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7 Lay Summary. Large language models (LLM), such as ChatGPT, are powerful artificial intelligence 

8 systems that can analyze vast amounts of text and generate meaningful answers. In animal agriculture, 

9 these tools are starting to transform how farmers, veterinarians, and researchers work. For example, LLM 

10 can help refine cattle diets by analyzing feed composition data, assist veterinarians in diagnosing diseases, 

11 and even model greenhouse gas emissions from livestock. Unlike general-purpose chatbots, domain-

12 specific systems are being developed to focus on agriculture. Examples include ExtensionBot, which 

13 provides farmers with science-based advice from Cooperative Extension, and SARAH, a decision-support 

14 tool that predicts the risk of ruminal acidosis in feedlot cattle. These applications show how AI can reduce 

15 barriers between research and practice, making complex knowledge more accessible and actionable. At 

16 the same time, important challenges remain: LLM can sometimes generate errors or biased results, and 

17 they depend heavily on the quality of the information used for retrieval or for training. This paper explains 

18 both the opportunities and risks of using LLM in animal sciences and emphasizes that they should support—

19 not replace—human expertise. When carefully applied, these tools have the potential to improve farm 

20 productivity, animal welfare, and environmental sustainability.

21 Teaser. Large language models are rapidly reshaping animal sciences, offering new tools for precision 

22 nutrition, disease monitoring, genetic selection, and sustainability. Domain-specific systems such as 

23 ExtensionBot and SARAH demonstrate how LLM can bridge research knowledge with on-farm decision-
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24 making. Responsible adoption, with transparency, bias testing, and human oversight, is critical to ensuring 

25 that LLM strengthen rather than undermine scientific integrity.

26 Abstract. The rapid rise of large language models (LLM) is reshaping the scientific landscape, transitioning 

27 from early statistical language models to advanced transformer-based architectures capable of 

28 synthesizing knowledge across disciplines. While their predictive capacity and scalability have opened new 

29 avenues in data analysis, hypothesis generation, and decision support, concerns remain regarding bias, 

30 hallucination, reproducibility, and ethical governance. In animal sciences, LLM are gradually applied to 

31 challenges in nutrition modeling, animal health, genetic selection, and sustainability. Precision nutrition has 

32 benefited from LLM-driven synthesis of feed and metabolic data, enabling individualized feeding strategies 

33 and improved resource efficiency. In animal health, domain-specific systems have demonstrated 

34 applications in diagnostics and epidemiological monitoring. LLM is augmenting genomic analyses to 

35 accelerate marker discovery and breeding optimization, while sustainability efforts employ them to model 

36 greenhouse gas emissions, feed additives, and adaptation to climatic stressors. Notably, decision-support 

37 platforms demonstrate how domain-specialized LLM can bridge mechanistic knowledge with predictive 

38 analytics, enhancing knowledge transfer and empowering livestock producers. However, risks associated 

39 with overreliance, recursive reuse of LLM outputs in model development, and pseudo-expertise underscore 

40 the importance of critical human oversight. Unlike mechanistic models, which embed biological causality, 

41 LLM are entirely data-driven and may confidently propagate errors if trained on ill-conditioned datasets. 

42 Responsible use requires transparent reporting, validation, and bias auditing, with domain-specific fine-

43 tuning. Open-source models can enhance reproducibility and trust, but they also raise financial and security 

44 concerns. In animal sciences, LLM must be guided by transparency, accountability, and fairness to ensure 

45 that they complement, rather than replace, human expertise. By advancing inquiry and livestock 

46 management, LLM hold the potential to support sustainable food production systems if deployed 

47 responsibly. Rather than full training, most applications will rely on fine-tuning and augmentation, which are 

48 more sustainable and adaptable strategies. This review synthesizes current developments, highlights 

49 domain-specialized LLM, and provides a balanced discussion of benefits, limitations, and future directions 

50 for LLM in animal science.
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51 Keywords. Animal Science, Decision-Support Systems, Domain-Specific AI, Large Language Models, 

52 Precision Livestock Nutrition, Sustainability.

53 Abbreviations. AI = Artificial intelligence; ATAUC = Area and time above and under the curve; LLM = Large 

54 language model; LSTM = Long short-term memory; ML = Machine learning; NANP = National Animal 

55 Nutrition Program; RAG = Retrieval-augmented generation; RF = Random Forest; RHC = Rumen Health 

56 Compendium; RNN = Recurrent neural networks; SAARA = Subacute and acute ruminal acidosis; SARAH 

57 = Smart Adviser for Rumen Acidosis and Health; and TMR = Total mixed ration.

58 INTRODUCTION

59 Large language models (LLM)––such as ChatGPT, Claude, Gemini, and Perplexity––are cutting-

60 edge artificial intelligence (AI) systems that interpret large amounts of text to generate accurate and relevant 

61 outputs. In animal agriculture, these technologies are beginning to reshape decision-making for farmers, 

62 ranchers, veterinarians, and researchers, though the level of development varies considerably across 

63 application areas. The development of LLM has been a gradual process, rooted in early advancements in 

64 statistical language modeling that culminated in the robust transformer-based architectures that define 

65 modern AI. The trajectory of LLM reflects the broader evolution of AI, beginning with foundational work in 

66 information theory and progressing toward deep learning-based models that now percolate various aspects 

67 of scientific inquiry. The concept of modeling language probabilistically can be traced back to the seminal 

68 work of Claude Elwood Shannon, who introduced information theory and probabilistic language to 

69 understand and predict the sequences of symbols (Shannon, 1948). His work, among many others, laid the 

70 groundwork for statistical language modeling, which became prominent in natural language processing 

71 through methods such as n-gram models (Shannon, 1948). These early approaches relied on estimating 

72 word probabilities based on co-occurrence patterns, providing a rudimentary but effective method for 

73 predicting text sequences.

74 A significant shift occurred with the introduction of neural probabilistic language models. A 

75 groundbreaking approach that leveraged neural networks to model word dependencies more effectively 

76 than traditional statistical techniques (Bengio et al., 2003). This approach enabled the automatic learning 
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77 of word representations, thereby reducing the sparsity problem that had plagued earlier models. The 

78 concept of distributed word representations was further refined by introducing Word2Vec, a technique that 

79 captured semantic relationships between words through vector embeddings (Mikolov et al., 2013). The next 

80 major leap in LLM came with the introduction of attention mechanisms, which improved neural machine 

81 translation by allowing models to dynamically focus on relevant portions of input sequences (Bahdanau et 

82 al., 2016). However, the most significant breakthrough occurred with the Transformer architecture (Vaswani 

83 et al., 2017, 2023), which eliminated the need for recurrent connections in neural networks. Traditional 

84 recurrent neural networks (RNN) and long short-term memory (LSTM) networks relied on sequential 

85 processing, which limited parallelization and led to high computational costs as input sequences grew 

86 longer. In contrast, transformers leverage self-attention mechanisms and parallel processing, significantly 

87 improving scalability, training efficiency, and the ability to capture long-range dependencies in text, 

88 ultimately enabling the development of state-of-the-art LLM (Vaswani et al., 2023). Empirical studies have 

89 demonstrated that increasing model size yields predictable improvements in performance, following well-

90 defined scaling laws (Kaplan et al., 2020). With the Transformer model as a foundation, researchers began 

91 scaling up LLM using massive datasets and computational resources, following empirical scaling laws that 

92 describe how model performance improves predictably with increased parameter count, dataset size, and 

93 computational budget (Kaplan et al., 2020). OpenAI’s GPT-1 (Radford et al., 2018) demonstrated the 

94 effectiveness of pretraining models on large corpora, followed by fine-tuning for specific tasks. This 

95 approach was refined with BERT (Devlin et al., 2019), which introduced bidirectional training, enabling 

96 models to understand context more effectively. The subsequent release of GPT-2 (Radford et al., 2019) 

97 marked a turning point, as the model’s ability to generate coherent, human-like text raised concerns about 

98 the potential for AI-generated misinformation. GPT-3 (Brown et al., 2020) further amplified these capabilities 

99 (and fears), highlighting few-shot learning and the ability to generate highly contextualized responses 

100 without extensive task-specific training. Subsequent releases continued advancing the frontier: GPT-4 

101 introduced a multimodal architecture capable of interpreting both images and text and exhibited human-

102 level performance on many benchmarks, pushing boundaries of reasoning and generality (OpenAi et al., 

103 2024). GPT-5 further refined this trajectory, offering deeper reasoning, improved context understanding, 
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104 and a unified architecture that dynamically routes queries between fast responses and more deliberative 

105 modes (OpenAI, 2025).

106 In recent years, efforts have been made to develop open-source alternatives to proprietary models. 

107 Meta’s LlaMA (Touvron et al., 2023) introduced an efficient and accessible model that rivals commercial 

108 LLM, enabling broader academic and industrial adoption. More recently, DeepSeek, a Chinese AI startup, 

109 made global headlines with the release of its reasoning model DeepSeek-R1. Trained primarily through 

110 reinforcement learning rather than large-scale supervised fine-tuning, R1 demonstrated reasoning 

111 performance comparable to OpenAI’s o1 series at a fraction of the cost (DeepSeek-AI et al., 2025). Its 

112 release in early 2025 attracted widespread attention not only for its technical efficiency, with training costs 

113 reported to be orders of magnitude lower than those of U.S. competitors, but also for its open-weight 

114 approach, which enabled researchers to download, fine-tune, and run the model locally freely. Within its 

115 first week, DeepSeek was downloaded millions of times, and scientists rapidly began adapting it into 

116 domain-specific reasoning tools in fields ranging from mathematics to computational biology (Gibney, 

117 2025).

118 At the same time, concerns have been raised that LLM may not only hallucinate information but 

119 also reinforce systemic biases in science, for example, by disproportionately amplifying already highly cited 

120 research and underrepresenting diverse perspectives (Barolo et al., 2025). Algaba et al. (2025) highlighted 

121 the “rich-get-richer” effect, showing that LLM-generated reference suggestions systematically over-

122 represent the top 1% of most-cited papers—more than double the rate observed in human-curated 

123 bibliographies. Their findings suggest that LLM internalize and magnify human citation patterns, thereby 

124 exacerbating the Matthew effect in scholarly communication, which describes the cumulative advantage in 

125 scholarly communication whereby already well-recognized scientists and highly cited papers attract 

126 disproportionate attention and credit (Merton, 1968). As a result, emerging or methodologically diverse 

127 research, which may be critical for innovation, is more likely to be overshadowed by well-established 

128 studies. Peters and Chin-Yee (2025) further noted that LLM tend to overgeneralize scientific conclusions, 

129 often glossing over caveats and contextual limitations in ways that can distort interpretation. Moreover, as 

130 LLM increasingly function as “answer engines,” they may subtly shape which scholars, methods, and 
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131 perspectives are foregrounded in science, influencing not only how researchers discover knowledge but 

132 also how grants and peer review are conducted (Lin, 2025). Importantly, these behaviors often reflect not 

133 genuine reasoning but the illusion of thinking (Khowaja, 2025; Shojaee et al., 2025), where LLM models 

134 mimic plausible discourse without true understanding, highlighting the importance of distinguishing between 

135 fluent text generation and scientifically valid reasoning. Together, these concerns highlight the need to 

136 critically evaluate both the opportunities and risks of integrating LLM across any field of science, including 

137 agricultural sciences. In a recent theoretical analysis, Kalai et al. (2025) reinforce this concern, showing 

138 that hallucinations in LLM arise not from mysterious cognitive failures but as predictable statistical 

139 consequences of their training objectives. Because LLM are trained and evaluated using reward-based 

140 methods that penalize expressions of uncertainty, models learn to “guess” even when unsure, receiving 

141 positive feedback for providing any answer rather than acknowledging ignorance. This reward misalignment 

142 effectively turns LLM into perpetual test-takers optimized for confident responses rather than calibrated 

143 reasoning.

144 In animal sciences, LLM are increasingly being applied to model nutrient requirements, analyze 

145 large genomic and transcriptomic datasets, and optimize livestock management decisions. Their capacity 

146 to process, synthesize, and cross-reference vast amounts of scientific literature and experimental data 

147 uniquely positions them to advance areas such as precision nutrition, disease surveillance, and genetic 

148 selection. As exemplified later, early explorations include applications in dairy science for interpreting 

149 domain-specific research and supporting decision-making in breeding and health management, as well as 

150 in swine production for summarizing regulatory and certification information. These emerging applications 

151 highlight the promise of LLM in advancing animal science, while also pointing to the need for a careful 

152 assessment of their benefits and drawbacks.

153 Domain-specialized LLM have consistently outperformed general-purpose models in a range of 

154 scientific fields, providing a strong case for their adoption in agriculture and animal sciences. Landmark 

155 efforts such as BloombergGPT in finance (Wu et al., 2023) and Me-LLaMA in medicine (Xie et al., 2025) 

156 show that combining domain-specific pretraining with instruction tuning yields superior accuracy without 

157 sacrificing general capabilities. Beyond accuracy, specialized models often deliver faster inference, lower 
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158 latency, and reduced computational costs (Kerner, 2024). These findings suggest that domain-focused LLM 

159 tailored to animal sciences could provide more accurate and efficient tools than broad, general-purpose 

160 systems.

161 BENEFITS AND DRAWBACKS

162 There is no doubt that LLM have undergone rapid development since their inception, evolving from 

163 early statistical methods to advanced transformer-based architectures. They are becoming intrinsic 

164 elements of scientific writing and research workflows, fundamentally reshaping how scientists generate, 

165 analyze, and communicate knowledge. Their integration into research methodology brings both profound 

166 advantages and critical challenges that must be carefully examined. Moreover, the pace of LLM 

167 development is extraordinary, with new or enhanced models appearing almost monthly; therefore, review 

168 articles or syntheses can become outdated almost as soon as they are published. This rapid turnover 

169 highlights the challenge of maintaining a current understanding of their capabilities, limitations, and 

170 implications for science, while also complicating efforts to educate and prepare stakeholders as the target 

171 is constantly shifting.

172 One can think of LLM as “highly skilled personal assistants,” aiding in a diverse range of scientific 

173 tasks. These tasks include drafting scientific research papers and generating code (i.e., computer 

174 programming), developing illustrations for presentations, structuring courses and extracting accumulated 

175 scientific knowledge, and assisting in scientific discovery by identifying knowledge gaps—both in modeling 

176 frameworks and in experimental research. For instance, Microsoft Copilot is becoming integrated into the 

177 Windows environment, positioning itself as a versatile, embedded tool that enhances productivity and 

178 accelerates innovation across familiar platforms such as Word, Excel, PowerPoint, and Visual Studio. With 

179 its ability to interpret context, generate technical content, and streamline workflows, Copilot describes itself 

180 as “a tool to empower users to transform ideas into actionable outcomes directly within their native 

181 workspace.” In this sense, LLM can be considered analogous to human collaborators (Binz et al., 2025), 

182 but scientists must ultimately be responsible for ensuring accuracy and integrity. The effectiveness of LLM 

183 extends beyond simple automation. LLM models can assist in hypothesis generation by synthesizing vast 
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184 amounts of literature information, identifying unexplored research questions, and even suggesting 

185 experimental methodologies.

186 Challenges and Ethical Concerns

187 Despite their advantages, LLM present significant limitations that warrant careful consideration in 

188 scientific applications. In addition to the apprehensions listed above, the primary concerns stem from their 

189 probabilistic pattern-matching approach to text generation, which can lead to errors, biases, and the 

190 dissemination of misinformation (Binz et al., 2025). As mentioned above, recent analyses further 

191 underscore that such tendencies are not incidental but intrinsic to the current reward-driven training 

192 paradigms, which favor confident outputs even when the model lacks true knowledge (Kalai et al., 2025). 

193 Unlike traditional scientific reasoning, which relies on hypothesis testing, logical deduction, and empirical 

194 validation (or evaluation), LLM operate by predicting the next word in a sequence based on statistical 

195 probabilities learned from large datasets. While this allows them to generate coherent text, it does not 

196 ensure accuracy, causality, or conceptual understanding (López Espejel et al., 2023; Wu et al., 2024). To 

197 better understand these limitations, let’s consider the learning process in humans and compare it with the 

198 AI learning process, highlighting the fundamental differences that impact their respective capabilities in 

199 scientific applications.

200 Fundamental distinctions and limitations of AI learning

201 The learning process in humans is a complex yet structured journey. It begins with simple 

202 comparative analogies that help solidify concepts and provide a foundation for future comparisons. 

203 Analogical reasoning, the ability to identify correspondences between different concepts based on shared 

204 relationships, is fundamental to human learning and supports the acquisition of knowledge (Gentner, 1983; 

205 Whitaker et al., 2018). As individuals gain experience, their learning evolves beyond pattern recognition 

206 into reasoning, ultimately leading to wisdom—the ability to synthesize knowledge systematically and apply 

207 it in new contexts. Unlike AI, which operates by detecting statistical patterns in large datasets, human 

208 learning is guided by abstract reasoning, conceptualization, and an innate ability to discern meaning beyond 

209 raw data (Mattson, 2014). Artificial intelligence, by contrast, is a powerful tool for managing vast amounts 
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210 of information, but its learning process is fundamentally different from human cognition. While AI can 

211 analyze correlations and statistical dependencies, it cannot reason causally or critically assess the validity 

212 of its inputs. Artificial intelligence does not develop wisdom in the philosophical sense—it does not engage 

213 in reflective thought, ethical reasoning, or higher-order decision-making beyond the probabilistic 

214 relationships encoded in its training data (Tedeschi, 2019; Tedeschi, 2022). This fundamental distinction is 

215 crucial in understanding both the potential and the limitations of AI in scientific research.

216 This distinction underscores a critical challenge: AI lacks the ability to independently evaluate the 

217 quality and reliability of the data it processes. Without human intervention, LLM cannot distinguish between 

218 high-quality scientific literature and flawed or misleading sources. This means that errors can propagate 

219 unnoticed, especially when AI-generated content is integrated into research workflows without rigorous 

220 validation and oversight. While LLM can enhance research efficiency by structuring knowledge and 

221 identifying patterns, they do not possess the cognitive frameworks required for deep understanding or 

222 conceptual reasoning (Mattson, 2014). Large language models do not replace human expertise in setting 

223 research priorities, interpreting findings, or engaging in normative debates that shape scientific progress.

224 Therefore, the central limitation lies in AI’s inability to perform causal reasoning. Large language 

225 models, for instance, generate insights by identifying covariances across massive datasets, but they cannot 

226 distinguish between meaningful cause-and-effect relationships and spurious correlations. Scientific 

227 discovery, however, requires hypothesis-driven inquiry, experimental validation, and theoretical 

228 reasoning—capabilities that remain uniquely human. Taken together, these limitations underline the 

229 importance of viewing AI as an augmentative tool rather than a definitive authority in research. Large 

230 language models can enhance efficiency by structuring knowledge, extracting patterns, and accelerating 

231 access to information, but they cannot replace human expertise in guiding research, interpreting findings, 

232 or providing the philosophical and ethical reasoning required for scientific progress.

233 Hallucinations and omissions are systematic errors in LLM responses

234 One of the primary risks associated with these limitations is the occurrence of systematic errors in 

235 LLM responses, which can be categorized similarly to statistical hypothesis testing (Table 1). These errors 
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236 manifest as hallucinations and information omissions, analogous to Type I (false positive) and Type II (false 

237 negative) errors in statistical testing.

238 The first and most discussed type of error is “hallucination,” which parallels a Type I error (false 

239 positive) in statistical testing (Table 1). Just as rejecting a true null hypothesis can lead to false conclusions 

240 in statistics, LLM hallucinations occur when the model generates nonexistent information, despite the 

241 ground truth being that such information does not exist. This manifests in various forms, including fabricated 

242 research citations, invented experimental results, nonexistent methodologies, or false connections between 

243 scientific concepts. The parallel is particularly apt because, in both cases, there is an incorrect assertion of 

244 existence, whether it is the existence of a statistical effect or the existence of factual information. For 

245 example, an LLM might confidently generate a detailed description of a nonexistent study, complete with 

246 methodology and results, much like how a Type I error in statistics might incorrectly suggest the presence 

247 of a significant effect. Indeed, Kalai et al. (2025) further clarified that such hallucinations are not accidental 

248 but statistically expected outcomes of the current reward-based optimization frameworks used to train LLM. 

249 Because these systems are reinforced for providing answers rather than abstaining, they are effectively 

250 rewarded for “false positives,” mirroring the very mechanism that produces Type I errors in hypothesis 

251 testing.

252 Equally important but often overlooked is the second type of error, analogous to Type II errors (false 

253 negatives) in statistics (Table 1). Just as failing to reject a false null hypothesis means missing a real effect, 

254 LLM can fail to utilize or generate valid information that exists within their training data. This manifests as 

255 information omission; instances where the model fails to recognize or apply relevant knowledge, misses 

256 important connections, or fails to cite pertinent research (Gupta, 2025). This type of error can be particularly 

257 problematic in scientific writing, where comprehensive coverage of existing literature and accurate 

258 representation of established knowledge is crucial. The parallel with statistical Type II errors extends to the 

259 underlying causes: just as insufficient sample size or poor measurement can lead to Type II errors in 

260 statistics, inadequate training data or suboptimal model architecture can lead to information omission in 

261 LLM.
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262 Both types of errors are intrinsically linked to the training process and data quality. The training 

263 database serves as the foundation for the model’s knowledge, much like sample data forms the basis for 

264 statistical inference. Inadequate, biased, or incomplete training data can systematically affect both error 

265 types: it might increase hallucinations due to poor pattern recognition (type I error) while simultaneously 

266 causing information omissions due to knowledge gaps (type II error). This creates a complex optimization 

267 challenge, as attempts to reduce one type of error often risk increasing the other—a trade-off familiar to 

268 statisticians working with significance levels and power in hypothesis testing. Understanding these parallels 

269 with statistical error types provides a valuable framework for evaluating and improving LLM performance in 

270 scientific applications. It suggests that, like in statistical analysis, we need robust validation methods, clear 

271 documentation of limitations, and careful consideration of the balance between different types of errors 

272 based on the specific requirements of each application.

273 The story of Galactica, a LLM developed by Meta AI and Papers with Code, provides a compelling 

274 case study. Launched in May 2022, predating the widespread public awareness of ChatGPT, Galactica 

275 was envisioned as a powerful tool specifically designed to accelerate scientific discovery. Its developers 

276 aimed to create an AI assistant (i.e., LLM) capable of navigating the vast landscape of scientific literature, 

277 solving mathematical problems, and even generating scientific code. Galactica was trained on a massive 

278 dataset of 48 million papers, textbooks, reference materials, and other scientific resources, a testament to 

279 the computational resources invested in the project (Taylor et al., 2022). Despite this extensive training and 

280 the focused ambition of its creators, Galactica ultimately failed to achieve its goals and was withdrawn 

281 shortly after its release (Heaven, 2022; Wodecki, 2022). It succumbed to the very issues discussed above. 

282 Galactica frequently generated factually incorrect or fabricated information, often presented with an air of 

283 authority, demonstrating the persistent problem of “hallucinations” in LLM. For instance, it might confidently 

284 generate a detailed summary of a scientific paper that doesn’t actually exist (i.e., Type I error; Table 1). 

285 Furthermore, concerns were raised about the model’s potential to perpetuate biases present in its training 

286 data, highlighting the crucial role of data quality and curation in ensuring the reliability and ethical 

287 implications of LLM outputs. This relates to the issue of omissions, where the model might fail to highlight 

288 crucial information or perspectives due to biases in the data it learned from (i.e., Type II error; Table 1). The 

289 Galactica project, despite its initial promise, serves as a cautionary tale, underscoring the significant 
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290 limitations of (old and) current LLM technology and the critical need for rigorous validation and oversight in 

291 scientific applications. Its failure illustrates the very real risks associated with overreliance on LLM, 

292 particularly in the context of scientific research where accuracy and reliability are vital.

293 It is possible that domain-specific training or context augmentation of LLM might help reduce 

294 hallucinations and improve accuracy and precision. For example, LLM that are either fine-tuned or used in 

295 conjunction with domain-targeted retrieval systems can demonstrate improved factual grounding within 

296 their area of specialization. For example, an oncology research-focused retrieval-augmented generation 

297 (RAG) system—where the LLM was not retrained but instead supplied with vector-embedded documents 

298 from a specialized oncology corpus (i.e., a curated collection of domain-specific literature and data)—

299 outperformed general-purpose models in both accuracy and relevance when answering subject-related 

300 questions (Soong et al., 2024). This suggests that focusing or constraining the contextual corpus—that is, 

301 the external body of text and data used to provide factual grounding during generation—can enhance the 

302 reliability and domain specificity of LLM outputs, even without retraining the model itself, as discussed later.

303 The influence of training data on AI accuracy and reliability

304 AI models, including LLM, rely heavily on the quality and structure of their training data. While their 

305 predictive capabilities are often impressive, they are far from infallible. Large language models often fail at 

306 seemingly simple tasks, sometimes producing glaring errors despite vast computational resources. 

307 However, perhaps even more concerning than occasional hallucination is the susceptibility of these models 

308 to ill-conditioned or manipulated data—a problem with systemic implications that go far beyond isolated 

309 mistakes (Bender et al., 2021; Paullada et al., 2021).

310 Unlike human scientists, who can critically assess and verify data sources, AI lacks intrinsic 

311 mechanisms to discern reliable from unreliable information. If biased or erroneous data is introduced into 

312 an AI’s training dataset, the model will systematically learn and reinforce those flawed patterns, generating 

313 incorrect outputs with a high degree of statistical certainty, often presenting misinformation with unearned 

314 confidence (Mitchell et al., 2019), paralleling the effects of educating students on flawed (i.e., inaccurate or 

315 misleading) foundations. This phenomenon exemplifies the classical “garbage in, garbage out” principle: 
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316 flawed inputs inevitably produce flawed outputs, regardless of the model's sophistication. This means that 

317 bad data, once embedded in the AI’s learning process, can distort predictive outcomes in ways that are 

318 difficult to detect and rectify.

319 This issue is particularly relevant in scientific domains such as animal nutrition. For instance, 

320 consider methane emission prediction models trained primarily on data from confined Holstein cows fed 

321 total mixed rations (TMR) in temperate regions. When such models, or LLM that synthesize these literature 

322 patterns, are applied to grazing Zebu cattle in tropical systems, they may confidently output invalid 

323 estimates due to the mismatch in diet, environment, and genetics. Without diverse, context-specific training 

324 data, the outputs will be not only inaccurate but also misleadingly certain (Hristov et al., 2013). This 

325 highlights the importance of accurately and thoroughly describing the data, as even subtle differences can 

326 have a significant impact on model predictions.

327 The limitation here is not simply that AI can make mistakes; it is that it makes mistakes 

328 systematically and with confidence, without the capacity to question its own data provenance or 

329 methodology. Unless updated or adapted with corrected or more representative data, these models cannot 

330 self-correct. This highlights a broader challenge in AI governance: without rigorous oversight and validation 

331 strategies, AI-driven outputs risk becoming a certainty of incorrect predictions rather than random noise. 

332 The scientific community must recognize this risk and implement data auditing and model validation 

333 protocols to ensure AI-supported discoveries are not just statistically sound but also methodologically and 

334 ethically grounded.

335 While this vulnerability to bad data is often highlighted in the context of AI, it is not exclusive to 

336 machine learning (ML) or LLM. All mathematical models, including empirical and mechanistic ones, can be 

337 compromised by ill-conditioned data, if proper data vetting is not followed (Tedeschi, 2022). However, the 

338 key difference lies in how these models are constructed. In empirical or mechanistic modeling, the process 

339 typically begins with equations or theoretical constructs grounded in scientific understanding—such as 

340 nutrient flow equations in ruminant nutrition. Data is then used to parameterize these models, calibrate 

341 coefficients, and evaluate predictive performance. The model's structure is guided by domain knowledge 
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342 (thus, often referred to as concept-based models), and its assumptions and limitations are frequently explicit 

343 and testable (Ellis et al., 2020; Tedeschi, 2019; Tedeschi, 2023).

344 In contrast, AI models, including LLM, are data-driven by design. They learn directly from data 

345 patterns with little to no embedded scientific structure or mechanistic reasoning. Rather than starting with 

346 established relationships, these models are trained to discover statistical correlations from massive 

347 datasets, often without human interpretability or constraints (Tedeschi, 2019; Tedeschi, 2022; Tedeschi, 

348 2023). Even when synthetic databases are used to augment limited real-world data, there is a risk of 

349 introducing artificial or unknown relationships within subsets of the synthetic data (Tedeschi, 2025a). As a 

350 result, their predictive ability is entirely contingent on the quality, diversity, and balance of the data they 

351 ingest. When training data is biased or incomplete, the model lacks a scientific framework to "fall back on", 

352 and thus confidently propagates those errors in unpredictable or opaque ways.

353 The risks of overreliance on LLM in scientific research

354 Beyond these systematic errors, a more troubling issue emerges from the potential overreliance on 

355 LLM, particularly among inexperienced or uncritical researchers. While the previous discussion highlighted 

356 how LLM can produce both Type I (hallucination) and Type II (omission) errors, the real danger lies in 

357 researchers’ inability to detect and critically evaluate these errors. The naïve scientist may assume that 

358 LLM-generated outputs are inherently valid, leading to a cascade of scientific integrity issues, including the 

359 propagation of hallucinated findings, the overlooking of crucial existing literature due to information 

360 omission, the dilution of scientific rigor, and the degradation of peer review standards. If LLM are used 

361 uncritically, they could undermine human expertise, weakening the fundamental principles of scientific 

362 inquiry rather than strengthening them (Binz et al., 2025). This risk is particularly acute when researchers 

363 lack the domain expertise to distinguish between valid LLM outputs and sophisticated-sounding 

364 hallucinations, or when they fail to recognize when the model has omitted critical information. The situation 

365 becomes even more complicated when these errors compound through citation chains, where hallucinated 

366 references or missed crucial studies could propagate through multiple publications, creating a web of 

367 interconnected errors that becomes increasingly difficult to untangle, and keeps reinforcing its propagation.
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368 For instance, a particularly concerning unintended consequence of LLM accessibility is the 

369 emergence of “LLM-dependent pseudo-experts”, i.e., individuals who, through extensive but uncritical 

370 interaction with LLM, develop an inflated sense of expertise in specialized fields without acquiring the 

371 foundational knowledge and practical experience necessary for true domain mastery. This phenomenon of 

372 LLM-mediated pseudo-expertise is especially problematic in complex fields like nutrition, genetics, and 

373 medicine, where practical experience and deep theoretical understanding are crucial. While LLM can 

374 provide sophisticated responses to technical queries, they may inadvertently create an illusion of 

375 competence among users who lack the underlying scientific training to critically evaluate the information 

376 they receive. These LLM-induced pseudo-experts might then make decisions about animal health, breeding 

377 programs, or nutritional management based on incomplete or misunderstood information, potentially 

378 leading to adverse outcomes in livestock production systems. The consequences of this LLM-mediated 

379 pseudo-expertise are doubly detrimental to scientific advancement. First, these LLM-dependent pseudo-

380 experts will inevitably face professional scrutiny that reveals their lack of foundational knowledge and 

381 practical understanding, potentially damaging their careers and credibility in the scientific community. 

382 Second, and perhaps more concerning for the broader scientific enterprise, the proliferation of such cases 

383 may stimulate widespread skepticism toward LLM as valuable research tools, potentially hampering the 

384 legitimate and beneficial applications of these technologies in scientific research. This erosion of trust could 

385 significantly impede the legitimate integration of LLM into scientific workflows, undermining their potential 

386 to advance scientific discovery in areas where qualified researchers could leverage these tools most 

387 effectively.

388 Beyond these concerns about end-user interactions with LLM, a set of even more fundamental 

389 challenges emerges from the technical foundations of LLM development itself. The practice of training new 

390 LLM using outputs from existing models, or repeatedly training models on increasingly self-referential 

391 datasets, creates what might be called a ‘telephone game effect’ in AI learning, where each iteration 

392 potentially amplifies biases, errors, and misconceptions present in the training data. Just as the children’s 

393 game of telephone results in progressively distorted messages, recursive LLM training might lead to the 

394 propagation and amplification of subtle inaccuracies or biases. In animal science applications, this could 

395 manifest as increasingly unreliable predictions of nutrient requirements, skewed genetic selection 
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396 parameters, or biased disease diagnosis protocols. The risk is particularly acute when LLM-generated 

397 content enters scientific literature without proper verification, potentially creating a feedback loop where 

398 future models learn from increasingly artificial or distorted data sources. Moreover, if such training 

399 contamination is discovered, tracing the origin of the corrupted information becomes nearly impossible, i.e., 

400 much like trying to identify which player in a telephone game first distorted the message. This cascade of 

401 self-referential learning could create deeply embedded errors that become increasingly difficult to detect 

402 and correct over time. This underscores the critical importance of maintaining rigorous standards for training 

403 data curation and validation, ensuring that LLM development remains grounded in empirical scientific 

404 evidence rather than self-referential AI-generated content.

405 Several critical verification steps are essential to mitigate these risks and maintain scientific integrity 

406 when using LLM. First, and perhaps most vital, researchers must meticulously verify every reference 

407 generated by LLM, i.e., not only confirming their existence but also carefully checking that the cited works 

408 support the claims in the text. This verification process helps prevent the propagation of both hallucinated 

409 citations and misrepresented research findings. Second, researchers can employ a cross-validation 

410 approach—akin to emerging frameworks in agentic AI—by using multiple LLM to generate or verify content, 

411 as different models may exhibit distinct patterns of hallucination and omission, making inconsistencies 

412 easier to detect. This multi-layered verification approach, while time-consuming, is crucial for maintaining 

413 the rigor and reliability of scientific communication in the era of LLM-assisted research. Third, all LLM-

414 generated content should undergo a thorough review by domain experts who can identify potential 

415 hallucinations, logical inconsistencies, or omissions of crucial information.

416 This third step specifically emphasizes expert review beyond the conventional peer review system, 

417 which itself faces significant challenges in the modern scientific landscape. The current peer review system 

418 suffers from multiple systematic issues: low reliability with reviewer correlations averaging only 0.34, 

419 significant biases affecting manuscript decisions, and increasing difficulty in recruiting qualified reviewers 

420 (Aczel et al., 2025). Moreover, the system struggles with slow review times, often taking months for 

421 evaluation and years for complete publication cycles, which poorly serves the accelerating pace of scientific 

422 research (Aczel et al., 2025). The situation is further exacerbated by the growing volume of scientific 
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423 publications and increased specialization of scientific knowledge, making it increasingly challenging to 

424 recruit reviewers who are qualified to assess all facets of a manuscript (Aczel et al., 2025). With the advent 

425 of LLM potentially accelerating manuscript production and submission rates, this already strained system 

426 faces even greater pressure. These limitations suggest that while expert review remains crucial, relying 

427 solely on traditional peer review mechanisms may be insufficient for validating LLM-generated content. 

428 Instead, incorporating dedicated expert review specifically focused on detecting LLM-related errors, 

429 alongside but separate from the standard peer review process, may provide a more robust validation 

430 framework.

431 The "bartender effect" and the erosion of critical thinking

432 In addition to the technical limitations of LLM, a more subtle but equally troubling risk is what can 

433 be described as the ‘bartender effect,’ i.e., a phenomenon where AI systems, including LLM, tend to cater 

434 to user preferences and implicit biases, reinforcing existing beliefs rather than challenging them. This 

435 dynamic, while superficially enhancing user satisfaction, may significantly erode critical thinking and 

436 intellectual diversity. The mechanism is akin to that of a bartender who tells customers what they want to 

437 hear. Large language models, trained on vast datasets and prompted by user inputs, often mirror the 

438 phrasing, assumptions, or slants embedded in those prompts. This can lead to a form of algorithmic 

439 affirmation bias, where outputs align with the user’s preconceptions rather than presenting balanced or 

440 challenging perspectives. This phenomenon has already been observed in personalized news feeds and 

441 social media algorithms, which contribute to the formation of ideological echo chambers and the polarization 

442 of public discourse (Bakshy et al., 2015).

443 In scientific contexts, the bartender effect can have similarly corrosive consequences. If LLM are 

444 used to support pre-formed conclusions or selectively generate literature that aligns with a favored 

445 narrative, they can weaken the foundational principles of scientific skepticism and falsifiability. This 

446 becomes particularly dangerous in educational settings, where students may increasingly rely on AI to 

447 retrieve or even generate answers, risking the displacement of analytical reasoning with passive 

448 consumption. Walsh (2025) cautioned that rampant AI-driven cheating is undermining education, as 
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449 students increasingly bypass the development of critical reasoning skills by outsourcing assignments to 

450 generative systems. Overdependence on AI may "flatten" intellectual engagement, reducing the opportunity 

451 for learners to grapple with ambiguity, contradiction, or methodological nuance (Carr, 2020). Fan et al. 

452 (2025) provided experimental evidence supporting these concerns, showing that while generative AI can 

453 improve short-term performance, it promotes “metacognitive laziness,” whereby learners engage less in 

454 self-regulation and reflective thought, ultimately weakening the depth of their cognitive processing.

455 Moreover, when AI systems are deployed in high-stakes domains such as hiring, lending, or 

456 criminal justice, the bartender effect may reinforce systemic inequalities. If the training data reflects societal 

457 biases and the algorithm is optimized to match historical preferences, discriminatory patterns may be 

458 perpetuated under the guise of neutrality (Binns, 2018). This concern is particularly relevant for LLM 

459 applications in global agriculture and animal science, where reliance on data from Western systems may 

460 obscure region-specific needs, reinforcing structural imbalances in research and development priorities.

461 To counteract these risks, it is essential to promote AI literacy and critical engagement. Scientists 

462 and students alike should be trained not only to use LLM but also to evaluate their outputs, question their 

463 assumptions, and triangulate information with trusted sources. The goal should not be to replace critical 

464 thinking with AI assistance, but to augment human judgment through informed skepticism and 

465 methodological awareness.

466 Ensuring Reproducibility and Responsible Use

467 While LLM offer substantial benefits, their use must be governed by principles of transparency, 

468 accountability, and fairness to ensure that AI-generated outputs remain reliable, ethically sound, and 

469 aligned with scientific integrity. Without these guiding principles, the risk of misinformation, biases, and 

470 unverified claims could significantly undermine the credibility of scientific research.

471 One of the most pressing concerns is reproducibility, a fundamental pillar of scientific inquiry. Unlike 

472 traditional research methodologies, where datasets, models, and analytical processes can be openly 

473 shared and scrutinized, proprietary LLM often function as “black boxes,” making it difficult to verify how 
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474 specific outputs are generated. This opacity hampers scientific validation and undermines trust in AI-

475 assisted discoveries (Binz et al., 2025; Bommasani et al., 2022). This lack of transparency presents a 

476 significant challenge in validating findings and ensuring consistency across research applications. To 

477 mitigate these issues, there is a growing push toward open-source LLM, which offer greater accessibility 

478 and enhanced reproducibility. Models like Meta’s LLaMA and DeepSeek provide researchers with direct 

479 access to model architectures, training datasets, and fine-tuning mechanisms. However, reproducibility 

480 extends beyond access to model weights; it also requires transparency in the underlying training data, 

481 preprocessing steps, and evaluation protocols used to assess model performance. Without these elements, 

482 replicating results or ensuring fair comparisons across studies remains difficult, even when models are 

483 technically open source. This broader vision of open and transparent research closely parallels the Open 

484 Science framework in animal science, which emphasizes data sharing, open code, preregistration, and 

485 open peer review to improve accessibility and reproducibility (Muñoz-Tamayo et al., 2022). Such 

486 transparency enables researchers to examine underlying assumptions, trace algorithmic reasoning, and 

487 apply corrections when biases or failures are identified (Bommasani et al., 2022). Open-source frameworks 

488 also enable wider community validation, ensuring that AI-generated knowledge can be replicated, tested, 

489 and improved upon; a fundamental requirement for scientific progress. The proper attribution of AI-

490 generated content, rigorous verification of outputs, and a heightened awareness of biases are essential to 

491 maintaining the credibility of scientific discourse (Binz et al., 2025).

492 However, openness alone is not a safeguard against potential risks. While open-source AI fosters 

493 collaboration, it also raises critical ethical and security concerns. Who ensures responsible use if anyone 

494 can access, modify, and deploy these models? The potential for misuse and unintended consequences 

495 becomes a growing challenge. In fields such as medicine, environmental science, and policy-making, 

496 factual accuracy is non-negotiable; yet open-source AI could be used to generate false scientific claims, 

497 manipulate research outcomes, or amplify biases. Weidinger et al. (2021) identify multiple harm pathways, 

498 including misinformation, discrimination, and malicious code generation, all of which become more acute 

499 in open, uncontrolled deployments. The potential for nefarious applications, including misinformation 

500 campaigns, automated deepfake content, and AI-generated cyber threats, is even more concerning.
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501 The hidden costs and governance challenges of open-source LLM

502 Beyond technical concerns, the role of human expertise in scientific inquiry is not to be overlooked. 

503 While LLM can enhance research efficiency, science is not just about processing data; it is a human-driven 

504 intellectual pursuit that requires critical thinking, ethical reasoning, and value-based decision-making. AI 

505 can assist in structuring knowledge and identifying patterns, but it cannot independently set research 

506 priorities, interpret scientific findings within broader theoretical frameworks, or engage in the normative 

507 debates that drive scientific progress. This perspective highlights an important limitation of LLM, namely, 

508 they cannot replace the fundamental role of human judgment in shaping the direction of research. Scientific 

509 discovery is not merely an algorithmic exercise, but a process that involves hypothesis generation, ethical 

510 considerations, and social discourse; all of which are essential components of knowledge creation. Thus, 

511 while LLM may assist in handling vast amounts of data, the responsibility for defining scientific goals, 

512 assessing knowledge gaps, and ensuring ethical rigor must remain in human hands (Binz et al., 2025).

513 Beyond ethical concerns, open-source LLM present significant financial and infrastructural 

514 challenges. Developing and maintaining these models requires massive computational resources, 

515 continuous updates, and extensive oversight. Unlike proprietary models, which rely on corporate 

516 investments and monetization strategies, open-source initiatives often lack a sustainable revenue model. 

517 Weidinger et al. (2021) highlight that training LLM can incur high environmental costs and exacerbate global 

518 inequalities due to unequal access to computational infrastructure. Dauner and Socher (2025) provided 

519 empirical confirmation of these concerns by evaluating 14 LLM ranging from 7 to 72 billion parameters. 

520 They found that reasoning-enabled models, while achieving higher accuracy, produced up to 2,042 gCO₂eq 

521 per 1,000 benchmark tasks—over 70 times more than smaller baseline systems. These findings underscore 

522 a clear tradeoff between model size, reasoning complexity, and sustainability, reinforcing the need for more 

523 efficient architectures and viable funding mechanisms to balance accuracy with environmental 

524 responsibility. At the same time, professional societies and journal editors are increasingly emphasizing 

525 transparency and accountability in AI use, making clear that researchers remain fully responsible for AI-

526 assisted outputs and should disclose such use openly. This dual challenge—technical sustainability and 

527 ethical accountability—raises a crucial question: who will fund and maintain these models in the long term? 
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528 Should governments subsidize open-source AI to ensure public access and oversight? Should academic 

529 institutions take on the burden despite limited resources? Should private organizations contribute, and if 

530 so, how can commercialization be prevented from distorting the open-source ecosystem?

531 The financial sustainability of open-source LLM (i.e., AI for the sake of inclusiveness) is a growing 

532 concern, as maintaining state-of-the-art models goes beyond initial development. It requires continuous 

533 training, security updates, ethical review boards, and regulatory compliance. Without a clear funding 

534 structure, the long-term viability of open-source AI remains uncertain. Furthermore, who is responsible for 

535 the consequences of open-source misuse? If an open-source LLM is used for fraudulent research, 

536 generating deepfake content, or automating cyberattacks, where does accountability lie? This gray area of 

537 responsibility presents one of the most complex ethical dilemmas in AI governance. Clearer regulatory 

538 frameworks are required to address this accountability gap and ensure model providers and deployers 

539 share responsibility (Binz et al., 2025; Bommasani et al., 2022).

540 Thus, while open-source AI may enhance reproducibility, accessibility, and scientific progress, it 

541 also demands a serious discussion on its economic sustainability, regulatory oversight, and security risks. 

542 The scientific community must advocate for openness and establish mechanisms for funding, monitoring, 

543 and ethical governance, ensuring that the benefits of open-source AI outweigh its potential risks. In other 

544 words, multidisciplinary collaboration, spanning AI developers, ethicists, scientists, policymakers, and 

545 affected communities, is needed to establish norms and standards for responsible AI development 

546 (Bommasani et al., 2022; Weidinger et al., 2021).

547 APPLICATIONS OF LARGE LANGUAGE MODELS IN AGRICULTURAL SCIENCES

548 The integration of LLM into animal sciences can transform the way researchers and practitioners 

549 analyze data, optimize livestock management, and develop precision nutrition strategies. Their ability to 

550 process massive datasets, extract meaningful patterns, and provide predictive insights has significant 

551 implications for improving efficiency and sustainability in livestock production. At the same time, the field 

552 must grapple with two critical limitations, as discussed above. First, LLM evolve at a rapid pace, which 

553 means that tools, benchmarks, and reviews can quickly become outdated as newer multimodal or 
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554 reasoning-enhanced models appear. Second, dedicated domain-specific LLM often require substantial 

555 computing resources to fine-tune or deploy while still delivering real-time responses, a challenge for many 

556 research labs and livestock operations. It is essential to distinguish between training (i.e., building a model 

557 from scratch using massive datasets), fine-tuning (i.e., adapting an existing pre-trained model to a narrower 

558 domain), and augmentation (i.e., retrieval-augmented generation, where external documents are integrated 

559 at the inference stage). In animal sciences, most practical applications rely on fine-tuning or augmentation 

560 rather than full training, which is prohibitively expensive for academic or extension contexts.

561 General-purpose LLM, trained on broad, non-specialized corpora, often struggle with discipline-

562 specific reasoning (Alonso et al., 2020). This limitation has motivated the development of domain-specific 

563 LLM, a well-established approach that consistently demonstrates superior performance on specialized 

564 tasks compared to general-purpose models. A landmark example is BloombergGPT (Wu et al., 2023), a 

565 50-billion-parameter model trained on 363 billion financial tokens combined with 345 billion general-purpose 

566 tokens. BloombergGPT outperformed existing models on financial tasks “by significant margins without 

567 sacrificing performance on general LLM benchmarks,” with particularly strong gains in financial filings and 

568 industry-specific documents. A similar pattern is evident in medicine: Me-LLaMA (Xie et al., 2025) 

569 surpassed ChatGPT and GPT-4 in both zero-shot (i.e., performing new tasks without prior task-specific 

570 examples) and supervised settings after task-specific instruction tuning, highlighting the value of “combining 

571 domain-specific continual pretraining with instruction tuning to enhance performance.” Other initiatives echo 

572 this trajectory. For instance, DocOA (Chen et al., 2024) achieved higher accuracy in osteoarthritis 

573 management tasks, while Song et al. (2025) traced the evolution of domain-specific LLM in medicine and 

574 concluded that incorporating domain knowledge significantly improves both efficiency and accuracy across 

575 specialized applications. The theoretical foundation is clear: domain specialization customizes general-

576 purpose LLM with contextual data, knowledge, and constraints tailored to the target field (Xie et al., 2025). 

577 Beyond accuracy, domain-specialized LLM also deliver practical benefits. Kerner (2024) notes that smaller 

578 specialized LLM can outperform larger general models on in-domain tasks while offering faster inference, 

579 lower latency, and reduced training costs. Extending this view, Glasser and Feng (2025) emphasize that 

580 domain-specialized LLM not only enhance performance but also strengthen user trust by grounding outputs 

581 in well-defined disciplinary knowledge. Frameworks such as the Compact and Efficient LLM multi-expert 
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582 system (Huang et al., 2024) and Google Cloud’s design pattern for specializing LLM (Mosenia, 2024) further 

583 illustrate that combining smaller expert models with targeted training can yield higher quality outputs at 

584 lower cost. Taken together, these results provide a robust framework for developing domain-specific 

585 systems that combine broad language capabilities with superior accuracy, efficiency, and contextual 

586 understanding—an approach well-suited to advancing productivity, sustainability, and innovation in animal 

587 science, while also enhancing education and the training of field experts.

588 A balance, therefore, exists between the accessibility of general-purpose systems, such as 

589 ChatGPT (https://chatgpt.com), Claude (https://claude.ai), Gemini (https://gemini.google.com/app), or 

590 Perplexity (https://www.perplexity.ai), which provide broad but less specialized coverage, and dedicated 

591 animal-science LLM, which deliver domain-tailored insights. Examples of these specialized systems are 

592 summarized in Table 2. Regardless of system choice, effective deployment requires domain-specific 

593 prompt engineering strategies. While general principles of prompt engineering have been discussed (White 

594 et al., 2023; Zhou et al., 2023), their application to animal science requires careful adaptation. Structured 

595 prompts that include relevant context—such as 'Given [animal breed], [production stage], [environmental 

596 conditions], and [nutritional parameters], recommend...'—help constrain model outputs to biologically 

597 plausible ranges. A query about 'cattle feed' might return generic information, whereas 'formulate a TMR 

598 for 650 kg Holstein cows producing 35 kg milk/day at 3.8% fat in thermoneutral conditions' yields specific, 

599 actionable recommendations. The effectiveness of domain-adapted prompting remains an area requiring 

600 systematic evaluation, as most prompt engineering research has focused on general knowledge tasks 

601 rather than specialized agricultural applications. Building on this foundation, the following sections examine 

602 the primary applications of LLM in animal sciences, with emphasis on nutrition modeling, disease detection, 

603 genetic selection, and environmental sustainability.

604 Precision Livestock Nutrition

605 One of the most promising applications of LLM in animal science is precision nutrition modeling. 

606 Traditional nutrient requirement models rely on static equations and empirical relationships that do not fully 

607 capture the complexity of individual animal variation, diet composition, and environmental interactions. 
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608 While LLM are not designed to perform statistical analysis or predictive modeling on their own, they can 

609 interact with specialized analytical agents and computational models to facilitate these tasks. As mentioned 

610 before, functioning as “highly skilled personal assistants,” LLM can help researchers manage data, 

611 summarize findings, generate analytical code, and interface with mechanistic or statistical models to 

612 improve efficiency and interpretation. By leveraging ML and LLM-driven data synthesis, researchers can 

613 refine nutritional models to predict feed efficiency and nutrient utilization based on animal genetics, health 

614 status, and environmental conditions; optimize diet formulations by analyzing vast datasets of feed 

615 composition, digestibility, and metabolic responses; and enhance real-time decision-making in precision 

616 feeding systems that adjust rations dynamically based on sensor data. In this capacity, LLM function as 

617 intelligent collaborators that support, rather than replace, domain-specific analytical tools. For instance, 

618 Ferreira and Dórea (2025) highlighted how multimodal AI, including computer vision and LLM, can drive 

619 decision-making in dairy production (Table 2). Similarly, Gontijo et al. (2025) developed DairyGPT, a system 

620 allowing dairy farmers to query numerical databases in natural language, effectively democratizing access 

621 to nutritional information (Table 2).

622 AI-Assisted Disease Diagnosis and Monitoring

623 LLM can assist veterinarians and livestock producers by interpreting and communicating insights 

624 derived from large volumes of health data, including clinical records, pathology reports, and genomic 

625 biomarkers, that are analyzed using core ML algorithms. Rather than directly performing predictive 

626 modeling, LLM serve as integrative tools that help users access, summarize, and contextualize results from 

627 specialized analytical systems. Their capabilities include early disease detection by identifying patterns in 

628 feed intake, body temperature, and behavioral anomalies; automated diagnostics in conditions such as 

629 bovine respiratory disease, mastitis, and metabolic disorders by synthesizing wearable sensor data with 

630 laboratory results; and epidemiological modeling to track transmission pathways and support biosecurity 

631 strategies. In veterinary contexts, several recent works demonstrate these applications. Chu (2024) 

632 provided guidance on using generative AI (ChatGPT) in veterinary clinics and education (Table 2). Fins et 

633 al. (2024) evaluated ChatGPT for mining obesity-related signals in companion animal records, while Farrell 

634 et al. (2023) introduced PetBERT for automated ICD-11 disease coding in veterinary databases (Table 2). 
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635 Jiang et al. (2024) went further with VetLLM, a domain-adapted model capable of predicting diagnoses 

636 directly from veterinary notes (Table 2). Together, these studies show how LLM can function as “highly 

637 skilled personal assistants” that enhance both routine monitoring and population-level health surveillance 

638 when coupled with specialized analytical models.

639 Genetic Selection and Breeding Optimization

640 The application of LLM in genomic and transcriptomic data analysis is reshaping breeding 

641 strategies. Traditional genetic evaluations rely on curated datasets and linear statistical models, whereas 

642 LLM provide a more dynamic, integrative approach. Current applications include trait prediction by mining 

643 multi-omics data to identify genetic markers for efficiency, disease resistance, or fertility; breeding strategy 

644 optimization through AI-driven simulations that balance productivity with genetic diversity; and precision 

645 livestock breeding by integrating phenotypic sensor data with genomic insights to recommend individual-

646 level mating decisions. Although domain-specific applications are still emerging, early experiments suggest 

647 that LLM can augment genomic prediction pipelines and accelerate the interpretation of vast sequencing 

648 datasets.

649 Environmental Sustainability and Emissions Modeling

650 Sustainability is a growing concern in livestock production, particularly with regard to greenhouse 

651 gas emissions and resource efficiency (Tedeschi, 2022; Tedeschi et al., 2015). LLM can contribute to 

652 sustainability modeling by predicting methane emissions from diet composition, microbial communities, and 

653 management practices; evaluating feed additives and interventions aimed at reducing emissions while 

654 maintaining productivity; and modeling climate adaptation strategies, including heat stress responses, 

655 water use, and the resilience of production systems under extreme weather scenarios. Because these 

656 applications require linking heterogeneous datasets (e.g., climate records, feeding trials, and rumen 

657 microbiome sequencing), LLM’s ability to synthesize across domains offers a powerful complement to 

658 mechanistic modeling approaches. Recent methodological studies support this direction. Balaguer et al. 

659 (2024) compared RAG and fine-tuning approaches using agricultural datasets and found that combining 

660 the two improved domain-specific accuracy by more than 10 percentage points. Their findings underscore 
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661 that hybrid pipelines can enhance both the reliability and contextual fidelity of sustainability-related 

662 predictions, particularly in areas where agricultural and environmental data are heterogeneous and rapidly 

663 evolving.

664 Decision-Support Systems for Livestock Management

665 Domain-specialized LLM are increasingly being embedded into decision-support platforms for 

666 livestock producers, enabling data-driven management across nutrition, health, and reproduction. Their 

667 strengths include synthesizing research insights into user-friendly recommendations; improving farm 

668 profitability via predictive analytics for resource allocation; and automating knowledge transfer, providing 

669 extension agents and farmers with real-time advisory support. Recent prototypes illustrate these trends: da 

670 Silva et al. (2025) proposed an LLM-powered agent to summarize regulatory and certification documents 

671 in swine production (Table 2), while Samuel et al. (2025) introduced AgroLLM as a farmer-facing tool to 

672 support knowledge transfer in agriculture (Table 2). Such applications highlight the potential of LLM to 

673 reduce barriers between scientific knowledge and on-farm practice.

674 Another applied example is ExtensionBot (https://extension.org/tools/extbot), developed by the 

675 Extension Foundation as an LLM-powered chatbot that provides farmers and advisors with direct access 

676 to Cooperative Extension knowledge. Unlike general-purpose systems, ExtensionBot is trained on a corpus 

677 of more than 360,000 Extension publications, along with the “Ask Extension” dataset, enabling it to provide 

678 context-specific, science-based responses with source citations. Evaluations of the ExtensionBot indicate 

679 that it delivers more accurate and consistent answers to agricultural queries than ChatGPT, while 

680 minimizing hallucinations (Thomasson et al., 2025). At the same time, its reliability depends on the 

681 freshness and completeness of extension content, underscoring the importance of continually updating the 

682 underlying knowledge base. In contrast, complementary work shows that even general-purpose LLM can 

683 approach expert-level performance when applied to agriculture. Silva et al. (2023), for example, reported 

684 that GPT-4 correctly answered over 90% of agronomist certification exam questions, suggesting its 

685 potential as a “virtual agronomist assistant” for education and extension.
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686 An illustrative example of domain-specialized development in animal sciences is the Smart Adviser 

687 for Rumen Acidosis and Health (SARAH), a decision-support tool created to predict the incidence of 

688 subacute and acute ruminal acidosis (SAARA) in feedlot cattle (Figure 1). SARAH represents the 

689 culmination of extensive foundational work, particularly the development of the Rumen Health Compendium 

690 (RHC) publication (Tedeschi and Nagaraja, 2025), which synthesized advances in rumen anatomy, 

691 physiology, and microbiology, while also addressing the pathology of ruminal dysfunctions such as SAARA 

692 and their implications for nutrition and management. Building on this foundation, the RHC book and its 

693 1,717 references were distilled into the NANP-LLM, a domain-specific LLM developed within the National 

694 Animal Nutrition Program (NANP), which—together with field and academic expertise—was used as a 

695 meta-modeling engine to identify 18 critical animal, dietary, and environmental variables and their 

696 interrelationships. These variables informed the design of SARAH’s random forest (RF) classification 

697 models, which incorporate factors such as starch and physically effective fiber concentrations, feeding 

698 frequency, breed, and climatic stressors. This strategy parallels broader advances in agricultural AI, where 

699 Balaguer et al. (2024) demonstrated that combining retrieval-based grounding with fine-tuned models 

700 improves performance in agricultural applications. Their findings reinforce the rationale for embedding 

701 domain knowledge (e.g., the RHC and NANP-LLM) directly into predictive pipelines. SARAH therefore 

702 exemplifies a “double AI” architecture by leveraging the reasoning and knowledge synthesis capabilities of 

703 a LLM to identify biologically relevant predictors, and the analytical power of a ML model (i.e., RF) to perform 

704 the quantitative prediction. In essence, SARAH uses AI twice: first to think, then to predict, illustrating how 

705 domain-specific intelligence can be operationalized into robust decision-support tools.

706 The smart decision support tool SARAH would allow users to run models with or without cross-

707 validation, using datasets of varying sizes to simulate risk under different production conditions. Preliminary 

708 results show that while untrained RF models may display slightly higher raw accuracy, trained models 

709 provide greater stability, lower variability, and more reliable risk estimates, particularly when using at least 

710 50,000 simulated records (Tedeschi and Kaniyamattam, 2025). Beyond binary classification, SARAH 

711 incorporates concepts of area and time above and under the curve (ATAUC) to capture the dynamics of 

712 ruminal pH fluctuations, providing a biologically grounded estimate of the proportion of animals at risk within 

713 a feedlot pen (Tedeschi, 2025b). By combining the biological depth of the peer-reviewed papers and the 
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714 RHC insights, the structuring capabilities of the NANP-LLM, and robust ML methods, SARAH exemplifies 

715 how modern decision-support systems can bridge mechanistic knowledge with predictive analytics to guide 

716 proactive management of ruminal acidosis in cattle. Looking ahead, integrating SARAH’s data-driven 

717 architecture with mechanistic nutrition models could create a truly hybrid modeling framework (Tedeschi, 

718 2022; Tedeschi, 2023), combining the interpretability and biological fidelity of process-based systems with 

719 the adaptive learning capacity of AI.

720 Together, these applications demonstrate that LLM are no longer peripheral in animal science: they 

721 are being adapted for real-world problems in nutrition, health, breeding, and sustainability. However, 

722 challenges remain. Many tools are still experimental, domain-specific validation is sparse, and the pace of 

723 model innovation means current benchmarks can quickly become outdated. Achieving lasting impact will 

724 require greater integration with mechanistic models, rigorous bias testing, transparent documentation of 

725 training data, and continued domain-specific fine-tuning to ensure scientific reliability and relevance in 

726 animal agriculture.

727 CONCLUSIONS AND IMPLICATIONS

728 The integration of LLM into scientific workflows has already begun to reshape research 

729 methodologies, offering powerful tools for literature review automation, hypothesis generation, and data 

730 analysis. These advancements present significant opportunities for accelerating knowledge discovery and 

731 enhancing productivity across disciplines, including animal sciences, where LLM are being leveraged to 

732 refine nutrition models, optimize genetic selection, and improve disease surveillance. However, as LLM 

733 continue to evolve, their adoption must be approached with caution and responsibility, given the ethical 

734 concerns they raise—particularly in areas of bias, reproducibility, and the potential erosion of human 

735 expertise. In animal sciences, where research directly impacts food security, sustainability, and animal 

736 welfare, ensuring the reliability and accuracy of AI-generated insights is critical.

737 Ensuring scientific integrity in the era of AI-driven research requires a deliberate and balanced 

738 approach. While LLM can enhance efficiency, they must complement human expertise rather than replace 

739 it. Transparency, accountability, and fairness in their deployment are paramount, particularly in maintaining 
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740 the credibility of scientific discourse and ensuring that AI-assisted decision-making in livestock management 

741 and nutrition remains robust and evidence-based. Open-source LLM provide one possible solution to these 

742 concerns, offering greater reproducibility, accessibility, and validation opportunities. Moreover, proper 

743 attribution of AI-generated content, rigorous verification of outputs, and heightened awareness of biases 

744 must become standard practices to ensure that AI-generated knowledge remains trustworthy and ethically 

745 sound.

746 Moving forward, the scientific and agricultural community must continuously evaluate LLM 

747 capabilities and limitations, developing clear guidelines and best practices for their responsible use in 

748 animal science. Particularly promising will be the development of hybrid modeling frameworks that integrate 

749 mechanistic models with data-driven AI systems, linking biological interpretability with predictive power. By 

750 fostering open collaboration and ethical AI governance, researchers, industry professionals, and 

751 policymakers can harness the potential of LLM while upholding the core principles of scientific integrity, 

752 sustainability, and innovation in livestock production. Ultimately, most agricultural applications will not rely 

753 on full model training, but rather on more practical approaches, such as fine-tuning and augmentation.
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Table 1. Contingency tables for statistical decision errors versus large language models' 

response mistakes

Statistical hypothesis testing

H0

True False

Accept

Correct decision

(1 - α)

True negative

Type II Error

(β)

False negative
Decision

Reject

Type I Error

(α)

False positive

Correct decision

(1 - β)

True positive

LLM response generation

Reality/Ground truth

Information does not exist Information exists

Correct

Correct uncertainty

(1 - α)

“I do not know” or accurate knowledge 

gap acknowledgment

Information omission

(β)

Failing to use known information or 

missing valid connections
Response

Incorrect

Hallucination

(α)

Generating false information or creating 

nonexistent connections

Correct generation

(1 - β)

Accurate information generation or 

valid knowledge application
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Table 2. Recent applications of large language models in animal sciences (2023–2025)

Model Domain Application Reference

PetBERT Companion 

animals

Automated ICD-11 disease coding in veterinary 

EHRs for outbreak detection

Farrell et al. 

(2023)

ChatGPT 

(applied)

Veterinary 

medicine

Guidance for clinics, education, and research use 

cases

Chu (2024)

ChatGPT 

(applied)

Companion 

animals

Text mining of clinical records for obesity 

monitoring

Fins et al. 

(2024)

VetLLM Veterinary 

diagnostics

Predicting diagnoses directly from veterinary 

notes

Jiang et al. 

(2024)

DairyGPT Dairy science Natural language access to numerical databases 

for ration and farm management

Gontijo et al. 

(2025)

Computer 

vision and LLM

Dairy science Multimodal AI for decision support in dairy farming, 

focusing on nutrition and management decision 

support

Ferreira and 

Dórea (2025)

Swine LLM 

Agent

Swine 

certification

Summarizing regulatory/certification information 

for farm compliance

da Silva et al. 

(2025)

AgroLLM General 

agriculture

Farmer-facing tool for knowledge transfer and 

advisory support

Samuel et al. 

(2025)
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Figure 1. Workflow for developing the Smart Adviser for Rumen Acidosis and Health (SARAH). 

Scientific knowledge from peer-reviewed publications was consolidated into the Rumen Health 

Compendium book (Tedeschi and Nagaraja, 2025), which contained synthesized data, 

illustrations, and expert insights on rumen function and dysfunction. The Compendium and its 

cited literature were distilled into the NANP-LLM, a domain-specific large language model (LLM) 

developed by the National Animal Nutrition Program (NANP). In collaboration with field and 

academic experts, the NANP-LLM was used to identify 18 key animal, dietary, and environmental 

variables and their relationships, which informed the construction of classification models using 

random forest algorithms. These smart decision tree models were embedded into SARAH to 

predict the proportion of feedlot cattle at risk of subacute and acute ruminal acidosis (SAARA) 

(Tedeschi and Kaniyamattam, 2025).
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