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Lay Summary. Large language models (LLM), such as ChatGPT, are powerful artificial intelligence
systems that can analyze vast amounts of text and generate meaningful answers. In animal agriculture,
these tools are starting to transform how farmers, veterinarians, and researchers work. For example, LLM
can help refine cattle diets by analyzing feed composition data, assist veterinarians in diagnosing diseases,
and even model greenhouse gas emissions from livestock. Unlike general-purpose chatbots, domain-
specific systems are being developed to focus on agriculture. Examples include ExtensionBot, which
provides farmers with science-based advice from Cooperative Extension, and SARAH, a decision-support
tool that predicts the risk of ruminal acidosis in feedlot cattle. These applications show how Al can reduce
barriers between research and practice, making complex knowledge more accessible and actionable. At
the same time, important challenges remain: LLM can sometimes generate errors or biased results, and
they depend heavily on the quality of the information used for retrieval or for training. This paper explains
both the opportunities and risks of using LLM in animal sciences and emphasizes that they should support—
not replace—human expertise. When carefully applied, these tools have the potential to improve farm

productivity, animal welfare, and environmental sustainability.

Teaser. Large language models are rapidly reshaping animal sciences, offering new tools for precision
nutrition, disease monitoring, genetic selection, and sustainability. Domain-specific systems such as

ExtensionBot and SARAH demonstrate how LLM can bridge research knowledge with on-farm decision-
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making. Responsible adoption, with transparency, bias testing, and human oversight, is critical to ensuring

that LLM strengthen rather than undermine scientific integrity.

Abstract. The rapid rise of large language models (LLM) is reshaping the scientific landscape, transitioning
from early statistical language models to advanced transformer-based architectures capable of
synthesizing knowledge across disciplines. While their predictive capacity and scalability have opened new
avenues in data analysis, hypothesis generation, and decision support, concerns remain regarding bias,
hallucination, reproducibility, and ethical governance. In animal sciences, LLM are gradually applied to
challenges in nutrition modeling, animal health, genetic selection, and sustainability. Precision nutrition has
benefited from LLM-driven synthesis of feed and metabolic data, enabling individualized feeding strategies
and improved resource efficiency. In animal health, domain-specific systems have demonstrated
applications in diagnostics and epidemiological monitoring. LLM is augmenting genomic analyses to
accelerate marker discovery and breeding optimization, while sustainability efforts employ them to model
greenhouse gas emissions, feed additives, and adaptation to climatic stressors. Notably, decision-support
platforms demonstrate how domain-specialized LLM can bridge mechanistic knowledge with predictive
analytics, enhancing knowledge transfer and empowering livestock producers. However, risks associated
with overreliance, recursive reuse of LLM outputs in model development, and pseudo-expertise underscore
the importance of critical human oversight. Unlike mechanistic models, which embed biological causality,
LLM are entirely data-driven and may confidently propagate errors if trained on ill-conditioned datasets.
Responsible use requires transparent reporting, validation, and bias auditing, with domain-specific fine-
tuning. Open-source models can enhance reproducibility and trust, but they also raise financial and security
concerns. In animal sciences, LLM must be guided by transparency, accountability, and fairness to ensure
that they complement, rather than replace, human expertise. By advancing inquiry and livestock
management, LLM hold the potential to support sustainable food production systems if deployed
responsibly. Rather than full training, most applications will rely on fine-tuning and augmentation, which are
more sustainable and adaptable strategies. This review synthesizes current developments, highlights
domain-specialized LLM, and provides a balanced discussion of benefits, limitations, and future directions

for LLM in animal science.
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Keywords. Animal Science, Decision-Support Systems, Domain-Specific Al, Large Language Models,

Precision Livestock Nutrition, Sustainability.

Abbreviations. Al = Artificial intelligence; ATAUC = Area and time above and under the curve; LLM = Large
language model; LSTM = Long short-term memory; ML = Machine learning; NANP = National Animal
Nutrition Program; RAG = Retrieval-augmented generation; RF = Random Forest; RHC = Rumen Health
Compendium; RNN = Recurrent neural networks; SAARA = Subacute and acute ruminal acidosis; SARAH

= Smart Adviser for Rumen Acidosis and Health; and TMR = Total mixed ration.

INTRODUCTION

Large language models (LLM)—such as ChatGPT, Claude, Gemini, and Perplexity—are cutting-
edge artificial intelligence (Al) systems that interpret large amounts of text to generate accurate and relevant
outputs. In animal agriculture, these technologies are beginning to reshape decision-making for farmers,
ranchers, veterinarians, and researchers, though the level of development varies considerably across
application areas. The development of LLM has been a gradual process, rooted in early advancements in
statistical language modeling that culminated in the robust transformer-based architectures that define
modern Al. The trajectory of LLM reflects the broader evolution of Al, beginning with foundational work in
information theory and progressing toward deep learning-based models that now percolate various aspects
of scientific inquiry. The concept of modeling language probabilistically can be traced back to the seminal
work of Claude Elwood Shannon, who introduced information theory and probabilistic language to
understand and predict the sequences of symbols (Shannon, 1948). His work, among many others, laid the
groundwork for statistical language modeling, which became prominent in natural language processing
through methods such as n-gram models (Shannon, 1948). These early approaches relied on estimating
word probabilities based on co-occurrence patterns, providing a rudimentary but effective method for

predicting text sequences.

A significant shift occurred with the introduction of neural probabilistic language models. A
groundbreaking approach that leveraged neural networks to model word dependencies more effectively
than traditional statistical techniques (Bengio et al., 2003). This approach enabled the automatic learning
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of word representations, thereby reducing the sparsity problem that had plagued earlier models. The
concept of distributed word representations was further refined by introducing Word2Vec, a technique that
captured semantic relationships between words through vector embeddings (Mikolov et al., 2013). The next
maijor leap in LLM came with the introduction of attention mechanisms, which improved neural machine
translation by allowing models to dynamically focus on relevant portions of input sequences (Bahdanau et
al., 2016). However, the most significant breakthrough occurred with the Transformer architecture (Vaswani
et al., 2017, 2023), which eliminated the need for recurrent connections in neural networks. Traditional
recurrent neural networks (RNN) and long short-term memory (LSTM) networks relied on sequential
processing, which limited parallelization and led to high computational costs as input sequences grew
longer. In contrast, transformers leverage self-attention mechanisms and parallel processing, significantly
improving scalability, training efficiency, and the ability to capture long-range dependencies in text,
ultimately enabling the development of state-of-the-art LLM (Vaswani et al., 2023). Empirical studies have
demonstrated that increasing model size yields predictable improvements in performance, following well-
defined scaling laws (Kaplan et al., 2020). With the Transformer model as a foundation, researchers began
scaling up LLM using massive datasets and computational resources, following empirical scaling laws that
describe how model performance improves predictably with increased parameter count, dataset size, and
computational budget (Kaplan et al., 2020). OpenAl's GPT-1 (Radford et al., 2018) demonstrated the
effectiveness of pretraining models on large corpora, followed by fine-tuning for specific tasks. This
approach was refined with BERT (Devlin et al., 2019), which introduced bidirectional training, enabling
models to understand context more effectively. The subsequent release of GPT-2 (Radford et al., 2019)
marked a turning point, as the model’s ability to generate coherent, human-like text raised concerns about
the potential for Al-generated misinformation. GPT-3 (Brown et al., 2020) further amplified these capabilities
(and fears), highlighting few-shot learning and the ability to generate highly contextualized responses
without extensive task-specific training. Subsequent releases continued advancing the frontier: GPT-4
introduced a multimodal architecture capable of interpreting both images and text and exhibited human-
level performance on many benchmarks, pushing boundaries of reasoning and generality (OpenAi et al.,

2024). GPT-5 further refined this trajectory, offering deeper reasoning, improved context understanding,
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and a unified architecture that dynamically routes queries between fast responses and more deliberative

modes (OpenAl, 2025).

In recent years, efforts have been made to develop open-source alternatives to proprietary models.
Meta’s LIaMA (Touvron et al., 2023) introduced an efficient and accessible model that rivals commercial
LLM, enabling broader academic and industrial adoption. More recently, DeepSeek, a Chinese Al startup,
made global headlines with the release of its reasoning model DeepSeek-R1. Trained primarily through
reinforcement learning rather than large-scale supervised fine-tuning, R1 demonstrated reasoning
performance comparable to OpenAl's 01 series at a fraction of the cost (DeepSeek-Al et al., 2025). Its
release in early 2025 attracted widespread attention not only for its technical efficiency, with training costs
reported to be orders of magnitude lower than those of U.S. competitors, but also for its open-weight
approach, which enabled researchers to download, fine-tune, and run the model locally freely. Within its
first week, DeepSeek was downloaded millions of times, and scientists rapidly began adapting it into
domain-specific reasoning tools in fields ranging from mathematics to computational biology (Gibney,

2025).

At the same time, concerns have been raised that LLM may not only hallucinate information but
also reinforce systemic biases in science, for example, by disproportionately amplifying already highly cited
research and underrepresenting diverse perspectives (Barolo et al., 2025). Algaba et al. (2025) highlighted
the “rich-get-richer’ effect, showing that LLM-generated reference suggestions systematically over-
represent the top 1% of most-cited papers—more than double the rate observed in human-curated
bibliographies. Their findings suggest that LLM internalize and magnify human citation patterns, thereby
exacerbating the Matthew effect in scholarly communication, which describes the cumulative advantage in
scholarly communication whereby already well-recognized scientists and highly cited papers attract
disproportionate attention and credit (Merton, 1968). As a result, emerging or methodologically diverse
research, which may be critical for innovation, is more likely to be overshadowed by well-established
studies. Peters and Chin-Yee (2025) further noted that LLM tend to overgeneralize scientific conclusions,
often glossing over caveats and contextual limitations in ways that can distort interpretation. Moreover, as

LLM increasingly function as “answer engines,” they may subtly shape which scholars, methods, and
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perspectives are foregrounded in science, influencing not only how researchers discover knowledge but
also how grants and peer review are conducted (Lin, 2025). Importantly, these behaviors often reflect not
genuine reasoning but the illusion of thinking (Khowaja, 2025; Shojaee et al., 2025), where LLM models
mimic plausible discourse without true understanding, highlighting the importance of distinguishing between
fluent text generation and scientifically valid reasoning. Together, these concerns highlight the need to
critically evaluate both the opportunities and risks of integrating LLM across any field of science, including
agricultural sciences. In a recent theoretical analysis, Kalai et al. (2025) reinforce this concern, showing
that hallucinations in LLM arise not from mysterious cognitive failures but as predictable statistical
consequences of their training objectives. Because LLM are trained and evaluated using reward-based
methods that penalize expressions of uncertainty, models learn to “guess” even when unsure, receiving
positive feedback for providing any answer rather than acknowledging ignorance. This reward misalignment
effectively turns LLM into perpetual test-takers optimized for confident responses rather than calibrated

reasoning.

In animal sciences, LLM are increasingly being applied to model nutrient requirements, analyze
large genomic and transcriptomic datasets, and optimize livestock management decisions. Their capacity
to process, synthesize, and cross-reference vast amounts of scientific literature and experimental data
uniquely positions them to advance areas such as precision nutrition, disease surveillance, and genetic
selection. As exemplified later, early explorations include applications in dairy science for interpreting
domain-specific research and supporting decision-making in breeding and health management, as well as
in swine production for summarizing regulatory and certification information. These emerging applications
highlight the promise of LLM in advancing animal science, while also pointing to the need for a careful

assessment of their benefits and drawbacks.

Domain-specialized LLM have consistently outperformed general-purpose models in a range of
scientific fields, providing a strong case for their adoption in agriculture and animal sciences. Landmark
efforts such as BloombergGPT in finance (Wu et al., 2023) and Me-LLaMA in medicine (Xie et al., 2025)
show that combining domain-specific pretraining with instruction tuning yields superior accuracy without

sacrificing general capabilities. Beyond accuracy, specialized models often deliver faster inference, lower
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latency, and reduced computational costs (Kerner, 2024). These findings suggest that domain-focused LLM
tailored to animal sciences could provide more accurate and efficient tools than broad, general-purpose

systems.

BENEFITS AND DRAWBACKS

There is no doubt that LLM have undergone rapid development since their inception, evolving from
early statistical methods to advanced transformer-based architectures. They are becoming intrinsic
elements of scientific writing and research workflows, fundamentally reshaping how scientists generate,
analyze, and communicate knowledge. Their integration into research methodology brings both profound
advantages and critical challenges that must be carefully examined. Moreover, the pace of LLM
development is extraordinary, with new or enhanced models appearing almost monthly; therefore, review
articles or syntheses can become outdated almost as soon as they are published. This rapid turnover
highlights the challenge of maintaining a current understanding of their capabilities, limitations, and
implications for science, while also complicating efforts to educate and prepare stakeholders as the target

is constantly shifting.

One can think of LLM as “highly skilled personal assistants,” aiding in a diverse range of scientific
tasks. These tasks include drafting scientific research papers and generating code (i.e., computer
programming), developing illustrations for presentations, structuring courses and extracting accumulated
scientific knowledge, and assisting in scientific discovery by identifying knowledge gaps—both in modeling
frameworks and in experimental research. For instance, Microsoft Copilot is becoming integrated into the
Windows environment, positioning itself as a versatile, embedded tool that enhances productivity and
accelerates innovation across familiar platforms such as Word, Excel, PowerPoint, and Visual Studio. With
its ability to interpret context, generate technical content, and streamline workflows, Copilot describes itself
as “a tool to empower users to transform ideas into actionable outcomes directly within their native
workspace.” In this sense, LLM can be considered analogous to human collaborators (Binz et al., 2025),
but scientists must ultimately be responsible for ensuring accuracy and integrity. The effectiveness of LLM

extends beyond simple automation. LLM models can assist in hypothesis generation by synthesizing vast
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amounts of literature information, identifying unexplored research questions, and even suggesting

experimental methodologies.

Challenges and Ethical Concerns

Despite their advantages, LLM present significant limitations that warrant careful consideration in
scientific applications. In addition to the apprehensions listed above, the primary concerns stem from their
probabilistic pattern-matching approach to text generation, which can lead to errors, biases, and the
dissemination of misinformation (Binz et al., 2025). As mentioned above, recent analyses further
underscore that such tendencies are not incidental but intrinsic to the current reward-driven training
paradigms, which favor confident outputs even when the model lacks true knowledge (Kalai et al., 2025).
Unlike traditional scientific reasoning, which relies on hypothesis testing, logical deduction, and empirical
validation (or evaluation), LLM operate by predicting the next word in a sequence based on statistical
probabilities learned from large datasets. While this allows them to generate coherent text, it does not
ensure accuracy, causality, or conceptual understanding (Loépez Espejel et al., 2023; Wu et al., 2024). To
better understand these limitations, let's consider the learning process in humans and compare it with the
Al learning process, highlighting the fundamental differences that impact their respective capabilities in

scientific applications.

Fundamental distinctions and limitations of Al learning

The learning process in humans is a complex yet structured journey. It begins with simple
comparative analogies that help solidify concepts and provide a foundation for future comparisons.
Analogical reasoning, the ability to identify correspondences between different concepts based on shared
relationships, is fundamental to human learning and supports the acquisition of knowledge (Gentner, 1983;
Whitaker et al., 2018). As individuals gain experience, their learning evolves beyond pattern recognition
into reasoning, ultimately leading to wisdom—the ability to synthesize knowledge systematically and apply
it in new contexts. Unlike Al, which operates by detecting statistical patterns in large datasets, human
learning is guided by abstract reasoning, conceptualization, and an innate ability to discern meaning beyond
raw data (Mattson, 2014). Artificial intelligence, by contrast, is a powerful tool for managing vast amounts
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of information, but its learning process is fundamentally different from human cognition. While Al can
analyze correlations and statistical dependencies, it cannot reason causally or critically assess the validity
of its inputs. Atrtificial intelligence does not develop wisdom in the philosophical sense—it does not engage
in reflective thought, ethical reasoning, or higher-order decision-making beyond the probabilistic
relationships encoded in its training data (Tedeschi, 2019; Tedeschi, 2022). This fundamental distinction is

crucial in understanding both the potential and the limitations of Al in scientific research.

This distinction underscores a critical challenge: Al lacks the ability to independently evaluate the
quality and reliability of the data it processes. Without human intervention, LLM cannot distinguish between
high-quality scientific literature and flawed or misleading sources. This means that errors can propagate
unnoticed, especially when Al-generated content is integrated into research workflows without rigorous
validation and oversight. While LLM can enhance research efficiency by structuring knowledge and
identifying patterns, they do not possess the cognitive frameworks required for deep understanding or
conceptual reasoning (Mattson, 2014). Large language models do not replace human expertise in setting

research priorities, interpreting findings, or engaging in normative debates that shape scientific progress.

Therefore, the central limitation lies in Al's inability to perform causal reasoning. Large language
models, for instance, generate insights by identifying covariances across massive datasets, but they cannot
distinguish between meaningful cause-and-effect relationships and spurious correlations. Scientific
discovery, however, requires hypothesis-driven inquiry, experimental validation, and theoretical
reasoning—capabilities that remain uniquely human. Taken together, these limitations underline the
importance of viewing Al as an augmentative tool rather than a definitive authority in research. Large
language models can enhance efficiency by structuring knowledge, extracting patterns, and accelerating
access to information, but they cannot replace human expertise in guiding research, interpreting findings,

or providing the philosophical and ethical reasoning required for scientific progress.

Hallucinations and omissions are systematic errors in LLM responses

One of the primary risks associated with these limitations is the occurrence of systematic errors in

LLM responses, which can be categorized similarly to statistical hypothesis testing (Table 1). These errors
9

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901



236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

Journal of Animal Science

manifest as hallucinations and information omissions, analogous to Type | (false positive) and Type Il (false

negative) errors in statistical testing.

The first and most discussed type of error is “hallucination,” which parallels a Type | error (false
positive) in statistical testing (Table 1). Just as rejecting a true null hypothesis can lead to false conclusions
in statistics, LLM hallucinations occur when the model generates nonexistent information, despite the
ground truth being that such information does not exist. This manifests in various forms, including fabricated
research citations, invented experimental results, nonexistent methodologies, or false connections between
scientific concepts. The parallel is particularly apt because, in both cases, there is an incorrect assertion of
existence, whether it is the existence of a statistical effect or the existence of factual information. For
example, an LLM might confidently generate a detailed description of a nonexistent study, complete with
methodology and results, much like how a Type | error in statistics might incorrectly suggest the presence
of a significant effect. Indeed, Kalai et al. (2025) further clarified that such hallucinations are not accidental
but statistically expected outcomes of the current reward-based optimization frameworks used to train LLM.
Because these systems are reinforced for providing answers rather than abstaining, they are effectively
rewarded for “false positives,” mirroring the very mechanism that produces Type | errors in hypothesis

testing.

Equally important but often overlooked is the second type of error, analogous to Type Il errors (false
negatives) in statistics (Table 1). Just as failing to reject a false null hypothesis means missing a real effect,
LLM can fail to utilize or generate valid information that exists within their training data. This manifests as
information omission; instances where the model fails to recognize or apply relevant knowledge, misses
important connections, or fails to cite pertinent research (Gupta, 2025). This type of error can be particularly
problematic in scientific writing, where comprehensive coverage of existing literature and accurate
representation of established knowledge is crucial. The parallel with statistical Type Il errors extends to the
underlying causes: just as insufficient sample size or poor measurement can lead to Type Il errors in
statistics, inadequate training data or suboptimal model architecture can lead to information omission in

LLM.

10
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Both types of errors are intrinsically linked to the training process and data quality. The training
database serves as the foundation for the model’s knowledge, much like sample data forms the basis for
statistical inference. Inadequate, biased, or incomplete training data can systematically affect both error
types: it might increase hallucinations due to poor pattern recognition (type | error) while simultaneously
causing information omissions due to knowledge gaps (type Il error). This creates a complex optimization
challenge, as attempts to reduce one type of error often risk increasing the other—a trade-off familiar to
statisticians working with significance levels and power in hypothesis testing. Understanding these parallels
with statistical error types provides a valuable framework for evaluating and improving LLM performance in
scientific applications. It suggests that, like in statistical analysis, we need robust validation methods, clear
documentation of limitations, and careful consideration of the balance between different types of errors

based on the specific requirements of each application.

The story of Galactica, a LLM developed by Meta Al and Papers with Code, provides a compelling
case study. Launched in May 2022, predating the widespread public awareness of ChatGPT, Galactica
was envisioned as a powerful tool specifically designed to accelerate scientific discovery. Its developers
aimed to create an Al assistant (i.e., LLM) capable of navigating the vast landscape of scientific literature,
solving mathematical problems, and even generating scientific code. Galactica was trained on a massive
dataset of 48 million papers, textbooks, reference materials, and other scientific resources, a testament to
the computational resources invested in the project (Taylor et al., 2022). Despite this extensive training and
the focused ambition of its creators, Galactica ultimately failed to achieve its goals and was withdrawn
shortly after its release (Heaven, 2022; Wodecki, 2022). It succumbed to the very issues discussed above.
Galactica frequently generated factually incorrect or fabricated information, often presented with an air of
authority, demonstrating the persistent problem of “hallucinations” in LLM. For instance, it might confidently
generate a detailed summary of a scientific paper that doesn’t actually exist (i.e., Type | error; Table 1).
Furthermore, concerns were raised about the model’s potential to perpetuate biases present in its training
data, highlighting the crucial role of data quality and curation in ensuring the reliability and ethical
implications of LLM outputs. This relates to the issue of omissions, where the model might fail to highlight
crucial information or perspectives due to biases in the data it learned from (i.e., Type Il error; Table 1). The

Galactica project, despite its initial promise, serves as a cautionary tale, underscoring the significant
11
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limitations of (old and) current LLM technology and the critical need for rigorous validation and oversight in
scientific applications. Its failure illustrates the very real risks associated with overreliance on LLM,

particularly in the context of scientific research where accuracy and reliability are vital.

It is possible that domain-specific training or context augmentation of LLM might help reduce
hallucinations and improve accuracy and precision. For example, LLM that are either fine-tuned or used in
conjunction with domain-targeted retrieval systems can demonstrate improved factual grounding within
their area of specialization. For example, an oncology research-focused retrieval-augmented generation
(RAG) system—where the LLM was not retrained but instead supplied with vector-embedded documents
from a specialized oncology corpus (i.e., a curated collection of domain-specific literature and data)—
outperformed general-purpose models in both accuracy and relevance when answering subject-related
questions (Soong et al., 2024). This suggests that focusing or constraining the contextual corpus—that is,
the external body of text and data used to provide factual grounding during generation—can enhance the

reliability and domain specificity of LLM outputs, even without retraining the model itself, as discussed later.

The influence of training data on Al accuracy and reliability

Al models, including LLM, rely heavily on the quality and structure of their training data. While their
predictive capabilities are often impressive, they are far from infallible. Large language models often fail at
seemingly simple tasks, sometimes producing glaring errors despite vast computational resources.
However, perhaps even more concerning than occasional hallucination is the susceptibility of these models
to ill-conditioned or manipulated data—a problem with systemic implications that go far beyond isolated

mistakes (Bender et al., 2021; Paullada et al., 2021).

Unlike human scientists, who can critically assess and verify data sources, Al lacks intrinsic
mechanisms to discern reliable from unreliable information. If biased or erroneous data is introduced into
an Al’s training dataset, the model will systematically learn and reinforce those flawed patterns, generating
incorrect outputs with a high degree of statistical certainty, often presenting misinformation with unearned
confidence (Mitchell et al., 2019), paralleling the effects of educating students on flawed (i.e., inaccurate or
misleading) foundations. This phenomenon exemplifies the classical “garbage in, garbage out” principle:

12
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flawed inputs inevitably produce flawed outputs, regardless of the model's sophistication. This means that
bad data, once embedded in the Al's learning process, can distort predictive outcomes in ways that are

difficult to detect and rectify.

This issue is particularly relevant in scientific domains such as animal nutrition. For instance,
consider methane emission prediction models trained primarily on data from confined Holstein cows fed
total mixed rations (TMR) in temperate regions. When such models, or LLM that synthesize these literature
patterns, are applied to grazing Zebu cattle in tropical systems, they may confidently output invalid
estimates due to the mismatch in diet, environment, and genetics. Without diverse, context-specific training
data, the outputs will be not only inaccurate but also misleadingly certain (Hristov et al., 2013). This
highlights the importance of accurately and thoroughly describing the data, as even subtle differences can

have a significant impact on model predictions.

The limitation here is not simply that Al can make mistakes; it is that it makes mistakes
systematically and with confidence, without the capacity to question its own data provenance or
methodology. Unless updated or adapted with corrected or more representative data, these models cannot
self-correct. This highlights a broader challenge in Al governance: without rigorous oversight and validation
strategies, Al-driven outputs risk becoming a certainty of incorrect predictions rather than random noise.
The scientific community must recognize this risk and implement data auditing and model validation
protocols to ensure Al-supported discoveries are not just statistically sound but also methodologically and

ethically grounded.

While this vulnerability to bad data is often highlighted in the context of Al, it is not exclusive to
machine learning (ML) or LLM. All mathematical models, including empirical and mechanistic ones, can be
compromised by ill-conditioned data, if proper data vetting is not followed (Tedeschi, 2022). However, the
key difference lies in how these models are constructed. In empirical or mechanistic modeling, the process
typically begins with equations or theoretical constructs grounded in scientific understanding—such as
nutrient flow equations in ruminant nutrition. Data is then used to parameterize these models, calibrate

coefficients, and evaluate predictive performance. The model's structure is guided by domain knowledge
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(thus, often referred to as concept-based models), and its assumptions and limitations are frequently explicit

and testable (Ellis et al., 2020; Tedeschi, 2019; Tedeschi, 2023).

In contrast, Al models, including LLM, are data-driven by design. They learn directly from data
patterns with little to no embedded scientific structure or mechanistic reasoning. Rather than starting with
established relationships, these models are trained to discover statistical correlations from massive
datasets, often without human interpretability or constraints (Tedeschi, 2019; Tedeschi, 2022; Tedeschi,
2023). Even when synthetic databases are used to augment limited real-world data, there is a risk of
introducing artificial or unknown relationships within subsets of the synthetic data (Tedeschi, 2025a). As a
result, their predictive ability is entirely contingent on the quality, diversity, and balance of the data they
ingest. When training data is biased or incomplete, the model lacks a scientific framework to "fall back on",

and thus confidently propagates those errors in unpredictable or opaque ways.

The risks of overreliance on LLM in scientific research

Beyond these systematic errors, a more troubling issue emerges from the potential overreliance on
LLM, particularly among inexperienced or uncritical researchers. While the previous discussion highlighted
how LLM can produce both Type | (hallucination) and Type Il (omission) errors, the real danger lies in
researchers’ inability to detect and critically evaluate these errors. The naive scientist may assume that
LLM-generated outputs are inherently valid, leading to a cascade of scientific integrity issues, including the
propagation of hallucinated findings, the overlooking of crucial existing literature due to information
omission, the dilution of scientific rigor, and the degradation of peer review standards. If LLM are used
uncritically, they could undermine human expertise, weakening the fundamental principles of scientific
inquiry rather than strengthening them (Binz et al., 2025). This risk is particularly acute when researchers
lack the domain expertise to distinguish between valid LLM outputs and sophisticated-sounding
hallucinations, or when they fail to recognize when the model has omitted critical information. The situation
becomes even more complicated when these errors compound through citation chains, where hallucinated
references or missed crucial studies could propagate through multiple publications, creating a web of

interconnected errors that becomes increasingly difficult to untangle, and keeps reinforcing its propagation.
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For instance, a particularly concerning unintended consequence of LLM accessibility is the
emergence of “LLM-dependent pseudo-experts”, i.e., individuals who, through extensive but uncritical
interaction with LLM, develop an inflated sense of expertise in specialized fields without acquiring the
foundational knowledge and practical experience necessary for true domain mastery. This phenomenon of
LLM-mediated pseudo-expertise is especially problematic in complex fields like nutrition, genetics, and
medicine, where practical experience and deep theoretical understanding are crucial. While LLM can
provide sophisticated responses to technical queries, they may inadvertently create an illusion of
competence among users who lack the underlying scientific training to critically evaluate the information
they receive. These LLM-induced pseudo-experts might then make decisions about animal health, breeding
programs, or nutritional management based on incomplete or misunderstood information, potentially
leading to adverse outcomes in livestock production systems. The consequences of this LLM-mediated
pseudo-expertise are doubly detrimental to scientific advancement. First, these LLM-dependent pseudo-
experts will inevitably face professional scrutiny that reveals their lack of foundational knowledge and
practical understanding, potentially damaging their careers and credibility in the scientific community.
Second, and perhaps more concerning for the broader scientific enterprise, the proliferation of such cases
may stimulate widespread skepticism toward LLM as valuable research tools, potentially hampering the
legitimate and beneficial applications of these technologies in scientific research. This erosion of trust could
significantly impede the legitimate integration of LLM into scientific workflows, undermining their potential
to advance scientific discovery in areas where qualified researchers could leverage these tools most

effectively.

Beyond these concerns about end-user interactions with LLM, a set of even more fundamental
challenges emerges from the technical foundations of LLM development itself. The practice of training new
LLM using outputs from existing models, or repeatedly training models on increasingly self-referential
datasets, creates what might be called a ‘telephone game effect’ in Al learning, where each iteration
potentially amplifies biases, errors, and misconceptions present in the training data. Just as the children’s
game of telephone results in progressively distorted messages, recursive LLM training might lead to the
propagation and amplification of subtle inaccuracies or biases. In animal science applications, this could

manifest as increasingly unreliable predictions of nutrient requirements, skewed genetic selection
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parameters, or biased disease diagnosis protocols. The risk is particularly acute when LLM-generated
content enters scientific literature without proper verification, potentially creating a feedback loop where
future models learn from increasingly artificial or distorted data sources. Moreover, if such training
contamination is discovered, tracing the origin of the corrupted information becomes nearly impossible, i.e.,
much like trying to identify which player in a telephone game first distorted the message. This cascade of
self-referential learning could create deeply embedded errors that become increasingly difficult to detect
and correct over time. This underscores the critical importance of maintaining rigorous standards for training
data curation and validation, ensuring that LLM development remains grounded in empirical scientific

evidence rather than self-referential Al-generated content.

Several critical verification steps are essential to mitigate these risks and maintain scientific integrity
when using LLM. First, and perhaps most vital, researchers must meticulously verify every reference
generated by LLM, i.e., not only confirming their existence but also carefully checking that the cited works
support the claims in the text. This verification process helps prevent the propagation of both hallucinated
citations and misrepresented research findings. Second, researchers can employ a cross-validation
approach—akin to emerging frameworks in agentic Al—by using multiple LLM to generate or verify content,
as different models may exhibit distinct patterns of hallucination and omission, making inconsistencies
easier to detect. This multi-layered verification approach, while time-consuming, is crucial for maintaining
the rigor and reliability of scientific communication in the era of LLM-assisted research. Third, all LLM-
generated content should undergo a thorough review by domain experts who can identify potential

hallucinations, logical inconsistencies, or omissions of crucial information.

This third step specifically emphasizes expert review beyond the conventional peer review system,
which itself faces significant challenges in the modern scientific landscape. The current peer review system
suffers from multiple systematic issues: low reliability with reviewer correlations averaging only 0.34,
significant biases affecting manuscript decisions, and increasing difficulty in recruiting qualified reviewers
(Aczel et al., 2025). Moreover, the system struggles with slow review times, often taking months for
evaluation and years for complete publication cycles, which poorly serves the accelerating pace of scientific

research (Aczel et al., 2025). The situation is further exacerbated by the growing volume of scientific
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publications and increased specialization of scientific knowledge, making it increasingly challenging to
recruit reviewers who are qualified to assess all facets of a manuscript (Aczel et al., 2025). With the advent
of LLM potentially accelerating manuscript production and submission rates, this already strained system
faces even greater pressure. These limitations suggest that while expert review remains crucial, relying
solely on traditional peer review mechanisms may be insufficient for validating LLM-generated content.
Instead, incorporating dedicated expert review specifically focused on detecting LLM-related errors,
alongside but separate from the standard peer review process, may provide a more robust validation

framework.

The "bartender effect" and the erosion of critical thinking

In addition to the technical limitations of LLM, a more subtle but equally troubling risk is what can
be described as the ‘bartender effect,’ i.e., a phenomenon where Al systems, including LLM, tend to cater
to user preferences and implicit biases, reinforcing existing beliefs rather than challenging them. This
dynamic, while superficially enhancing user satisfaction, may significantly erode critical thinking and
intellectual diversity. The mechanism is akin to that of a bartender who tells customers what they want to
hear. Large language models, trained on vast datasets and prompted by user inputs, often mirror the
phrasing, assumptions, or slants embedded in those prompts. This can lead to a form of algorithmic
affirmation bias, where outputs align with the user's preconceptions rather than presenting balanced or
challenging perspectives. This phenomenon has already been observed in personalized news feeds and
social media algorithms, which contribute to the formation of ideological echo chambers and the polarization

of public discourse (Bakshy et al., 2015).

In scientific contexts, the bartender effect can have similarly corrosive consequences. If LLM are
used to support pre-formed conclusions or selectively generate literature that aligns with a favored
narrative, they can weaken the foundational principles of scientific skepticism and falsifiability. This
becomes particularly dangerous in educational settings, where students may increasingly rely on Al to
retrieve or even generate answers, risking the displacement of analytical reasoning with passive

consumption. Walsh (2025) cautioned that rampant Al-driven cheating is undermining education, as
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students increasingly bypass the development of critical reasoning skills by outsourcing assignments to
generative systems. Overdependence on Al may "flatten" intellectual engagement, reducing the opportunity
for learners to grapple with ambiguity, contradiction, or methodological nuance (Carr, 2020). Fan et al.
(2025) provided experimental evidence supporting these concerns, showing that while generative Al can
improve short-term performance, it promotes “metacognitive laziness,” whereby learners engage less in

self-regulation and reflective thought, ultimately weakening the depth of their cognitive processing.

Moreover, when Al systems are deployed in high-stakes domains such as hiring, lending, or
criminal justice, the bartender effect may reinforce systemic inequalities. If the training data reflects societal
biases and the algorithm is optimized to match historical preferences, discriminatory patterns may be
perpetuated under the guise of neutrality (Binns, 2018). This concern is particularly relevant for LLM
applications in global agriculture and animal science, where reliance on data from Western systems may

obscure region-specific needs, reinforcing structural imbalances in research and development priorities.

To counteract these risks, it is essential to promote Al literacy and critical engagement. Scientists
and students alike should be trained not only to use LLM but also to evaluate their outputs, question their
assumptions, and triangulate information with trusted sources. The goal should not be to replace critical
thinking with Al assistance, but to augment human judgment through informed skepticism and

methodological awareness.

Ensuring Reproducibility and Responsible Use

While LLM offer substantial benefits, their use must be governed by principles of transparency,
accountability, and fairness to ensure that Al-generated outputs remain reliable, ethically sound, and
aligned with scientific integrity. Without these guiding principles, the risk of misinformation, biases, and

unverified claims could significantly undermine the credibility of scientific research.

One of the most pressing concerns is reproducibility, a fundamental pillar of scientific inquiry. Unlike
traditional research methodologies, where datasets, models, and analytical processes can be openly

shared and scrutinized, proprietary LLM often function as “black boxes,” making it difficult to verify how
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specific outputs are generated. This opacity hampers scientific validation and undermines trust in Al-
assisted discoveries (Binz et al., 2025; Bommasani et al., 2022). This lack of transparency presents a
significant challenge in validating findings and ensuring consistency across research applications. To
mitigate these issues, there is a growing push toward open-source LLM, which offer greater accessibility
and enhanced reproducibility. Models like Meta’s LLaMA and DeepSeek provide researchers with direct
access to model architectures, training datasets, and fine-tuning mechanisms. However, reproducibility
extends beyond access to model weights; it also requires transparency in the underlying training data,
preprocessing steps, and evaluation protocols used to assess model performance. Without these elements,
replicating results or ensuring fair comparisons across studies remains difficult, even when models are
technically open source. This broader vision of open and transparent research closely parallels the Open
Science framework in animal science, which emphasizes data sharing, open code, preregistration, and
open peer review to improve accessibility and reproducibility (Muhoz-Tamayo et al., 2022). Such
transparency enables researchers to examine underlying assumptions, trace algorithmic reasoning, and
apply corrections when biases or failures are identified (Bommasani et al., 2022). Open-source frameworks
also enable wider community validation, ensuring that Al-generated knowledge can be replicated, tested,
and improved upon; a fundamental requirement for scientific progress. The proper attribution of Al-
generated content, rigorous verification of outputs, and a heightened awareness of biases are essential to

maintaining the credibility of scientific discourse (Binz et al., 2025).

However, openness alone is not a safeguard against potential risks. While open-source Al fosters
collaboration, it also raises critical ethical and security concerns. Who ensures responsible use if anyone
can access, modify, and deploy these models? The potential for misuse and unintended consequences
becomes a growing challenge. In fields such as medicine, environmental science, and policy-making,
factual accuracy is non-negotiable; yet open-source Al could be used to generate false scientific claims,
manipulate research outcomes, or amplify biases. Weidinger et al. (2021) identify multiple harm pathways,
including misinformation, discrimination, and malicious code generation, all of which become more acute
in open, uncontrolled deployments. The potential for nefarious applications, including misinformation

campaigns, automated deepfake content, and Al-generated cyber threats, is even more concerning.
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The hidden costs and governance challenges of open-source LLM

Beyond technical concerns, the role of human expertise in scientific inquiry is not to be overlooked.
While LLM can enhance research efficiency, science is not just about processing data; it is a human-driven
intellectual pursuit that requires critical thinking, ethical reasoning, and value-based decision-making. Al
can assist in structuring knowledge and identifying patterns, but it cannot independently set research
priorities, interpret scientific findings within broader theoretical frameworks, or engage in the normative
debates that drive scientific progress. This perspective highlights an important limitation of LLM, namely,
they cannot replace the fundamental role of human judgment in shaping the direction of research. Scientific
discovery is not merely an algorithmic exercise, but a process that involves hypothesis generation, ethical
considerations, and social discourse; all of which are essential components of knowledge creation. Thus,
while LLM may assist in handling vast amounts of data, the responsibility for defining scientific goals,

assessing knowledge gaps, and ensuring ethical rigor must remain in human hands (Binz et al., 2025).

Beyond ethical concerns, open-source LLM present significant financial and infrastructural
challenges. Developing and maintaining these models requires massive computational resources,
continuous updates, and extensive oversight. Unlike proprietary models, which rely on corporate
investments and monetization strategies, open-source initiatives often lack a sustainable revenue model.
Weidinger et al. (2021) highlight that training LLM can incur high environmental costs and exacerbate global
inequalities due to unequal access to computational infrastructure. Dauner and Socher (2025) provided
empirical confirmation of these concerns by evaluating 14 LLM ranging from 7 to 72 billion parameters.
They found that reasoning-enabled models, while achieving higher accuracy, produced up to 2,042 gCO,eq
per 1,000 benchmark tasks—over 70 times more than smaller baseline systems. These findings underscore
a clear tradeoff between model size, reasoning complexity, and sustainability, reinforcing the need for more
efficient architectures and viable funding mechanisms to balance accuracy with environmental
responsibility. At the same time, professional societies and journal editors are increasingly emphasizing
transparency and accountability in Al use, making clear that researchers remain fully responsible for Al-
assisted outputs and should disclose such use openly. This dual challenge—technical sustainability and

ethical accountability—raises a crucial question: who will fund and maintain these models in the long term?
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Should governments subsidize open-source Al to ensure public access and oversight? Should academic
institutions take on the burden despite limited resources? Should private organizations contribute, and if

so, how can commercialization be prevented from distorting the open-source ecosystem?

The financial sustainability of open-source LLM (i.e., Al for the sake of inclusiveness) is a growing
concern, as maintaining state-of-the-art models goes beyond initial development. It requires continuous
training, security updates, ethical review boards, and regulatory compliance. Without a clear funding
structure, the long-term viability of open-source Al remains uncertain. Furthermore, who is responsible for
the consequences of open-source misuse? If an open-source LLM is used for fraudulent research,
generating deepfake content, or automating cyberattacks, where does accountability lie? This gray area of
responsibility presents one of the most complex ethical dilemmas in Al governance. Clearer regulatory
frameworks are required to address this accountability gap and ensure model providers and deployers

share responsibility (Binz et al., 2025; Bommasani et al., 2022).

Thus, while open-source Al may enhance reproducibility, accessibility, and scientific progress, it
also demands a serious discussion on its economic sustainability, regulatory oversight, and security risks.
The scientific community must advocate for openness and establish mechanisms for funding, monitoring,
and ethical governance, ensuring that the benefits of open-source Al outweigh its potential risks. In other
words, multidisciplinary collaboration, spanning Al developers, ethicists, scientists, policymakers, and
affected communities, is needed to establish norms and standards for responsible Al development

(Bommasani et al., 2022; Weidinger et al., 2021).

APPLICATIONS OF LARGE LANGUAGE MODELS IN AGRICULTURAL SCIENCES

The integration of LLM into animal sciences can transform the way researchers and practitioners
analyze data, optimize livestock management, and develop precision nutrition strategies. Their ability to
process massive datasets, extract meaningful patterns, and provide predictive insights has significant
implications for improving efficiency and sustainability in livestock production. At the same time, the field
must grapple with two critical limitations, as discussed above. First, LLM evolve at a rapid pace, which
means that tools, benchmarks, and reviews can quickly become outdated as newer multimodal or
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reasoning-enhanced models appear. Second, dedicated domain-specific LLM often require substantial
computing resources to fine-tune or deploy while still delivering real-time responses, a challenge for many
research labs and livestock operations. It is essential to distinguish between training (i.e., building a model
from scratch using massive datasets), fine-tuning (i.e., adapting an existing pre-trained model to a narrower
domain), and augmentation (i.e., retrieval-augmented generation, where external documents are integrated
at the inference stage). In animal sciences, most practical applications rely on fine-tuning or augmentation

rather than full training, which is prohibitively expensive for academic or extension contexts.

General-purpose LLM, trained on broad, non-specialized corpora, often struggle with discipline-
specific reasoning (Alonso et al., 2020). This limitation has motivated the development of domain-specific
LLM, a well-established approach that consistently demonstrates superior performance on specialized
tasks compared to general-purpose models. A landmark example is BloombergGPT (Wu et al., 2023), a
50-billion-parameter model trained on 363 billion financial tokens combined with 345 billion general-purpose
tokens. BloombergGPT outperformed existing models on financial tasks “by significant margins without
sacrificing performance on general LLM benchmarks,” with particularly strong gains in financial filings and
industry-specific documents. A similar pattern is evident in medicine: Me-LLaMA (Xie et al., 2025)
surpassed ChatGPT and GPT-4 in both zero-shot (i.e., performing new tasks without prior task-specific
examples) and supervised settings after task-specific instruction tuning, highlighting the value of “combining
domain-specific continual pretraining with instruction tuning to enhance performance.” Other initiatives echo
this trajectory. For instance, DocOA (Chen et al., 2024) achieved higher accuracy in osteoarthritis
management tasks, while Song et al. (2025) traced the evolution of domain-specific LLM in medicine and
concluded that incorporating domain knowledge significantly improves both efficiency and accuracy across
specialized applications. The theoretical foundation is clear: domain specialization customizes general-
purpose LLM with contextual data, knowledge, and constraints tailored to the target field (Xie et al., 2025).
Beyond accuracy, domain-specialized LLM also deliver practical benefits. Kerner (2024) notes that smaller
specialized LLM can outperform larger general models on in-domain tasks while offering faster inference,
lower latency, and reduced training costs. Extending this view, Glasser and Feng (2025) emphasize that
domain-specialized LLM not only enhance performance but also strengthen user trust by grounding outputs

in well-defined disciplinary knowledge. Frameworks such as the Compact and Efficient LLM multi-expert
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system (Huang et al., 2024) and Google Cloud’s design pattern for specializing LLM (Mosenia, 2024) further
illustrate that combining smaller expert models with targeted training can yield higher quality outputs at
lower cost. Taken together, these results provide a robust framework for developing domain-specific
systems that combine broad language capabilities with superior accuracy, efficiency, and contextual
understanding—an approach well-suited to advancing productivity, sustainability, and innovation in animal

science, while also enhancing education and the training of field experts.

A balance, therefore, exists between the accessibility of general-purpose systems, such as

ChatGPT (https://chatgpt.com), Claude (htips://claude.ai), Gemini (htips://gemini.google.com/app), or

Perplexity (https://www.perplexity.ai), which provide broad but less specialized coverage, and dedicated

animal-science LLM, which deliver domain-tailored insights. Examples of these specialized systems are
summarized in Table 2. Regardless of system choice, effective deployment requires domain-specific
prompt engineering strategies. While general principles of prompt engineering have been discussed (White
et al., 2023; Zhou et al., 2023), their application to animal science requires careful adaptation. Structured
prompts that include relevant context—such as 'Given [animal breed], [production stage], [environmental
conditions], and [nutritional parameters], recommend...'—help constrain model outputs to biologically
plausible ranges. A query about 'cattle feed' might return generic information, whereas 'formulate a TMR
for 650 kg Holstein cows producing 35 kg milk/day at 3.8% fat in thermoneutral conditions' yields specific,
actionable recommendations. The effectiveness of domain-adapted prompting remains an area requiring
systematic evaluation, as most prompt engineering research has focused on general knowledge tasks
rather than specialized agricultural applications. Building on this foundation, the following sections examine
the primary applications of LLM in animal sciences, with emphasis on nutrition modeling, disease detection,

genetic selection, and environmental sustainability.

Precision Livestock Nutrition

One of the most promising applications of LLM in animal science is precision nutrition modeling.
Traditional nutrient requirement models rely on static equations and empirical relationships that do not fully

capture the complexity of individual animal variation, diet composition, and environmental interactions.
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While LLM are not designed to perform statistical analysis or predictive modeling on their own, they can
interact with specialized analytical agents and computational models to facilitate these tasks. As mentioned
before, functioning as “highly skilled personal assistants,” LLM can help researchers manage data,
summarize findings, generate analytical code, and interface with mechanistic or statistical models to
improve efficiency and interpretation. By leveraging ML and LLM-driven data synthesis, researchers can
refine nutritional models to predict feed efficiency and nutrient utilization based on animal genetics, health
status, and environmental conditions; optimize diet formulations by analyzing vast datasets of feed
composition, digestibility, and metabolic responses; and enhance real-time decision-making in precision
feeding systems that adjust rations dynamically based on sensor data. In this capacity, LLM function as
intelligent collaborators that support, rather than replace, domain-specific analytical tools. For instance,
Ferreira and Dérea (2025) highlighted how multimodal Al, including computer vision and LLM, can drive
decision-making in dairy production (Table 2). Similarly, Gontijo et al. (2025) developed DairyGPT, a system
allowing dairy farmers to query numerical databases in natural language, effectively democratizing access

to nutritional information (Table 2).

Al-Assisted Disease Diagnosis and Monitoring

LLM can assist veterinarians and livestock producers by interpreting and communicating insights
derived from large volumes of health data, including clinical records, pathology reports, and genomic
biomarkers, that are analyzed using core ML algorithms. Rather than directly performing predictive
modeling, LLM serve as integrative tools that help users access, summarize, and contextualize results from
specialized analytical systems. Their capabilities include early disease detection by identifying patterns in
feed intake, body temperature, and behavioral anomalies; automated diagnostics in conditions such as
bovine respiratory disease, mastitis, and metabolic disorders by synthesizing wearable sensor data with
laboratory results; and epidemiological modeling to track transmission pathways and support biosecurity
strategies. In veterinary contexts, several recent works demonstrate these applications. Chu (2024)
provided guidance on using generative Al (ChatGPT) in veterinary clinics and education (Table 2). Fins et
al. (2024) evaluated ChatGPT for mining obesity-related signals in companion animal records, while Farrell

et al. (2023) introduced PetBERT for automated ICD-11 disease coding in veterinary databases (Table 2).
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Jiang et al. (2024) went further with VetLLM, a domain-adapted model capable of predicting diagnoses
directly from veterinary notes (Table 2). Together, these studies show how LLM can function as “highly
skilled personal assistants” that enhance both routine monitoring and population-level health surveillance

when coupled with specialized analytical models.

Genetic Selection and Breeding Optimization

The application of LLM in genomic and transcriptomic data analysis is reshaping breeding
strategies. Traditional genetic evaluations rely on curated datasets and linear statistical models, whereas
LLM provide a more dynamic, integrative approach. Current applications include trait prediction by mining
multi-omics data to identify genetic markers for efficiency, disease resistance, or fertility; breeding strategy
optimization through Al-driven simulations that balance productivity with genetic diversity; and precision
livestock breeding by integrating phenotypic sensor data with genomic insights to recommend individual-
level mating decisions. Although domain-specific applications are still emerging, early experiments suggest
that LLM can augment genomic prediction pipelines and accelerate the interpretation of vast sequencing

datasets.

Environmental Sustainability and Emissions Modeling

Sustainability is a growing concern in livestock production, particularly with regard to greenhouse
gas emissions and resource efficiency (Tedeschi, 2022; Tedeschi et al., 2015). LLM can contribute to
sustainability modeling by predicting methane emissions from diet composition, microbial communities, and
management practices; evaluating feed additives and interventions aimed at reducing emissions while
maintaining productivity; and modeling climate adaptation strategies, including heat stress responses,
water use, and the resilience of production systems under extreme weather scenarios. Because these
applications require linking heterogeneous datasets (e.g., climate records, feeding frials, and rumen
microbiome sequencing), LLM’s ability to synthesize across domains offers a powerful complement to
mechanistic modeling approaches. Recent methodological studies support this direction. Balaguer et al.
(2024) compared RAG and fine-tuning approaches using agricultural datasets and found that combining
the two improved domain-specific accuracy by more than 10 percentage points. Their findings underscore
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that hybrid pipelines can enhance both the reliability and contextual fidelity of sustainability-related
predictions, particularly in areas where agricultural and environmental data are heterogeneous and rapidly

evolving.

Decision-Support Systems for Livestock Management

Domain-specialized LLM are increasingly being embedded into decision-support platforms for
livestock producers, enabling data-driven management across nutrition, health, and reproduction. Their
strengths include synthesizing research insights into user-friendly recommendations; improving farm
profitability via predictive analytics for resource allocation; and automating knowledge transfer, providing
extension agents and farmers with real-time advisory support. Recent prototypes illustrate these trends: da
Silva et al. (2025) proposed an LLM-powered agent to summarize regulatory and certification documents
in swine production (Table 2), while Samuel et al. (2025) introduced AgroLLM as a farmer-facing tool to
support knowledge transfer in agriculture (Table 2). Such applications highlight the potential of LLM to

reduce barriers between scientific knowledge and on-farm practice.

Another applied example is ExtensionBot (https://extension.org/tools/extbot), developed by the

Extension Foundation as an LLM-powered chatbot that provides farmers and advisors with direct access
to Cooperative Extension knowledge. Unlike general-purpose systems, ExtensionBot is trained on a corpus
of more than 360,000 Extension publications, along with the “Ask Extension” dataset, enabling it to provide
context-specific, science-based responses with source citations. Evaluations of the ExtensionBot indicate
that it delivers more accurate and consistent answers to agricultural queries than ChatGPT, while
minimizing hallucinations (Thomasson et al., 2025). At the same time, its reliability depends on the
freshness and completeness of extension content, underscoring the importance of continually updating the
underlying knowledge base. In contrast, complementary work shows that even general-purpose LLM can
approach expert-level performance when applied to agriculture. Silva et al. (2023), for example, reported
that GPT-4 correctly answered over 90% of agronomist certification exam questions, suggesting its

potential as a “virtual agronomist assistant” for education and extension.
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An illustrative example of domain-specialized development in animal sciences is the Smart Adviser
for Rumen Acidosis and Health (SARAH), a decision-support tool created to predict the incidence of
subacute and acute ruminal acidosis (SAARA) in feedlot cattle (Figure 1). SARAH represents the
culmination of extensive foundational work, particularly the development of the Rumen Health Compendium
(RHC) publication (Tedeschi and Nagaraja, 2025), which synthesized advances in rumen anatomy,
physiology, and microbiology, while also addressing the pathology of ruminal dysfunctions such as SAARA
and their implications for nutrition and management. Building on this foundation, the RHC book and its
1,717 references were distilled into the NANP-LLM, a domain-specific LLM developed within the National
Animal Nutrition Program (NANP), which—together with field and academic expertise—was used as a
meta-modeling engine to identify 18 critical animal, dietary, and environmental variables and their
interrelationships. These variables informed the design of SARAH’s random forest (RF) classification
models, which incorporate factors such as starch and physically effective fiber concentrations, feeding
frequency, breed, and climatic stressors. This strategy parallels broader advances in agricultural Al, where
Balaguer et al. (2024) demonstrated that combining retrieval-based grounding with fine-tuned models
improves performance in agricultural applications. Their findings reinforce the rationale for embedding
domain knowledge (e.g., the RHC and NANP-LLM) directly into predictive pipelines. SARAH therefore
exemplifies a “double Al” architecture by leveraging the reasoning and knowledge synthesis capabilities of
a LLM to identify biologically relevant predictors, and the analytical power of a ML model (i.e., RF) to perform
the quantitative prediction. In essence, SARAH uses Al twice: first to think, then to predict, illustrating how

domain-specific intelligence can be operationalized into robust decision-support tools.

The smart decision support tool SARAH would allow users to run models with or without cross-
validation, using datasets of varying sizes to simulate risk under different production conditions. Preliminary
results show that while untrained RF models may display slightly higher raw accuracy, trained models
provide greater stability, lower variability, and more reliable risk estimates, particularly when using at least
50,000 simulated records (Tedeschi and Kaniyamattam, 2025). Beyond binary classification, SARAH
incorporates concepts of area and time above and under the curve (ATAUC) to capture the dynamics of
ruminal pH fluctuations, providing a biologically grounded estimate of the proportion of animals at risk within

a feedlot pen (Tedeschi, 2025b). By combining the biological depth of the peer-reviewed papers and the
27

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901



714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

Journal of Animal Science

RHC insights, the structuring capabilities of the NANP-LLM, and robust ML methods, SARAH exemplifies
how modern decision-support systems can bridge mechanistic knowledge with predictive analytics to guide
proactive management of ruminal acidosis in cattle. Looking ahead, integrating SARAH’s data-driven
architecture with mechanistic nutrition models could create a truly hybrid modeling framework (Tedeschi,
2022; Tedeschi, 2023), combining the interpretability and biological fidelity of process-based systems with

the adaptive learning capacity of Al.

Together, these applications demonstrate that LLM are no longer peripheral in animal science: they
are being adapted for real-world problems in nutrition, health, breeding, and sustainability. However,
challenges remain. Many tools are still experimental, domain-specific validation is sparse, and the pace of
model innovation means current benchmarks can quickly become outdated. Achieving lasting impact will
require greater integration with mechanistic models, rigorous bias testing, transparent documentation of
training data, and continued domain-specific fine-tuning to ensure scientific reliability and relevance in

animal agriculture.

CONCLUSIONS AND IMPLICATIONS

The integration of LLM into scientific workflows has already begun to reshape research
methodologies, offering powerful tools for literature review automation, hypothesis generation, and data
analysis. These advancements present significant opportunities for accelerating knowledge discovery and
enhancing productivity across disciplines, including animal sciences, where LLM are being leveraged to
refine nutrition models, optimize genetic selection, and improve disease surveillance. However, as LLM
continue to evolve, their adoption must be approached with caution and responsibility, given the ethical
concerns they raise—particularly in areas of bias, reproducibility, and the potential erosion of human
expertise. In animal sciences, where research directly impacts food security, sustainability, and animal

welfare, ensuring the reliability and accuracy of Al-generated insights is critical.

Ensuring scientific integrity in the era of Al-driven research requires a deliberate and balanced
approach. While LLM can enhance efficiency, they must complement human expertise rather than replace
it. Transparency, accountability, and fairness in their deployment are paramount, particularly in maintaining
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the credibility of scientific discourse and ensuring that Al-assisted decision-making in livestock management
and nutrition remains robust and evidence-based. Open-source LLM provide one possible solution to these
concerns, offering greater reproducibility, accessibility, and validation opportunities. Moreover, proper
attribution of Al-generated content, rigorous verification of outputs, and heightened awareness of biases
must become standard practices to ensure that Al-generated knowledge remains trustworthy and ethically

sound.

Moving forward, the scientific and agricultural community must continuously evaluate LLM
capabilities and limitations, developing clear guidelines and best practices for their responsible use in
animal science. Particularly promising will be the development of hybrid modeling frameworks that integrate
mechanistic models with data-driven Al systems, linking biological interpretability with predictive power. By
fostering open collaboration and ethical Al governance, researchers, industry professionals, and
policymakers can harness the potential of LLM while upholding the core principles of scientific integrity,
sustainability, and innovation in livestock production. Ultimately, most agricultural applications will not rely

on full model training, but rather on more practical approaches, such as fine-tuning and augmentation.
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Table 1. Contingency tables for statistical decision errors versus large language models'

response mistakes

Statistical hypothesis testing

Ho

True False

Correct decision Type Il Error
Accept (1-0a) (B)

o True negative False negative
Decision

Type | Error Correct decision
Reject (a) (1-B)

False positive True positive

LLM response generation
Reality/Ground truth

Information does not exist Information exists
Correct uncertainty Information omission
(1-a) B)

Correct
“l do not know” or accurate knowledge Failing to use known information or
gap acknowledgment missing valid connections

Response —

Hallucination Correct generation
(a) (1-B)

Incorrect

Generating false information or creating Accurate information generation or

nonexistent connections valid knowledge application
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Table 2. Recent applications of large language models in animal sciences (2023-2025)

Model Domain Application Reference

PetBERT Companion Automated ICD-11 disease coding in veterinary | Farrell et al.
animals EHRs for outbreak detection (2023)

ChatGPT Veterinary Guidance for clinics, education, and research use | Chu (2024)

(applied) medicine cases

ChatGPT Companion Text mining of clinical records for obesity | Fins et al.

(applied) animals monitoring (2024)

VetLLM Veterinary Predicting diagnoses directly from veterinary | Jiang et al.
diagnostics notes (2024)

DairyGPT Dairy science | Natural language access to numerical databases | Gontijo et al.

for ration and farm management (2025)
Computer Dairy science Multimodal Al for decision support in dairy farming, | Ferreira and

vision and LLM

focusing on nutrition and management decision

Dérea (2025)

support
Swine LLM | Swine Summarizing regulatory/certification information | da Silva et al.
Agent certification for farm compliance (2025)
AgroLLM General Farmer-facing tool for knowledge transfer and | Samuel et al.
agriculture advisory support (2025)
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Figure 1. Workflow for developing the Smart Adviser for Rumen Acidosis and Health (SARAH).
Scientific knowledge from peer-reviewed publications was consolidated into the Rumen Health
Compendium book (Tedeschi and Nagaraja, 2025), which contained synthesized data,
illustrations, and expert insights on rumen function and dysfunction. The Compendium and its
cited literature were distilled into the NANP-LLM, a domain-specific large language model (LLM)
developed by the National Animal Nutrition Program (NANP). In collaboration with field and
academic experts, the NANP-LLM was used to identify 18 key animal, dietary, and environmental
variables and their relationships, which informed the construction of classification models using
random forest algorithms. These smart decision tree models were embedded into SARAH to
predict the proportion of feedlot cattle at risk of subacute and acute ruminal acidosis (SAARA)

(Tedeschi and Kaniyamattam, 2025).
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Workflow for developing the Smart Adviser for Rumen Acidosis and Health (SARAH). Scientific knowledge
from peer-reviewed publications was consolidated into the Rumen Health Compendium book (Tedeschi and
Nagaraja, 2025), which contained synthesized data, illustrations, and expert insights on rumen function and

dysfunction. The Compendium and its cited literature were distilled into the NANP-LLM, a domain-specific

large language model (LLM) developed by the National Animal Nutrition Program (NANP). In collaboration
with field and academic experts, the NANP-LLM was used to identify 18 key animal, dietary, and
environmental variables and their relationships, which informed the construction of classification models
using random forest algorithms. These smart decision tree models were embedded into SARAH to predict
the proportion of feedlot cattle at risk of subacute and acute ruminal acidosis (SAARA) (Tedeschi and
Kaniyamattam, 2025).
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