate feeding) encompasses
accurate diet balancing and formulation in unique
production situations to deliver appropriate energy
and nutrients that allow animals to express their
genetic production potential. In the process of
applying precision feeding, the minimization of
excess nutrients (those that will not be absorbed
and utilized by the animal) helps us to decrease
nutrient excretion to the environment, especially
nitrogen (Cerosaletti et al., 2004) and phosphorus
(Vasconcelos et al., 2007).

In the United States, two major schools of
thought have dominated the modeling efforts in
ruminant nutrition. The first school was based on
a more biochemical, process-based, fundamen-
tal-type model initiated in the late 1970s, includ-
ing submodels for rumen function (Baldwin et al.,
1977) and postabsorptive metabolism (Baldwin and
Black, 1979). After a series of integration with ex-
isting United Kingdom models in the early 1980s,
the first model of lactating dairy cows was de-
veloped in 1984 (France, 2013) and published in
1987 (Baldwin et al., 1987a; Baldwin et al., 1987b;
Baldwin et al., 1987¢). Molly, a dynamic, mech-
anistic model based on biochemical reactions in
animal metabolism, became available in the 1990s
(Baldwin, 1995). Molly’s research and modeling
efforts inspired new developments and improve-
ments in many places around the world (Nagorcka
et al., 2000; Hanigan, 2005; Gregorini et al., 2013b;
McNamara and Shields, 2013; Gregorini et al.,
2015; McNamara et al., 2016b). Concomitantly, the
modeling efforts of the second school, a more func-
tional-oriented, applied-type modeling approach
that is based on the NRC recommendations, started
in the late 1970s at Cornell University (Chalupa
and Boston, 2003; Sniffen, 2006). Many papers
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have been published on the specific components of
this second school’s CNCPS model (Tedeschi and
Fox, 2018).

National Research Council. As indicated above,
the NRC’s feed evaluation and nutrient require-
ments of ruminants started in the mid-1940s with
the publications of the Recommended Nutrient
Allowances for Beef Cattle (NRC, 1945a) and
Recommended Nutrient Allowances for Dairy Cattle
(NRC, 1945b). As scientific knowledge was ac-
quired, the information contained in subsequent
publications grew exponentially as did citations
and number of pages to them (Figure 4). Multiple
factors may have facilitated the growth in the size
of the NRC publications. The rate of knowledge
acquisition and the interest in the enhancement of
these publications were so intense that the first 6
revisions happened quickly (on average, less than
7 yr apart) compared with more recent publication
rates.

The first revision of the beef and dairy NRC
publications was issued in 1950 (NRC, 1950a;
1950b). The second revisions of the dairy (NRC,
1956) and beef (NRC, 1958) publications were
retitled to MNutrient Requirements instead of
Recommended Nutrient Allowances. At that time,
establishing protein requirements for cattle was
critical for increasing production. They were ex-
pressed as concentrations in the diet because
most recommendations were based on summaries
of experiments using feeding trials in which

500

performance and digestibilities were routinely
measured as the concentration of protein in the
diet was gradually increased. The third revisions
occurred in 1963 for beef (NRC, 1963) and in
1966 for dairy (NRC, 1966). Subsequent revisions
for nutrient requirements of beef and dairy cattle
had significant modifications. In the 1960s, metab-
olism trials started to take place, and the research
results led to the development of net energy sys-
tems for cattle, which were published in the fourth
revisions of the beef NRC (1970) and dairy NRC
(1971). In the 1970s, rumen microorganisms re-
ceived increased scrutiny, and by the 1980s, the
factorial method was used to compute protein re-
quirements. For beef cattle, the fifth revision was
released in 1976 (NRC, 1976). The sixth revision,
released in 1984 (NRC, 1984), contained major
changes in the energy requirements section and
included the concepts of ruminal protein degrad-
ation and bypass.

For dairy cattle, the fifth Nutrient
Requirements revision was issued in 1978 (NRC,
1978), with major modifications to the calcula-
tion of protein requirements based on the work
of Swanson (1977), including unavailable feed
protein and feed protein solubility. The sixth revi-
sion, released in 1989 (NRC, 1989), included the
concept of ruminally undegraded protein and
microbial crude protein as the main sources of
metabolizable protein.

The seventh revisions of both the beef and
dairy NRC publications saw a drastic increase in
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Figure 4. Indicators of knowledge progression of the National Research Council’s Nutrient Requirements for Beef and Dairy Cattle throughout

the years.
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the numbers of pages and citations to the pub-
lications (Figure 4). Major modifications were
proposed, motivated by the extensive data collec-
tion and analyses of accumulated experimental
research enabled by more accessible digital com-
puting. Along with the development of net energy
systems for beef (NRC, 1970, 1976, 1984) and dairy
(NRC, 1971, 1989) cattle and the mathematical de-
scription of the rumen fermentation (NRC, 1985,
1989), equations needed to initiate the prediction
of requirements for each primary physiological
function (maintenance, growth, pregnancy, lacta-
tion, rumen fermentation, intestinal digestion and
absorption, and metabolism) allowed the develop-
ment of more complex and mechanistic nutritional
models. These models were released with the sev-
enth revisions of the beef (NRC, 1996, 2000) and
dairy (NRC, 2001) cattle publications and again
with the eighth revision for beef cattle (NASEM,
2016) after the inclusion of additional advance-
ments. The latest NRC publications include the
concept of degradation kinetics for feed protein,
to compute readily available, potentially available,
and unavailable protein fractions. Because of the
removal of so-called safety factors when formu-
lating and balancing rations and the more accurate
estimates of energy and nutrient requirements for
diverse production conditions, these computations
have informed DSS and reduced the cost per unit
of production while reducing the excretion of ex-
cess nutrients, including N, P, and greenhouse
gasses, to meet U.S. government regulations.

Cornell Net Carbohydrate and Protein
System. The concepts of the CNCPS were initially
published in 1992 (Fox et al., 1992; Russell et al.,
1992; Sniffen et al., 1992; O’Connor et al., 1993),
but the engine and calculation logic of the model
were developed in the 1980s (Fox et al., 1990). At
that time, a large portion of the requirement sub-
models of the CNCPS was based on the NRC pub-
lications. In 1996 this scenario was reversed, and
the NRC (1996, 2000) adopted many concepts from
the CNCPS modeling effort (Tedeschi and Fox,
2018) that have extended until the seventh revision
for dairy (NRC, 2001) and the eighth revision for
beef (NASEM, 2016) cattle. For the supply side, the
CNCPS model was heavily based on Peter J. Van
Soest’s ideas about the fractionation of carbohy-
drate (Van Soest, 1967) and protein (Van Soest et
al., 1981), which themselves rest on many concepts
of the classification of carbohydrate and protein
for ruminants dating back to the 1950s with the

work of Lauri and Irja Paloheimo (Paloheimo and
Paloheimo, 1949).

The CNCPS possesses the characteristics of
a deterministic, static, and empirical model, with
some mechanistic features, whose main objective is
to function as an applied DSS. The modeling core
of the CNCPS limits its usability as a fully mech-
anistic, dynamic model, though some continuous
simulations can be achieved pending the adaptation
of some elements (Reynoso-Campos et al., 2004;
Tedeschi et al., 2004). CNCPS-based models uti-
lize detailed fractionation of dietary carbohydrate
and protein (Sniffen et al., 1992) and horizontal
mechanistic elements (i.e., supply chain process) to
compute total digestible nutrients. The mechanistic
elements include ruminal fermentation of nutrients
and production of volatile fatty acids and ruminal
pH (Pitt et al., 1996), two pools of ruminal bacte-
ria (Russell et al., 1992), and intestinal digestibil-
ity for undegraded feed. The animal requirements
are essentially based on those recommended by the
NRC (1996, 2000) and NASEM (2016) publications
for beef cattle and the NRC (2001) publication for
dairy cattle.

Tedeschi and Fox (2018) meticulously reviewed
significant modifications and additional submod-
els implemented during the development of the
RNS compared with the original 1990s CNCPS
supply model (Fox et al., 2004; Tylutki et al., 2008),
including 1) the adoption of urea-N used for an-
abolism rather than recycled ruminal N (Eisemann
and Tedeschi, 2016), 2) a more mechanistic ruminal
fiber degradation submodel based on GnG1 mod-
els (Vieira et al., 2008a, 2008b), 3) a revised micro-
bial growth submodel to account for deficiency of
ruminal N and branched-chain amino acids, 4) a
revised volatile fatty acids and ruminal pH sub-
model, 5) a revised methane yield calculation, 6) a
lipids and long-chain fatty acids submodel (Moate
et al., 2004), 7) revised submodels of ruminal pas-
sage rates (Seo et al., 2006; Seo et al., 2007; Seo et
al., 2009), 8) a revised fecal submodel with correc-
tions proposed by Cannas et al. (2004), and 9) a
slightly modified calculation logic for metabolizable
energy from digestible energy and total digestible
nutrients. Despite the enormous efforts in data col-
lection, development and improvement of method-
ology, and meticulous use of cutting-edge statistical
analyses, inconsistencies have been identified and
recommendations have been proposed (Alderman
et al., 2001a; Alderman et al., 2001b; Alderman et
al., 2001c). Recently, others (Galyean and Tedeschi,
2014; Galyean et al., 2016; Tedeschi et al., 2017,
Tedeschi, 2019) have brought to light additional
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flaws and limitations in the NRC- and CNCPS-
based models. These include restrictions and prob-
lems associated with the fixed and long-standing
82% efficiency index of conversion of digestible
energy to metabolizable energy, the conversion of
metabolizable energy to net energies for mainten-
ance and growth, the empirical prediction of rumi-
nal bacteria growth, the contribution of microbial
protein to metabolizable protein, the quantification
of urea-N recycled in the rumen and truly used by
the ruminal microbes for anabolism, the efficiency
of use of metabolizable protein by the ruminant
animal, the energy requirement for maintenance for
grazing animals, the inconsistencies in predicting
protein retained by growing cattle, and the energy
required for animals under cold-stress conditions,
among many others. Some of these inconsistencies
were inherited because of limitations (often by de-
sign) in the methods employed to measure the re-
quired data (Tedeschi, 2019). Solutions to these
limitations may require procedural changes to the
methods and considerable quantities of new data.

Tedeschi et al. (2014a) summarized the evolu-
tion of six empirical and five mechanistic nutrition
models, describing their key characteristics and
highlighting their similarities and differences. These
authors also performed a comparative prediction of
milk production of dairy cows among four nutrition
models. They developed a database of milk produc-
tion from 37 published studies from six regions of
the world, totaling 173 data points: 19 for Africa,
45 for Asia, 16 for Europe, 12 for Latin America, 44
for North America, and 37 for Oceania. Tedeschi
et al. (2014a) indicated that these four nutrition
models could not easily be compared, despite their
similar assumptions and calculations, because the
conceptual and structural foundations inherent to
their intended purposes were too different. They
concluded that not all nutrition models were suit-
able for predicting milk production of dairy cows
and that simpler systems might be more resilient
to variations in studies and production conditions
around the world. Later, on another assessment of
model predictability, Tedeschi et al. (2015a) reached
a similar conclusion that the prediction of metab-
olizable protein required for lactation was uniform
among nutrition models, but the metabolizable pro-
tein required for growth varied largely.

Integrated Mathematical Models

Whole-farm  decision  support  systems
(WFDSS) use a multiobjective modeling approach
in which independent DSS are systematically

and harmoniously integrated into a highly ag-
gregated platform to simulate specific operations
within the boundary of a farm, ranch, or basin.
As shown in Figure 3, several WFDSS have been
developed for ruminant production, including
the Agricultural Production Systems Simulator
(APSIM) (Moore et al., 2007), Australian Dairy
Grazing Systems (DairyMod) (Johnson et al.,
2008), DairyNZ Whole Farm Model, Discrete
Event Simulation Environment (DIESE) (Martin-
Clouaire and Clouaire, 2009), EcoMod (Johnson
et al., 2008), Farm Assessment Tool (FASSET)
(Berntsen et al., 2003), GRAZE (Loewer, 1998),
GRAZPLAN (Donnelly et al., 1997; Moore et al.,
1997), Great Plains Framework for Agricultural
Resource Management (GPFARM) (Andales et al.,
2003), Hurley Pasture Model (HPM) (Thornley,
1998), Integrated Farm System Model (IFSM)
(Rotz et al., 1999; Rotz et al., 2005), LINCFARM,
Pasture Simulation (PaSim) (Graux et al., 2011),
PROGRASS, Sustainable Grazing Systems (SGS)
(Johnson et al., 2003), and Whole Farm Model
(WFM).

The literature of WFDSS aimed at mode-
ling grazing ruminant animals is vast and slowly
expanding. The interest in integrating scientific
knowledge of animals, plants, and soil to under-
stand the behavior of animal agricultural systems
and to better manage and control them has led
the scientific community to develop individual
models and integrate them for a common goal:
maximize productivity (per area or per animal)
while minimizing the use of resources as an
attempt to increase efficiency and profitability.
In the United States, such DSS were promoted
starting in the mid-1970s following the many
NRC publications on nutrient requirements of
cattle (Loewer, 1998). However, the modeling
limitations of complex systems (e.g., WFDSS)
such as overparameterization, inadequate param-
eter estimation, and simulation instability led to
well-known chaotic behavior (Woodward, 1998).
Furthermore, many of these individual models
did not “speak the same language”: they had dif-
ferent objectives and purposes, and their mod-
eling approaches and paradigms were distinct
enough that integrating them required their total
re-engineering and re-programming. These inher-
ent discrepancies have created inconsistencies and
delays in the development of WFDSS for rumi-
nant production, but the field has been moder-
ately active in the last decade. Not until recently
have some of these WFDSS been evaluated under
different production scenarios. Bryant and Snow
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(2008) reviewed nine pastoral simulation mod-
els (APSIM, EcoMod, FASSET, GRAZPLAN,
GPFARM, HPM, IFSM, LINCFARM, and
WFM) and concluded that there was a need to
include the effect of pests and diseases on pasture
production as well as improved animal perfor-
mance predictions, including a more mechanis-
tic model for voluntary feed intake and ruminal
fermentation processes. Snow et al. (2014) sum-
marized six of these models (APSIM, AgMod,
DIESE, FASSET, GRAZPLAN, and IFSM) and
compared their different approaches to model
forage mixtures in the paddocks, animal-forage
interactions, N transfers by the animal in the pad-
docks, management of the whole farm, and future
prospects. They also provided ideas and solutions
for the inherent limitations of these six models.

Environmental Aspects. Recently, the emis-
sion of greenhouse gases (GHG) from ruminant
production operations (i.e., methane and nitrous
oxide) became an important issue within the sci-
entific community because of its perceived con-
tribution to the global warming phenomenon
(Tedeschi and Fox, 2018, Ch. 3). Currently, the
net abatement potential of GHG from ruminant
production systems can be obtained only through
WEFEDSS and life-cycle assessments (Eckard et
al., 2010). These results have led to the issuing
of recommendations for effective reduction in
the emission of GHG (Crosson et al., 2011). Del
Prado et al. (2013) indicated that WFDSS are the
appropriate scale for mitigating GHG emissions
because the farm represents the unit at which
management decisions are made. They analyzed
different approaches to modeling GHG. Most
of the reviews of WFDSS suitability for GHG
assessment have discussed the strengths and
drawbacks of WFDSS, but they lack model inter-
comparisons under different production systems.
Tedeschi et al. (2014a) indicated that accurate
prediction of milk production by dairy cows by
mathematical nutrition models is a critical pre-
requisite to further development of systems that
can effectively and correctly estimate the contri-
bution of large ruminants to GHG emissions and
their true share of the global warming event. The
inaccuracies in predicting GHG become even
more complicated and uncertain when the whole
farm system is considered. Given the complex
nature of WFDSS, Tedeschi et al. (2014b) rec-
ommended that simple nutrition models should
be used with WFDSS to predict GHG emissions
for the time being.

Sustainable Production. The ability to fore-
cast social and economic aspects that prevent the
broader use of WFDSS in decisions involving sus-
tainability is limited. More integrated approaches
are needed to combine MM from different fields
within animal production to develop substantial
programs of sustainable intensification (Garnett
and Godfray, 2012; Tedeschi et al., 2015b). Liu et
al. (2015) suggested that a “holistic approach to
integrating various components of coupled human
and natural systems across all dimensions is neces-
sary to address complex interconnections and iden-
tify effective solutions to sustainability challenges.”
The development of integrated systems and cross-
scale interactions of dynamic systems may facili-
tate social-ecological resilience, with a focus on
our complex adaptive transformability, learning
capacity, and ability to innovate (Folke, 2006). The
SDM paradigm can combine accumulated scientific
data with knowledge and strategic management to
improve the animal industry by better assessing
market opportunities with biological limitations
and potentials of the agroindustry (Tedeschi et al.,
2011) while accounting for the three pillars of sus-
tainability: environmental, social, and economic
aspects (Makkar, 2013; Makkar and Ankers, 2014;
Tedeschi et al., 2015b).

Disease Outbreak. Another important, and
more recent, application of integrated and dynamic
DSS is in the control and management of disease
outbreak. The development of mathematical epi-
demiological models simulating animal infectious
diseases and providing solutions to minimize their
life-threatening menace to animals and humans has
advanced considerably in the United States (Harvey
et al., 2007) and Europe (Lantier, 2014) in the last
decade. Epidemiological DSS help us to understand
the dynamics of spreading infectious diseases, such
as foot-and-mouth disease, in susceptible popula-
tions (Webb et al., 2017). Lofgren et al. (2014) used
real-time modeling and simulation tools to identify
the spread of the 2014 outbreak of Ebola virus in
West Africa and provide timely guidance for pol-
icymakers. Perry et al. (2013) believe that though
the use of powerful MM of the distribution and
dynamics of livestock disease have been increased
in the last decade, incomplete understanding of
the models’ underlying assumptions may result in
dangerous decisions that might create a false con-
fidence of our understanding of the model predic-
tions. Furthermore, many of these epidemiological
DSS seek to aid understanding of the spreading
dynamics of infectious diseases, not necessarily
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their prevention. The latter could be addressed by
accounting for animal nutritional deficiencies as
well as animal management malpractices if nutri-
tion were incorporated in the DSS for epidemiolog-
ical modeling.

Opportunities

Although integrated systems are required to
develop more inclusive WFDSS to assist with sus-
tainability, there are several limitations in modeling
the dynamics of metabolism (McNamara, 2004),
including lack of detailed and accurate data likely
because of limitations in experimental focus and
design (McNamara et al., 2016a). For instance,
accurate nutrition and growth models could assist
in the management of feedlot animals if the mod-
els accurately predicted body composition brought
about by fat and protein deposition, two of the
most influential variables in predicting animal
requirements for growth. However, different geno-
types have different rates of fat and protein depo-
sition, and few MM accounts for them. Since the
early 1980s, there have been considerable efforts
in the understanding of growth of ruminants and
the development of DSS to predict it (Loewer et
al., 1980; Loewer et al., 1983; Bridges et al., 1986;
Oltjen et al., 1986; Di Marco and Baldwin, 1989;
Keele et al., 1992; Williams and Bennett, 1995;
Kilpatrick and Steen, 1999; Oltjen et al., 2000; Hoch
and Agabriel, 2004; Tedeschi et al., 2004). Because
many factors inherent to the genetic makeup of the
animal affect its composition of gain, the incorpo-
ration of nutrition with a genetic predisposition
may likely advance the modeling and simulation of
growth biology. Tedeschi (2015) provided a prelim-
inary modeling approach to combine a nutrition
and growth model with molecular breeding val-
ues obtained from commercial, single-nucleotide
polymorphism panels. The author indicated that
the molecular breeding values for the ribeye area
were an important piece of genetic information for
increasing the precision in predicting mature weight
at a given body composition.

The future of mathematical modeling intrigues
many researchers. Understanding it guides the in-
vestment of resources, including the time devoted
to new learning experiences, towards the develop-
ment of new techniques and the exploration of sci-
entific frontiers. As depicted in Figure 3, the rise in
the development of MM for ruminants occurred in
1985, and, as expected, a 10-yr delay was observed
for pasture-related modeling. A collapse in the re-
lease of new MM for ruminant nutrition became

evident after 2010. It is hard to distinguish when the
period of great model development and idea-shar-
ing within the modeling community ended and the
period of development decline and reshuffling of
ideas within the community, plagued by a lack of
innovation in nutrition modeling, started.

The field of animal nutrition modeling seems
to have been stagnant for quite some time. On the
one hand, this apparent stagnation may indicate that
the field has reached a certain level of maturity that
adequately meets the expectations of producers and
stakeholders, taking away any pressure for further
development. On the other hand, this apparent stag-
nation might be the reflection of many deficiencies
acting alone or in combination that are suppressing
interest by the scientific community and limiting
resources to further develop the field. Continuous
and effective communication and knowledge-shar-
ing with non-scientists stakeholders is vital to raising
their awareness and appreciation for complex mod-
eling. Historically, however, this communication,
including clear instructions on the acquisition of
inputs needed to operate complex modeling in prac-
tice (Newman et al., 2000), has not been properly
executed for many reasons (Cartwright et al., 2016).

There are indications that computer-based
modeling and simulation are, in general, important
in the learning and teaching of sciences, as well as
proposals to include modeling in STEM (science,
technology, engineering, and mathematics) curric-
ula (Feurzeig and Roberts, 1999). Systems thinking
has been commended as a required discipline for
the development of systems-oriented MM (Senge,
1990; Sherwood, 2002). Systems thinking has to do
with how we perceive the connection among entities
(i.e., objects and variables) within a defined bound-
ary; in essence, it is how we see the forest for the
trees. However, under specific circumstances, the
shortage or decline of innovative modeling in agri-
culture and life sciences may be partially explained
by academia’s failure to properly introduce students
to MM (or systems thinking for that matter) and
the overloading of faculty, which decreases their
time for critical thinking about the subject.

Another deficiency leading to this apparent
stagnation is the lack of novel ideas and concepts to
further challenge the status quo. Reduced funding
at the state and federal levels may have also contrib-
uted to the ever-declining rate of scientific produc-
tion in agriculture (Rouquette et al., 2009; Black,
2018). The lack of learning experiences, slow trans-
fer of knowledge, and the shortage of resources
may not be exclusive to agriculture, but they are
certainly restraining its development.
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On the bright side, novel developments may be
on the horizon with the advancement of innovative
technologies in data analytics, such as deep learn-
ing. We may be entering an era of growth like the
one in the 1950s, when the development and appli-
cation of digital computing gave the needed boost
to mathematical modeling in agriculture. The inte-
gration of mathematical modeling and Al is likely
to spur an avant-garde technological wave in pre-
dictive analytics, yielding hybrid knowledge- and
data-driven models.

HYBRID KNOWLEDGE- AND DATA-DRIVEN
MATHEMATICAL MODELING

The artificial neural network (ANN) technique
has been around for some decades. It comprises
many single, connected processors, called nodes,
that are assembled to computationally mimic
the perceived function of human brain neurons.
Thousands of ANN neurons are interconnected
among themselves and embedded in multiple layers
of similar or different shapes (i.e., different neuron
connection layouts). The ANN neurons of the first
layer usually receive the inputs (e.g., values of inde-
pendent variables), one input per neuron. When
activated, each neuron sends a signal to another
neuron in the next layer. This process happens sub-
sequently throughout all layers until the ANN pro-
duces an overall output (e.g., a dependent variable).

The basic building block of an ANN is the
adaptive linear element that consists of cascaded
neurons (i.e., layers) that produce binary outputs
(1) depending on the pattern of inputs (Widrow
and Lehr, 1990). Many different forms and
architectures of the basic ANN technique exist,
including supervised and unsupervised learning,
back-propagation, deep learning, and reinforce-
ment learning, among many others (LeCun et al.,
2015; Schmidhuber, 2015). These variants have
been developed since the 1960s to improve the reli-
ability and stability of imagery and sound recogni-
tion, patterns of quantifiable data over time, and
prediction of output given different combinatorial
variables, among many other uses. The mathemat-
ics behind these ANN variants are sophisticated,
complex, and expanding as novel techniques are
developed by combining operational research tools
(e.g., dynamic programming and Markov chain) to
assist in the credit assignment for problems of dif-
ferent characteristics (Widrow and Lehr, 1990).

Artificial intelligence comprises a group of
extremely powerful data analytics, including
machine learning (ML) and deep learning (DL),

that have benefited from the quick progress of
ANN since the 1950s. A typical computer program
uses inputs (i.e., raw data and independent varia-
bles) and hard code (i.e., logic and calculation rules)
to produce outputs (i.e., dependent variables). In
contrast, ML and DL use inputs and outputs to
generate a set of rules (mostly statistical and optimi-
zation methods) that can sufficiently and accurately
represent the data for detection and classification
(LeCun et al., 2015; Chollet and Allaire, 2018).

Despite current applications of Al to solve
problems in many different fields, including
agriculture, and the tremendous technological
advancement and refinements of Al, its role and
utility in mathematical modeling are still unknown.
Although some studies comparing ML and Al were
improving the recognition of objects or increasing
the predictability of models, other studies were
identifying the limitations and shortcomings of this
technology (NASEM, 2018). For instance, DL is a
data-thirsty process that requires large data sets for
training and evaluation processes (Figure 2) and,
ideally, large variability within the data sets to cover
as many combinatorial possibilities among varia-
bles as practicable (Kamilaris and Prenafeta-Boldu,
2018). Although the bootstrapping technique
can partially alleviate the data shortage problem
(Breiman, 1996), it may exclude natural variations
and correlations among variables. The bootstrap-
ping technique should be carefully used as it cannot
substitute measured data. The second, and perhaps
most serious, the drawback with the adoption of Al
and its variants is the lack of transparency in the
reasoning behind each prediction. Once an ANN
layout is developed, almost nothing is known about
the underlying mechanisms that produce the over-
all output (Knight, 2017). Indeed, DL methods are
commonly called representation-learning methods
with low to high degrees of abstraction as the num-
ber of layers increases (LeCun et al., 2015).

Unlike ML, DL has been shown to help
solve multidimensional problems with intricate
structures in several fields of science, including
pharmaceutical, medical, physical, and psycho-
logical challenges (LeCun et al., 2015). The DL
is a compelling data-crunching technique, but it
may not be a genuine modeling approach because
it is a black box whose workings we do not know
or understand. DL alone incompletely fulfills the
hierarchical learning steps of Ackoff’s (1989) data—
information—-knowledge-wisdom (DIKW; Figure
5) pyramid that humans have been taught for cen-
turies because it cannot provide insightful know-
ledge that leads to wisdom. The wisdom in the
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KNOWLEDGE

+ context

understanding, integration, applied,

INFORMATION

reflected upon, actionable,
accumulated, principles, patterns,
decision-making process

RIS

idea, learning, notion, concept,
synthesized, compared,
thought-out, discussed

organized, structured,
categorized, useful,
condensed, calculated

CISION

individual facts,
figures, signals,
measurements

Figure 5. The data-information-knowledge-wisdom pyramid based on Ackoff (1989). Data have no value until they are processed into a use-
able form given a context. Information contains data that underwent some kind of organization and systematic analyses. Knowledge represents
information that has been gained and put into use, generally by a human. Wisdom is the possession of knowledge used to make intelligent connec-
tions between different agents and patterns needed to understand the principles and underlying mechanisms that govern the behavior of the data.
In the decision risk color scale, red indicates high risk and green indicates the low risk associated with decision-making processes.

DIKW hierarchy (Figure 5) adds value to know-
ledge through methodical judgments, an important
characteristic that differentiates humans from ma-
chines (Ackoff, 1989). The question then becomes,
can we move forward with DL and mechanistic
mathematical modeling and, if so, how?

Despite being incipient, the applications of
ML and DL in agriculture are already a reality
(Kamilaris and Prenafeta-Boldu, 2018; Liakos et
al., 2018). However, their integration with MM,
more specifically mechanistic modeling, is embry-
onic. In cattle production, few studies in animal
welfare (Dutta et al., 2015), genome-wide pre-
dictions (Gonzalez-Recio et al., 2014) and breed
classification (Santoni et al., 2015), genomics’
expected progeny difference (Okut et al., 2013),
anatomical biometrics for animal identification/
recognition (Kumar et al., 2018), animal growth
(Alonso et al., 2013; Alonso et al., 2015), and
rumen functioning (Craninx et al., 2008; Dong
and Zhao, 2014) have used Al technologies alone
or in combination with other statistical methods.
Craninx et al. (2008), for instance, compared the
adequacy of ML to multilinear regression tech-
niques for predicting ruminal volatile fatty acids
production, measured by milk fatty acid compos-
ition, using data from 10 studies (z = 138 obser-
vations) of rumen cannulated dairy cows. They
reported that no significant differences between
the techniques based on the mean square error
of prediction statistic. Kumar et al. (2018) used
DL and muzzle biometrics (imagery) for regis-
tration, unique identification, and verification of
cattle. This is an interesting application of DL

ability to process images. The use of DL with ani-
mals’ physical biometrics, to improve our ability
to identify desired body characteristics and pro-
ject growth patterns and carcass composition,
has an enormous potential to identify optimum
slaughter time of live cattle (Tedeschi, 2017).

The integration of knowledge- and data-driven
modeling technologies, yielding hybrid artificial
MM, seems plausible in the near future, after the
fever of adopting new technology passes. Some
fields have already partially addressed the possi-
bility of incorporating ML with other modeling
techniques. For instance, though it is not entirely
clear how IPM can benefit from AI techniques,
Vemuri (2003) might have shed some light on how
ML can assist with broader usage of IPM. The
supervised learning architecture is most commonly
used in DL. However, unsupervised learning and
reinforcement learning might be the way to com-
bine DL and mechanistic MM because most human
learning about the world’s complexity is done in an
unsupervised way, i.e., there is no pre-established
relationship among variables, we learn them from
inside-out. LeCun et al. (2015) indicated that Al is
progressing by combining representation—learning
methods (e.g., DL) with complex reasoning, per-
haps including mechanistic modeling.

The data analytics field can be daunting to those
with inadequate understanding. When combined
with modeling approaches, data analytics may even
frighten some potential users away from predictive
analytics. Although there have been localized ef-
forts (Xu and Rhee, 2014), our society must stimu-
late adequate training in Al technologies: their
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possibilities, drawbacks, and opportunities. There
is no good in teaching how to properly collect data
when principles in data analytics, and modeling for
that matter, are absent.

CONCLUSION

Our inability to pose the right questions about
the problem that needs to be solved and define its
boundaries when developing models, as well as our
intrinsic ambition to develop models to simulate sys-
tems rather than problems, might have limited the
breadth and depth of mathematical modeling in
agriculture and perhaps other fields of science. The
emergence of data-intense computational technolo-
gies that require less systems-thinking about how
things are interrelated may have helped disperse
the interest in mechanistic, conceptual mathemat-
ical modeling. It also may have shifted the interest
of, and attracted adopters to, statistics-oriented,
data-intense, less-mechanistic modeling approaches
such as Al. Al has its niche, but it cannot entirely
replace mechanistic learning and systems-thinking
approaches. Data-driven and knowledge-driven ap-
proaches must be merged into functional DSS that
are sustainable and resilient by transferring funda-
mental knowledge while providing effective fore-
casting experiences. The premature adoption of Al
or its derivations, likely sparked by the excitement
of using cutting-edge technology, at the expense of
knowledge-driven approaches may be obfuscating
unintended consequences, such as the lack of learn-
ing and teaching practices, poor transfer of know-
ledge for training of future leaders and researchers,
and the shortage of resources for experimental re-
search. The future success of mathematical mode-
ling relies on the development of redesigned models
that can integrate existing technological advance-
ments in data analytics to take advantage of accu-
mulated scientific knowledge. However, reaching
the next technological level requires the investment
of resources in creating novel technologies for data
gathering and analyses, confronting established as-
sumptions, and rethinking and pioneering concepts
rather than amending limited technologies or con-
tinuing to collect futile data (Tedeschi et al., 2017,
Black, 2018).
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