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Lay Summary
Livestock farmers today face multiple challenges, including maintaining animal health and well-
being, minimizing their environmental impact, and staying competitive in a rapidly evolving
world. New Artificial Intelligence (Al)-powered technologies are being developed to help with
these tasks and to enable more intelligent, rapid, and precise agricultural decision-making. This
review examines how Al is changing the way animals are managed. For example, computer
systems can now recognize when an animal is getting sick before visible signs appear, or when it
is ready to breed, based on its movement and behavior. These capabilities depend on smart
technologies such as cameras, sensors, and microphones placed in barns and fields to collect data,
and on Al that transforms that data into useful information and informed decisions. These tools
can save time, improve animal welfare, and increase productivity; however, unreliable internet
access and the high cost of advanced equipment limit their adoption. Most Al systems also require
large, well-labeled datasets and often make decisions that are hard to interpret, which can make
them difficult to trust. This review also addresses essential questions, such as who owns the data
collected from animals and how to ensure that technology doesn’t replace human judgment or care.
The review highlights exciting developments to look forward to, such as combining multiple types
of sensors, using Al that runs directly on the farm, not just in the cloud, and building virtual models
of animals to test decisions. The paper emphasizes that working closely with farmers and other

experts will be key to making these tools practical, fair, and effective.

Teaser Text: This review examines how artificial intelligence is reshaping livestock management

through applications in health monitoring, reproduction, behavior analysis, and precision feeding.

It highlights the current capabilities of Al systems, examines technical and ethical challenges, and
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outlines emerging research opportunities that can advance both animal science and data-driven

agriculture.

Abstract
Artificial intelligence (AI) can transform livestock farming as producers start using data-driven
decisions in key areas, such as animal health, reproduction, behavior, nutrition, and production
management. This review examines how Al technologies, like machine learning, computer vision,
and sensor-based systems, help monitor and manage livestock more precisely, efficiently, and
responsively. From early disease detection and estrus prediction to real-time behavior tracking and
automated feeding systems, Al offers powerful tools for improving productivity, enhancing animal
welfare, and supporting sustainable farm operations. Despite the promising technological
advances, adopting Al in livestock systems comes with significant challenges. These include
issues related to data quality and availability, model generalizability, infrastructure limitations, and
ethical concerns involving data privacy and animal welfare. This review critically examines these
obstacles and points out the need for robust, interpretable Al solutions that can adapt to specific
farm conditions and offer meaningful explanations to end-users. Emerging trends like multimodal
sensor fusion, digital twins, edge Al, and the integration of Al with genomics and climate data
offer exciting possibilities for next-generation livestock management and smart farming systems.
It is equally crucial to focus on human-centered design, participatory design, and group model-
building approaches to ensure Al tools are accessible, trusted, and address the real needs of farmers
and caregivers. This paper explores Al’s potential to change livestock farming while advocating
for interdisciplinary collaboration, inclusive innovation, and responsible deployment. It

synthesizes current applications, challenges, and research frontiers. Ultimately, AI’s impact on

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

9z0z Aenuer g| uo 1senb Aq vi1E8E8/ L vieNs/Sel/c60L 0 L/10p/ajole-aoueApe/SEl/Ww oo dno olwapede//:sdiy woly pspeojumoq



60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

Journal of Animal Science

animal agriculture depends on technical advancements as well as our ability to integrate these tools

into systems that are biologically sound, socially accepted, and ethically responsible.

Keywords: digital agriculture, precision livestock farming, sensor integration, smart farming.

List of Abbreviations: ADAPT = Agricultural Data Application Programming Toolkit; Al =
artificial intelligence; ANN = artificial neural network; AR = augmented reality; ATOL = Animal
Trait Ontology for Livestock; CAST = Council for Agricultural Science and Technology; CNN =
convolutional neural network; CV = computer vision; DL = deep learning; DSS = decision support
system(s); FAIR = Findable, Accessible, Interoperable, and Reusable; FCC = Federal
Communications Commission, GMB = group model building; GNSS = Global Navigation
Satellite System; GPS = Global Positioning System; HCD = human-centered design; HGS = Horse
Grimace Scale; HIMM = hybrid intelligent mechanistic model; IoT = Internet of Things; LIME =
Local Interpretable Model-agnostic Explanations; LoORaWAN = Long Range Wide Area Network;
LPS = local positioning system; LSTM = long short-term memory; ML = machine learning; MPE
=mean percentage error; PLF = precision livestock farming; R-CNN = region-based convolutional
neural network; RFID = radio-frequency identification; RGB = red, green, blue; RGB-D = red,
green, blue + depth; RNN = recurrent neural network; ROI = region of interest; SHAP = SHapley
Additive exPlanations; SNA = social network analysis; THI = temperature—humidity index; XAI

= explainable Al; YOLO = You Only Look Once; 5G = fifth-generation mobile network.
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INTRODUCTION

The global livestock industry is transforming amid increasing demands for productivity,
animal welfare, environmental sustainability, and labor efficiency (Niloofar et al., 2021).
Traditionally, monitoring of animal health, reproduction, and nutrition depended on human
observation, manual records, and periodic interventions. However, increasing system complexity,
larger operation scales, and societal expectations for transparency and animal well-being now
require more precise, data-driven approaches (Thumba et al., 2020). This shift marks the
emergence of precision livestock farming (PLF), which integrates real-time data and automated
technologies to enhance animal management (Berckmans, 2017).

Among the enabling technologies in PLF, artificial intelligence (AI) stands out as a
transformative tool. Al encompasses machine learning (ML), computer vision (CV), and other
computational techniques that enable machines to analyze data, recognize patterns, and make
informed decisions (Fuentes et al., 2022; Melak et al., 2024). In livestock systems, Al technologies
are increasingly employed to identify early signs of disease from video or sound data, detect estrus
from behavioral cues, estimate body weight from images, and adjust feeding strategies based on
real-time intake patterns (Garcia et al., 2020). These applications rely on the convergence of
enabling technologies, including the Internet of Things (IeT), wearable and non-invasive sensors,
thermal and multispectral imaging, cloud computing, and real-time analytics platforms.

The potential of Al in livestock systems is substantial. For instance, ML algorithms can
now process thousands of data points per animal daily, providing unprecedented insights into
individual and herd-level behavior (McVey et al., 2023). Many CV systems have demonstrated
the capability for early disease detection, enabling proactive management and supporting earlier

interventions (Okinda et al., 2019; Jorquera-Chavez et al., 2021; Parikh et al., 2024). Similarly,
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audio analysis technologies effectively differentiate coughing patterns or vocalizations associated
with stress or respiratory illness (Cordeiro et al., 2013; Carpentier et al., 2018; Wang et al., 2024).

Despite these promising developments, the implementation of Al in livestock systems
continues to face significant challenges. The diversity of livestock environments, ranging from
large commercial operations to smallholder farms, makes it difficult to standardize data collection
and deploy robust Al systems. Additionally, ethical and legal concerns regarding data privacy,
algorithmic bias, and displacement of traditional labor roles require careful consideration.
Furthermore, technical challenges such as sensor reliability, data quality, and model
generalizability continue to hinder the widespread adoption of these technologies (Georgopoulos
et al., 2020; Kaushik et al., 2024).

This literature review summarizes current knowledge on the integration of Al in livestock
farming systems. It examines core Al applications in the domains of health, reproduction,
behavior, nutrition, and production, highlighting emerging trends in multimodal sensing, edge
computing, and digital twin technologies. It also discusses persistent challenges, including limited
data availability, model interpretability, infrastructure constraints, and stakeholder adoption. It
then outlines future research opportunities and proposes pathways toward scalable, responsible,
and inclusive implementation of Al in livestock farming.

The objectives of this paper are to provide background on Al technologies and their
relevance to livestock farming, including a historical perspective; to explore current Al
applications across key livestock management domains, with emphasis on real-world
implementations and recent scientific developments; to examine significant challenges and

barriers to adoption, spanning technical and operational constraints as well as ethical and social
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implications; and to discuss emerging trends and innovative research directions, followed by a

conclusion and future outlook.

BACKGROUND AND TECHNOLOGICAL FOUNDATIONS
Overview of Artificial Intelligence in Agriculture

Artificial intelligence refers to computational systems capable of performing tasks that
typically require human intelligence, including learning from data, recognizing patterns, making
predictions, and solving problems. Machine learning, a subset of Al, enables algorithms to learn
from data, identify patterns, and adapt their outputs without explicit rule-based programming. This
allows systems to improve performance with experience. Deep learning (DL), an advanced subset
of ML, employs artificial neural networks (ANNs) to model complex, hierarchical patterns,
making it well suited to image and sound recognition tasks common in agricultural monitoring
(Kamilaris and Prenafeta-Boldu, 2018). Computer vision is another essential subfield of Al that
enables automated interpretation of visual data, such as images or videos, to monitor livestock
behavior, identify individuals, or detect signs of illness (Liu et al., 2020; McDonagh et al., 2021;
Han et al., 2023; Islam et al., 2023).

In agricultural systems, Al processes large and heterogeneous data streams obtained from
sensors, cameras, microphones, and other digital devices (Tedeschi et al., 2021). A key strength of
Al is its ability to detect complex, often nonlinear relationships in large, multidimensional datasets
that are invisible to human observers or traditional statistical approaches. For example, Al systems
can continuously monitor herds without human intervention and flag animals that deviate from

normal patterns of activity, feeding, vocalizations, and posture, for example.
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Many agricultural Al systems employ several learning paradigms. Supervised learning,
where models are trained on labeled data, is commonly used for classification tasks such as
identifying lameness or forecasting feed intake. In contrast, unsupervised learning explores
unlabeled data to detect latent behavioral patterns, group animals with similar activity profiles, or
flag anomalies. Although still emerging in livestock applications, reinforcement learning enables
adaptive systems, such as autonomous feeders, to learn optimal strategies as they interact
continuously and receive feedback.

The efficacy of Al systems in agriculture depends on a supporting technology ecosystem.
The IoT could integrate wearable sensors, automated feeders, environmental monitors, and
cameras, enabling continuous, real-time data collection and monitoring. Edge computing could
enhance data processing directly on the farm or on devices, reducing latency and enabling prompt
interventions. For example, low-power devices installed in poultry houses or barns could process
temperature, sound, and activity data locally, triggering immediate alerts without relying on cloud
connectivity. Cloud computing can complement edge solutions with scalable storage and robust
analytics, enabling integration and analysis of data from multiple sources or farms. Moreover, 5G
and other wireless connectivity advancements, such as LoRaWAN, could further enhance real-
time data transmission, which is essential for remote or extensive farming operations.

Together, these technologies form the infrastructure for successful Al implementation in
livestock farming systems. However, reaching their full potential requires careful integration that
ensures interoperability and alignment with animals’ biological and behavioral complexities, and

with real-world farming challenges.

Evolution of Al in Livestock Systems
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The adoption of Al in livestock farming has evolved from manual observation tools to
increasingly automated and intelligent systems. This trajectory helps contextualize current and
emerging applications. Initial implementations of PLF technologies primarily relied on radio-
frequency identification (RFID) tags, automated weighing systems, and basic alert systems that
flagged abnormalities such as ventilation failures or reduced water intake (Berckmans, 2006).

As technological capabilities advanced, real-time sensor-based systems became more
common. Devices such as accelerometers, thermal cameras, global positioning system (GPS)
trackers, and microphones enabled continuous, individual-level monitoring of livestock behavior
and physiology. For example, accelerometers have been used to monitor feeding and locomotion
in dairy cows (Vazquez Diosdado et al., 2015; Beer et al., 2016; Barker et al., 2018; Werner et al.,
2019; Igbal et al., 2021; Balasso et al., 2021), while thermal imaging has enabled early detection
of disease and mastitis (Schaefer et al., 2012; Zhang et al., 2020; Anagnostopoulos et al., 2021;
Wang et al., 2022a; Gayathri et al., 2024).

By the 2010s, ML and CV began to gain traction in animal agriculture. ML algorithms
demonstrated value in tasks such as predicting tail-biting outbreaks in pigs (Larsen et al., 2019;
Domun et al., 2019; Ollagnier et al., 2023) and monitoring rumination patterns of cows (Hamilton
et al., 2019; Ayadi et al., 2020; Abdanan Mehdizadeh et al., 2023; Li et al., 2024). Convolutional
neural networks (CNNs), a class of DL models, were applied successfully to behavior recognition
tasks, including detecting lying, feeding, and mounting in cattle and pigs (Li et al., 2019; Alameer
et al., 2020; Chen et al., 2020a; Achour et al., 2020; Fuentes et al., 2020; Yu et al., 2022).
Additionally, CV models have shown high accuracy for estimating livestock body weight,
providing a non-invasive alternative to traditional weighing systems that rely on scales (Ma et al.,

2024a).
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The rise of multimodal sensing systems has further expanded Al capabilities. Researchers
have reported stronger robustness and accuracy when data from multiple sources are combined,
such as audio, thermal, and 3D video inputs. For example, studies have used multimodal data,
including audio and images, to improve the detection of respiratory diseases in pigs (Ji et al., 2022;
Chae et al., 2024). In dairy systems, multi-sensor approaches have enabled detection of metabolic
disorders, oestrus, and behavior (Holman et al., 2011; Sturm et al., 2020; Tian et al., 2021;
Arablouei et al., 2023).

Despite the growing body of evidence supporting the efficacy of Al in livestock systems,
adoption remains variable across farm sizes and regions. Larger operations often possess the
infrastructure and capital necessary to implement and maintain advanced technologies. At the same
time, smaller farms and ranches may face barriers such as high costs, a lack of digital literacy, and
limited access to data interpretation tools. Moreover, variability in environmental conditions,
animal genetics, and housing systems across production sites limits the generalizability of Al
models and requires site-specific calibration and validation.

Nonetheless, Al research in animal agriculture is expanding rapidly, with open-access
datasets, advances in sensor design, and interdisciplinary collaborations accelerating progress. For
instance, research increasingly focuses on making models more interpretable and accessible to
producers through user-friendly interfaces and the incorporation of domain expertise into
algorithm development (Sykes et al., 2022; Mallinger et al., 2024; Neethirajan et al., 2024),
including the development of hybrid intelligent mechanistic models (HIMM). These models
combine AI’s pattern recognition capabilities with biologically based mechanistic models to

enhance explainability and robustness (Tedeschi, 2019, 2022, 2023).

10
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CURRENT APPLICATIONS OF AI IN ANIMAL FARMING
Artificial Intelligence has emerged as a transformative tool in livestock production
systems. It enables real-time, non-invasive monitoring and supports data-driven decision-making.
Validated Al applications now cover animal health, reproduction, behavior, feeding, identification,
and integrated farm management. These systems increasingly rely on ML and DL to process
complex datasets from video, audio, thermal imaging, and wearable or environmental sensors.

Table 1 provides a structured overview of Al applications in key areas of animal farming.

Animal Health Monitoring

Animal health is foundational to sustainable and profitable livestock production, and the
early identification of disease is crucial for minimizing treatment costs, preventing outbreaks, and
improving animal welfare. Traditional methods, such as visual inspection or threshold alarms from
isolated sensors, often detect conditions too late for optimal intervention. Al approaches provide a
transformative upgrade to these systems. They integrate multimodal sensor data and automatically
detect patterns or anomalies associated with health deterioration. enabling continuous, remote, and
scalable health monitoring across species and housing systems.

A key area of research has been the detection of mastitis, a prevalent and costly disease in
dairy cattle. Studies have demonstrated that ML algorithms that integrate sensor data such as milk
yield, somatic cell count, electrical conductivity, and behavior metrics like rumination time
outperform traditional threshold methods. For example, Tian et al. (2024) reported that combining
milk production and conductivity data using supervised ML models improved early detection of

clinical mastitis. Similarly, Cavero et al. (2008) used an ANN to classify mastitis presence with

11
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promising results. A broader review by Ozella et al. (2023) noted that Al-based mastitis models
are increasingly incorporated into automatic milking systems for real-time detection.

Lameness detection is another well-established application of Al. This condition is difficult
to identify with visual observation in large or group-housed herds. Early work explored image-
processing methods (Song et al., 2008; Condotta et al., 2020), and later studies integrated CV-
based models to accelerate analysis and enable real-time use. Wu et al. (2020) applied a YOLOvV3-
based DL model to analyze top-view video data and identify dairy cows with abnormal gait
patterns in real time. In pigs, Zhenbang et al. (2024) used a 3D CNN to classify gait sequences
from video footage, achieving strong agreement with expert scoring. These systems enable
consistent and objective evaluation of locomotor issues, making them well-suited for integration
into automated management platforms.

Beyond locomotion, Al has also been applied to evaluate health-related physical indicators,
such as body condition and pain expression. Cevik (2020) demonstrated the use of DL to
automatically classify body condition scores from images of dairy cows, offering a non-invasive
and repeatable alternative to manual scoring. Additionally, facial recognition models using CNNs
have been trained to detect pain in sheep based on ear posture, eye changes, and muscle tension
(Noor et al., 2020). These approaches are promising for welfare monitoring but require broader
validation across species and environments.

Audio-based disease monitoring has also been successfully implemented. Respiratory
diseases often manifest through coughing or sneezing before more visible symptoms appear. Chae
et al. (2024) developed a multimodal DL system using CNNs and recurrent neural networks
(RNNs) to detect cough events in pigs accurately. Likewise, Schaefer et al. (2012) demonstrated

that infrared thermography could detect early respiratory infections in calves and identified

12
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increased eye and nasal temperatures as early indicators. This finding supports integration of
multimodal approaches, such as combining visual and acoustic signals, into Al-based systems.

This integration of multimodal data, including video, audio, thermal, and motion sensor
streams, is in early stages of study to further enhance the robustness of Al-based health diagnostics.
For example, Dhaliwal and Neethirajan (2025) demonstrated that combining video and audio
improved early lameness detection in dairy cows, with fewer false positives than unimodal models.
These fusion-based approaches can offer redundancy, which in Al systems means the duplication
of critical components to increase reliability, safety, and fault tolerance under noisy or incomplete
conditions.

Additionally, wearable sensor data, such as accelerometers, rumination monitors, or
temperature tags, can be used in ML models to track early physiological deviations. These models
have been used for a range of applications, including the prediction of metabolic disorders, fever
detection, and monitoring of stress responses in cattle, swine, and sheep (Neethirajan, 2017; Stygar
et al., 2021; Jorquera-Chavez et al., 2021).

While these technologies advance rapidly, current systems remain under development and
are often limited to pilot or semi-commercial stages. Validation in large, diverse herds and

different management systems remains essential for widespread adoption.

Reproductive Monitoring and Estrus Detection

Efficient and timely estrus detection is essential for maximizing reproductive success in
animal farming. Accurate identification of the onset of estrus enables better insemination timing,
improves conception rates, reduces hormone use, and minimizes labor associated with visual

monitoring. Traditional methods, such as chalking, standing heat observation, or tail painting, are

13
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often subjective, labor intensive, and less effective in group-housed systems. Artificial
intelligence, particularly systems powered by CV, acoustic analysis, and deep learning, can
provide new tools for automated, continuous, and individualized estrus monitoring across species,
with calibration often needed for different species and housing systems.

Al-driven CV technologies have been used to detect behavioral cues of estrus, including
increased locomotion, standing reflex, and mounting behavior. For example, Li et al. (2019)
developed a DL-based system that recognized mounting behavior in pigs using surveillance video
footage. Kiister et al. (2020) implemented CV to monitor changes in sow activity, showing that
video-based behavior analysis can detect events related to estrus and farrowing. More recently,
Lodkaew et al. (2023) introduced CowXNet, a DL framework for estrus detection in dairy cattle
using visual behavior cues in group-housed systems, which effectively tracks individual cows
within herd environments.

Thermal imaging has also been explored as a method for estrus prediction. Feng et al.
(2019) demonstrated that infrared thermal cameras could detect temperature increases in sow
vulvas, an indicator of estrus. They used partial least squares regression to predict rectal
temperatures with an R? of 0.80. If integrated with behavioral cues and CV systems, this approach
could enhance the accuracy of estrus detection.

Multimodal Al systems that integrate data from various sensors, such as visual, motion,
thermal, and audio, are increasingly being explored to enhance the robustness of livestock behavior
monitoring under commercial conditions. For instance, Cai et al. (2025) developed a multimodal
feature fusion method that combines audio and thermal infrared image data to improve the
accuracy and robustness of estrus monitoring in breeding pigs. Additionally, Aryawan et al. (2024)

proposed a novel approach using pose estimation with a deep learning model for real-time estrus

14
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detection in female cows. Furthermore, Arikan et al. (2023) introduced a method that integrates
estrus detection with cow identification for use with augmented reality (AR) devices, employing
deep learning-based mounting detection and then the system identified the mounting region of
interest (ROI) with a YOLOvS5 model.

Acoustic signals associated with estrus, including specific vocalizations, have also been
analyzed with Al Jung et al. (2021) developed a CNN-based system to classify cattle vocalizations
in real time using noise-filtered audio, achieving classification accuracy above 90%. While their
system was not designed exclusively for estrus detection, similar acoustic features have been
reported to correlate with estrus phases in pigs and cattle (Schon et al., 2007; Wang et al., 2022,
2023) and could be combined with video or thermal inputs into multimodal monitoring tools.

Field-level validation of Al systems remains crucial for commercial adoption. Verhoeven
et al. (2023) evaluated an Al-powered estrus detection system in sows using over 6,700
reproductive cycles across three farms. The system, which used overhead cameras and a behavior
recognition algorithm, significantly improved farrowing rates and reduced repeat breedings at two
of the farms under routine farm conditions.

Finally, fuzzy logic and ML models applied to sensor data have also performed well. Zarchi
et al. (2009) developed a fuzzy logic-based model for estrus detection in dairy cows, achieving
85.3% sensitivity and 100% specificity using data on milk conductivity, activity, and yield. In a
motion-based application, Aloo et al. (2024) trained an artificial neural network on accelerometer

and temperature data to detect estrus in cattle, yielding an accuracy of 89.5%.

Behavior and Welfare Assessment
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Animal behavior serves as a crucial indicator of welfare status. Changes in postural
activity, feeding frequency, rest patterns, and social interactions often precede overt signs of
illness, pain, or stress. Traditional behavioral assessments rely heavily on human observation,
which is subjective, intermittent, and impractical for large-scale or continuous monitoring.
Artificial intelligence enables automated, scalable, and real-time behavioral assessments in
livestock production systems when combined with sensor technologies such as video, wearables,
and microphones.

Computer vision and DL models have been widely used to monitor behaviors such as lying,
standing, walking, and feeding. Nasirahmadi et al. (2019) developed a system using image
processing and machine learning to automatically classify pig postures from overhead images,
enabling real-time tracking of activity in group-housed environments. Cowton et al. (2019)
designed a DL pipeline capable of identifying and tracking individual pigs, extracting behavior
metrics like location, movement, and feeding duration.

To capture temporal patterns in behavior, CNNs have been combined with long short-term
memory (LSTM) architectures. Chen et al. (2020b) employed a CNN-LSTM model to analyze
video footage of pigs, aiming to identify aggression episodes. Their system achieved high
classification accuracy (97.2%), demonstrating how the combination of spatial and temporal
features could enhance behavior detection under commercial housing conditions.

Advanced CV models, such as instance segmentation, enable the identification of multiple
animals in the same frame, even under occlusion. Hu et al. (2021), for example, proposed a dual
attention-guided feature pyramid network for segmenting and tracking pigs in dense pen
environments. These methods are particularly useful in swine and poultry systems where animals

often overlap in camera views.
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Al approaches have also been developed to monitor social behaviors and group-level
dynamics. Social network analysis (SNA) can be used to quantify affiliative and aggressive
behaviors in livestock through analysis of proximity, co-occurrence, and interaction patterns
derived from automated monitoring systems. Agha et al. (2025) demonstrated this approach with
positioning data from pigs, revealing latent social structures within pens and offering insights into
social hierarchy formation and individual variability in sociality.

Facial recognition and expression analysis have gained traction as tools for assessing pain
and emotional states in farm animals, with the goal of supporting non-invasive, real-time welfare
assessment across species. These methods rely on identifying specific facial action units, such as
orbital tightening, ear position, and changes in the nose or mouth, that correlate with discomfort.
Noor et al. (2020) trained convolutional neural networks to detect such features in sheep, resulting
in a reliable and automated sheep grimace scale. In horses, Dalla Costa et al. (2014) developed the
Horse Grimace Scale (HGS) to assess pain following routine castration, focusing on facial
expressions like stiffly backward ears, orbital tightening, and tension around the eye area.
Similarly, D1 Giminiani et al. (2016) introduced the Piglet Grimace Scale to evaluate pain in piglets
undergoing tail docking and castration, identifying specific action units, such as bulging cheeks
and orbital tightening.

In addition to pain recognition, facial analysis has also been explored to assess emotional
states. The WUR Wolf platform, developed by Neethirajan (2021), applies deep learning
algorithms such as YOLOv3, YOLOv4, and Faster R-CNN to monitor facial features, including
ear posture and eye white visibility, in cattle and pigs. When linked with other behavioral and
physiological data streams, the platform targets broader welfare monitoring goals. The system

achieved a classification accuracy of around 85% and was designed for real-time monitoring.
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Wearable sensors, such as accelerometers, are widely used to monitor movement and
activity in dairy cattle, pigs, and small ruminants. These devices can detect deviations from normal
movement or lying behavior, which may indicate discomfort or illness. When paired with ML
models, they enable automated behavior classification and facilitate longitudinal welfare
monitoring. Fuentes et al. (2022) reviewed such systems, noting their scalability and high
predictive performance in real-world applications.

Acoustic monitoring offers another promising avenue for assessing welfare. Animals
vocalize differently in response to stress or pain, and Al models can accurately classify these
vocalizations. Jung et al. (2021) developed a real-time vocal classification system for cattle using
CNNs and noise-filtering preprocessing. Their system achieved classification accuracy of over
90%, demonstrating the potential for sound-based welfare indicators.

A review by Debauche et al. (2021) highlights that many Al techniques developed for
behavior monitoring in one species can be generalized to others, particularly for common
behaviors like grazing, lying, and locomotion. They emphasize the benefits of combining multiple
sensors, such as accelerometers, video, and microphones, to improve classification accuracy. The
placement of sensors and the selection of appropriate data processing algorithms are also critical
for system performance. Additionally, trends such as edge computing are enabling real-time
behavior analysis directly on the farm, reducing data transmission costs and latency.

The integration of multimodal systems is becoming increasingly common. These systems
improve detection robustness under varying environmental conditions and animal behaviors.
Wang et al. (2022) and Fuentes et al. (2022) emphasize that future systems are likely to rely on

DL architectures capable of processing multimodal inputs for enhanced welfare analysis.
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Precision Feeding and Nutrition

Feeding represents the most significant variable cost in livestock production, making feed
efficiency and precision nutrition vital for economic and environmental sustainability. Al
technologies have emerged as powerful tools to individualize feeding strategies based on real-time
and historical data on intake behavior, growth, physiological status, and activity patterns. These
approaches reduce feed waste, improve animal performance, and help minimize environmental
impacts such as methane emissions from enteric fermentation.

Al-powered systems are used to estimate feed intake, support individualized feeding
optimization, and predict feeding behavior using various sensor modalities. In dairy cattle, Bezen
et al. (2020) developed a CV system utilizing RGB-D cameras and DL algorithms to estimate
individual cow feed intake with high accuracy. Additionally, Bloch et al. (2021) proposed a system
to measure individual cow feed intake in commercial dairies that used CV for individual cow
identification. These studies exemplify Al’s ability to support site-specific feeding decisions, and
they enable dynamic diet formulation for enhanced efficiency. Additionally, predictive models
could incorporate factors such as milk production, body weight, lactation stage, and environmental
conditions to estimate daily nutrient requirements and inform ration adjustments, which supports
more responsive feeding management.

Multimodal systems that combine video, audio, and accelerometer data have also shown
promising results. Barker et al. (2018) employed a combination of local positioning systems (LPS)
and accelerometers to quantify feeding behavior in lame versus non-lame dairy cattle, which
enables the early identification of animals deviating from normal feeding patterns. In extensive
grazing systems, wearable GPS collars and accelerometers have been deployed to track livestock

location and activity. Machine learning algorithms, particularly Random Forest classifiers, have
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been used to distinguish between grazing, walking, resting, and ruminating behaviors. For
example, Williams et al. (2016) employed GPS data and ML techniques to model pasture use in
dairy cows, showing high predictive accuracy for spatial behavior analysis.

Poultry operations are starting to benefit from Al applications that monitor feed intake and
assess growth. Vision systems using depth cameras and CNNs have been developed to recognize
feeding behavior and estimate body size in crowded environments. For instance, Guo et al. (2022)
demonstrated that video-based models can detect broiler feeding behavior with high precision,
highlighting the potential of non-invasive tools for monitoring flock-level patterns. While daily
tracking and individualized feed adjustments remain under development, these tools provide
valuable insights that can support more responsive management strategies. In broiler systems,
Aydin et al. (2015) introduced a sound-based monitoring tool capable of estimating feed intake
using audio signals from pecking behaviors. The model distinguished feeding activity in real-time,
offering a potentially scalable, non-invasive method to track consumption across multiple animals
simultaneously.

In swine production, real-time growth monitoring using CV models has the potential to
inform feeding interventions. Chen et al. (2020a) employed a video-based deep learning model to
detect and quantify feeding time in pigs, distinguishing individual behaviors, such as feeding,
drinking, and idling, from overhead video footage. Systems like those presented by Cang et al.
(2019) estimate pig weight patterns without interrupting animal routines, and can enable adaptive
feed delivery based on projected growth trajectories.

Overall, Al advances livestock feeding and enables data-driven decisions tailored to the
biological needs of individual animals or groups, with potential benefits for productivity, animal

welfare, and carbon-footprint reduction. Al-based precision feeding enhances feeding efficiency
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and reduces nitrogen oversupply, which decreases waste and limits excess nitrogen and
phosphorus excretion, which are key contributors to ammonia and nitrous oxide emissions from
manure management (Pomar et al., 2021). Improved nutrient use efficiency is also linked with
environmental sustainability; for example, recent lifecycle assessments have shown that precision
feeding strategies can lower global warming potential as they reduce feed inputs per unit of animal
product (Llorens et al., 2024). Feed-crop production (including fertilizer, land-use change, and
transport) and enteric methane emissions are among the largest contributors to greenhouse-gas
emissions in ruminant livestock systems (Grossi et al., 2019). As a result, even modest gains in
feed conversion efficiency can reduce emission intensity.

Production Monitoring and Management

Monitoring livestock productivity is crucial to effective farm management, as it informs
decisions related to nutrition, marketing, reproduction, and health. While manual assessments of
growth, milk yield, or egg production remain common, they are labor-intensive and often lack
precision or timeliness. Al technologies have the potential to offer scalable, non-invasive
alternatives for continuous productivity monitoring. These tools support individualized
management as they extract performance metrics from visual, acoustic, and environmental data
streams.

One of the most widely studied Al applications in this domain is body weight estimation
using computer vision. Accurate body weight is a critical productivity metric for beef, dairy, swine,
and poultry systems; however, traditional weighing methods are time-consuming and stressful for
animals. Multiple studies have demonstrated that CV-based approaches can automate weight
estimation using RGB or depth images. For example, Condotta et al. (2018) predicted grow-

finishing pigs’ weights from depth images using ANNs with MPE as low as 3.93% (R? between
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predicted and actual weight of up to 0.99). Similarly, Cominotte et al. (2020) employed a Kinect
depth camera combined with regression and neural networks to estimate body weight and average
daily gain in beef cattle, achieving high predictive accuracy (R* up to 0.92). Wang et al. (2021)
reviewed digital image-based ML models across species and emphasized their utility in supporting
management decisions such as optimal marketing time and detecting deviations from expected
growth curves.

Condotta et al. (2020) emphasized the importance of considering the body weight, size,
and conformation of modern animals when designing facilities and equipment, showcasing the use
of depth imaging techniques to acquire dimensions of interest. Similarly, recent reviews have
detailed advances in animal body dimension measurement techniques. Ma et al. (2024a) and Ma
et al. (2024b) investigated the application of RGB cameras, 3D laser scanning, and stereo vision
systems for collecting point cloud data and extracting anatomical features, including length, height,
girth, and area. These features can serve as inputs for Al-based growth models, replacing manual
measurements with automated, repeatable assessments conducted without animal handling. Such
systems are increasingly explored for use in both confined housing and open-grazing systems.

In poultry production, imaging techniques have been applied for the automated acquisition
of body dimensions and weight prediction (Benicio et al., 2023). More recently, Al models enable
faster acquisition of these variables for near real-time assessment. These tools provide a non-
invasive alternative to manual weighing and can support more frequent assessments of flock
development. Lyu et al. (2023), for example, evaluated the use of ML algorithms to predict broiler
body weight based on image-derived measurements collected on-farm. Their study demonstrated
that these models could achieve high predictive accuracy under experimental conditions,

indicating potential for further development into practical monitoring tools.
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Beyond body weight and size, Al tools are being integrated into milk yield and productivity
monitoring platforms. These systems combine data from robotic milkers, activity monitors,
environmental sensors, and feeding systems. Al models are used to detect anomalies in milk
production related to health disorders (e.g., mastitis), environmental stress (e.g., heat), or
nutritional imbalances. Tian et al. (2024) and Ozella et al. (2023) noted that combining multiple
sensor inputs with ML algorithms improves the timeliness and accuracy of detecting production-
related deviations compared to traditional threshold-based alerts.

In egg production systems, DL models are being explored for automated egg counting,
quality grading, and defect detection. These technologies aim to streamline post-laying processing
and enhance product quality consistency. For instance, Yang et al. (2023) developed a computer
vision-based system that achieved up to 94.8% accuracy in classifying eggs into categories such
as intact, cracked, bloody, floor, and non-standard, while also predicting egg weight using a
combination of convolutional neural networks and random forest algorithms. Similarly, Huang et
al. (2023) proposed a video-based detection model that utilizes an improved YOLOVS5 algorithm
combined with ByteTrack for the real-time detection of broken unwashed eggs in dynamic scenes,
achieving a detection accuracy of 96.4%. Further validation and integration into commercial
operations remain necessary to realize these benefits.

At the broader farm level, Al technologies are increasingly being incorporated into decision
support systems (DSS) that integrate health, feeding, reproduction, productivity, and
environmental data to support real-time and predictive decision-making. These systems aim to
streamline complex data flows into actionable insights. They use performance dashboards, alerts,
and forecasting models. Distante et al. (2025) emphasized the central role of Al in enabling

automated and adaptive DSS architectures, particularly through integrating machine learning
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pipelines with sensor networks. Niloofar et al. (2021) further noted that data-driven DSS can
improve animal health and welfare while supporting greenhouse gas mitigation strategies. Their
reviews emphasize the importance of interoperable data architectures and the growing interest in
multimodal, Al-powered decision frameworks to achieve productivity and sustainability goals in
livestock systems.

Al-based anomaly detection is an emerging application in livestock production monitoring.
These systems typically utilize ML algorithms trained on historical time-series data such as milk
yield, growth trajectories, or feed intake to identify deviations from expected patterns. Rather than
replacing existing thresholds, these models aim to provide earlier or more context-sensitive alerts
that may indicate underlying issues such as illness, suboptimal nutrition, or environmental
stressors. For instance, Guien et al. (2025) developed an anomaly detection algorithm using
wavelet transform features to identify deviations in cow activity, enabling early detection of
disease or estrus. Similarly, Michielon et al. (2024) presented an Al-enhanced monitoring
framework that integrates DL models to assess animal welfare metrics, facilitating timely
interventions. Most anomaly detection models remain in research or pilot stages and require

validation under diverse commercial conditions before broad adoption.

KEY CHALLENGES AND LIMITATIONS
Despite rapid advances in technology, the widespread integration of Al in livestock
production remains limited. While numerous academic studies and pilot projects have
demonstrated the potential of Al systems to enhance monitoring, decision-making, and efficiency,
real-world implementation across diverse farming systems continues to evolve. Key barriers

include technical constraints, limited infrastructure, data and privacy concerns, cultural and
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operational challenges, and the need for user-centered design. Addressing these interconnected
issues will be essential to ensure that Al tools are inclusive, practical, and truly supportive of long-
term sustainability in animal agriculture. Table 2 summarizes the major challenges for Al adoption

in animal farming systems, the affected stakeholders, and proposed mitigation strategies.

Data and Model Challenges
Data quantity and quality

The effectiveness of Al systems in livestock production critically depends on the
availability of large, diverse, and well-annotated datasets, especially for supervised learning
approaches. Yet, data limitations remain one of the most persistent barriers in this field. High-
resolution, labeled datasets are scarce, and they are often fragmented across farms and institutions
and rarely standardized for sensor types, annotation protocols, or sampling frequency. Sensor data
is frequently affected by environmental noise, inconsistent calibration, and animal movement.
These issues further complicate model training and validation (Tedeschi et al., 2021; Stygar et al.,
2021).

Additionally, datasets often lack representation of rare but biologically significant events
such as illness onset, aggressive interactions, or reproductive anomalies. These imbalances reduce
model reliability and can lead to poor generalization during real-world deployment. In particular,
behavior-based datasets are typically unstructured and contain few clearly labeled edge cases,
which makes it challenging to extract reliable behavioral patterns (McVey et al., 2023).

To address these issues, several research groups have developed open, annotated datasets
to support Al development in livestock contexts. For instance, the PigLife dataset offers video

clips and images across various pig production phases, including breeding, gestation, farrowing,
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weaning, nursery, growth, and finishing stages, with annotations for object identification, pig
posture, and behavior labels (Li et al., 2024b). Similarly, MultiCamCows2024 provides a multi-
view image dataset comprising over 100,000 images of Holstein-Friesian cattle captured with
ceiling-mounted cameras over seven days on a working dairy farm, which facilitates biometric
identification and behavior analysis (Yu et al.,, 2024). These initiatives are essential for
benchmarking Al tools, fostering algorithm development, and promoting reproducibility across
research groups, and they will require broader investment and collaboration to expand across
species, management systems, and production conditions.

Model transferability and generalization

A significant challenge in deploying Al systems across diverse livestock farming
environments is the limited transferability of models. Models trained in data from specific breeds,
housing types, or sensor systems often perform poorly when applied to different contexts. For
instance, a lameness detection model developed for Holstein cows in free-stall housing may not
generalize to Jersey cows in pasture-based setups because locomotion patterns, backgrounds, and
data quality differ. This issue, known as domain shift, complicates scalability and reduces the
reliability of Al systems outside their original training domain.

To address this, researchers are exploring transfer learning, domain adaptation, and
federated learning, which aim to improve model robustness across different production
environments. For example, unsupervised domain adaptation methods have been employed to
mitigate sensor variability and interspecies heterogeneity in animal activity recognition tasks (Ahn
et al., 2023). Additionally, federated learning frameworks, such as FedAAR, have been developed
to enable collaborative model training across farms without sharing sensitive data, which preserves

privacy and enhances model generalization (Mao et al., 2022). However, these techniques are still
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largely experimental in livestock contexts, and practical implementation remains limited because
of high technical complexity, computational demands, and the need for ongoing updates as farm
conditions evolve.

Explainability and trust

The complexity and “black box” nature of many Al algorithms, particularly DL models,
present significant barriers to adoption in livestock management (Tedeschi, 2019). Stakeholders,
including farmers, veterinarians, and regulators, require clear insights into how Al systems
generate specific predictions or recommendations, particularly in critical areas such as animal
health, reproduction, and welfare. A lack of transparency can lead to skepticism and reluctance to
rely on these tools.

The field of Explainable Artificial Intelligence (XAI) has emerged to address these
concerns, and develops methods that make Al decision-making processes more transparent and
interpretable (Hoxhallari et al., 2022). Techniques such as SHapley Additive exPlanations (SHAP)
and Local Interpretable Model-Agnostic Explanations (LIME) are increasingly used to elucidate
the contributions of input features to model outputs, thereby enhancing user understanding and
trust (Cartolano et al., 2024).

In the context of PLF, integrating XAI methods can provide stakeholders with
comprehensible explanations of Al-driven decisions, which can facilitate better acceptance and
more effective interventions. Useful deployment also depends on interfaces that present
explanations clearly to farmers and veterinarians. For instance, applying SHAP and LIME to
models predicting animal health outcomes could help veterinarians and farmers understand the

underlying factors influencing predictions and support more informed decision-making.
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However, practical implementation of XAl in livestock systems remains at an early stage.
Challenges include model complexity, the need for user-friendly interfaces, and integration with
existing farm management practices. Ongoing research and development are essential to tailor

these explainability tools to the specific needs and capabilities of agricultural stakeholders.

Technical and Infrastructure Constraints
Sensor reliability and maintenance

Sensors are fundamental components of Al-driven livestock systems; however, their
reliability often suffers under the harsh and variable conditions typical of farm environments
(Tedeschietal., 2021; Stygar et al., 2021). Factors such as dust, moisture, temperature fluctuations,
animal interference, and improper equipment handling can severely degrade sensor accuracy and
reduce device lifespan. Devices like wearable sensors may frequently detach or become damaged
due to animal behavior, creating gaps and erroneous readings that compromise the accuracy of Al
models (Stygar et al., 2021; Neethirajan, 2024). Ensuring continuous, high-quality data collection
requires regular sensor calibration, maintenance, and troubleshooting. Unfortunately, producers
often lack the technical expertise, resources, or motivation necessary for consistent sensor
management, and this exacerbates data reliability issues (Tedeschi et al., 2021; Greig et al., 2023;
Neethirajan, 2024). Efforts to improve sensor durability and robustness include ruggedized
hardware and automated diagnostic systems, such as the one proposed by Schulthess et al. (2024),
yet many of these options remain relatively costly or underexplored in livestock contexts (Tedeschi
etal., 2021).

Connectivity and processing limitations
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Reliable internet connectivity remains a significant challenge for many livestock
operations, particularly in rural areas. The Federal Communications Commission (FCC) reported
that in 2019, approximately 17% of people living in rural areas in the United States lacked
broadband access, compared to 1% in urban areas. This lack of connectivity limits the
implementation of cloud-based Al systems that require stable internet connections for data
processing and storage. Uploading high-resolution video or audio data for real-time Al processing
is often impractical in regions with limited bandwidth, which limits data use and slows system
response.

Edge computing, which processes data locally on the farm rather than sending it to
centralized servers, offers a promising solution to these connectivity challenges. Edge computing
enables real-time data analysis and reduces dependence on internet connectivity, which enhances
the efficiency of Al-driven livestock management systems. However, deploying and maintaining
edge computing infrastructure requires sophisticated hardware and stable power sources, and these
requirements can pose significant technical and financial burdens for producers. Moreover,
integrating locally processed data with central databases for benchmarking and long-term analytics
remains a complex and challenging task.

Integration and interoperability

Livestock operations often use a mix of technologies from multiple vendors, including
automated milking systems, RFID readers, climate control units, and feeding equipment. Many of
these systems lack standardized communication protocols, which creates interoperability issues
that complicate data integration and hinder the development of comprehensive Al-driven decision
support systems. The absence of standardized data formats and communication protocols also

blocks progress toward unified Al platforms and dashboards. Recent efforts, such as those
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described in CAST (2025), recommend adopting frameworks such as the FAIR (Findable,
Accessible, Interoperable, and Reusable) data principles and AgGateway’s ADAPT (Agricultural
Data Application Programming Toolkit, 2019) to enhance interoperability and enable efficient data
exchange across farm systems. Additionally, work on open-source platforms, standardized APIs,
and interoperability frameworks is ongoing, yet efforts remain fragmented and thinly supported.
Enhanced industry-wide cooperation and regulatory support are essential for progress in this
domain (Bahlo et al., 2019; Habib et al., 2025).

Ethical, Legal, and Social Considerations

Data privacy, cybersecurity, and ownership

The proliferation of Al technologies in livestock farming has produced highly granular
data, raising significant concerns about data privacy, ownership, and security. Farmers often face
uncertainty about who holds rights to the data collected from commercial sensors, how this data
can be shared or sold, and the implications for regulatory oversight or competitive advantage.
Many producers fear potential data misuse by insurers, competitors, or regulators, particularly if
the data reveal operational shortcomings or animal welfare issues and harm their reputation (Kaur
et al., 2025).

The lack of clear legal frameworks defining data ownership in agriculture exacerbates these
concerns. Agricultural technology providers (ATPs) often have extensive control over farm data
under complex service agreements, sometimes without farmers fully understanding the
implications. As a result, farmers may inadvertently relinquish control of their data, which limits
their ability to manage its use and distribution (Wiseman et al., 2019; Kaur et al., 2025).

There is a pressing need for transparent data governance frameworks that clearly define

ownership rights, usage permissions, and data anonymization practices to address these challenges.
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Such frameworks would help build trust among stakeholders and facilitate the broader adoption of
Al technologies in agriculture. Initiatives like the American Farm Bureau Federation’s “Privacy
and Security Principles for Farm Data” (established in 2014 and updated in 2024 by the Ag Data
Transparent organization) aim to establish guidelines for responsible data management,
emphasizing the importance of farmer control over their data. However, these principles are
voluntary and lack the enforceability of formal legislation.

Collaborative efforts among farmers, technology providers, policymakers, and researchers
are crucial for developing and implementing robust data governance policies that protect farmers’
interests and promote innovation in Al-driven livestock management.

In addition to concerns about ownership and privacy, integrating Al and autonomous
systems into agriculture introduces critical cybersecurity risks. The potential for cyberattacks to
disrupt Al-enabled agricultural systems, including autonomous equipment and decision-support
tools, is real (CAST, 2025). Threat actors could exploit software or communications infrastructure
vulnerabilities, compromising operations, data integrity, and food security. Effective mitigation
requires comprehensive cybersecurity strategies to safeguard the benefits of digital agriculture.
Bias, fairness, and animal ethics

While Al technologies offer significant potential for improving livestock management,
they also raise important ethical and fairness considerations that require proactive attention. One
concern is that models trained on data from high-performing or well-resourced farms may not
generalize well to other production systems. This could inadvertently introduce or reinforce biases,
leading to unequal performance across farm types and widening existing technological divides
(Albergante et al., 2025). Such disparities exemplify the need for diverse, representative datasets

and cross-environment validation protocols.

31

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

9z0z Aenuer g| uo 1senb Aq vi1E8E8/ L vieNs/Sel/c60L 0 L/10p/ajole-aoueApe/SEl/Ww oo dno olwapede//:sdiy woly pspeojumoq



698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

Journal of Animal Science

Additionally, increasing automation of routine tasks may reduce the frequency and quality
of human-animal interactions, which play a recognized role in supporting animal welfare. Studies
have shown that regular positive contact improves animal behavior and productivity, while its
absence may hinder early detection of welfare issues or reduce empathetic caregiving (Zulkifli,
2013; Cornou, 2009). Although automation can alleviate labor burdens, systems must be designed
to support, rather than replace, routine visual checks and care practices by trained staff.

There are also broader concerns that Al tools could contribute to intensified production
systems that prioritize output over well-being when implemented without clear animal welfare
guidelines. For example, optimization algorithms designed to increase throughput could
unintentionally lead to conditions like overcrowding or neglect of individual health needs (Bossert,
2024). However, these risks can be mitigated through animal-centric design principles into Al
development. Strategies such as embedding welfare thresholds into optimization models, using
sensor systems for real-time individual health monitoring, and requiring human oversight in
decision loops have been proposed to balance productivity with welfare goals (Webber, 2022;
Neethirajan, 2024; Rosati, 2025). Mitigation also benefits from engagement with ethicists, animal
welfare experts, producers, and policymakers to ensure responsible and equitable deployment
across the livestock industry.

Adoption resistance and training gaps

The integration of Al technologies into livestock systems brings significant human-
centered challenges. Many producers exhibit skepticism or hesitation toward adopting Al tools
due to unfamiliarity, concerns about the effectiveness of technology, and fears of job displacement

or erosion of traditional farming knowledge. Economic constraints, inadequate infrastructure, and
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limited technological knowledge further exacerbate these barriers, particularly among small- and
medium-sized farms (Dibbern et al., 2024).

Bridging these gaps requires comprehensive capacity-building strategies. Targeted
educational programs and extension services can build technological literacy and show the
practical benefits of Al applications in livestock management (Atapattu et al., 2024). Participatory
design initiatives that involve farmers in the development and implementation of Al tools help
tailor technologies to the specific needs and contexts of end users (Mallinger et al., 2024).
Demonstration farms showcasing Al technologies can serve as tangible examples of successful
integration, fostering trust and encouraging wider adoption.

User-centered design is particularly essential. Ensuring that AI tools are intuitive,
adaptable, and compatible with existing farm management practices could lower the learning curve
and increase user engagement (Ajibola & Erasmus, 2024). Such strategies would support the
adoption of Al technologies and promote sustainable and efficient livestock farming practices.

Finally, a growing concern is that increased automation and reliance on Al could erode
traditional farming skills and reduce the transfer of experiential knowledge across generations
(CAST, 2025). Maintaining a balance between technological assistance and foundational
knowledge is essential for long-term resilience, adaptability, and independence within the

agricultural workforce (Tedeschi, 2019).

EMERGING TRENDS AND RESEARCH OPPORTUNITIES
As Al technologies mature and the livestock industry continues to digitize, several
emerging trends are likely to significantly influence future research and development. These

potential innovations reflect a shift from isolated tools to integrated, context-aware, and adaptive
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systems. At the same time, researchers are increasingly exploring multisensory integration, novel
computational techniques, and participatory approaches that involve producers directly in system
design and deployment. This section discusses some key trends and research opportunities that

might shape Al advancements in livestock farming.

Multimodal Sensor Fusion and Digital Twins

The increasing availability of diverse sensors in livestock farming presents opportunities
for multimodal sensor fusion, which enhances the accuracy of Al predictions, reduces false alarms,
and captures complex physiological states and behaviors. For instance, integrating accelerometry
and Global Navigation Satellite System (GNSS) data has been shown to improve the classification
of animal behaviors, such as walking and drinking, when movement patterns are combined with
location information (Arablouei et al., 2023). Similarly, fusing acoustic and linguistic data has
demonstrated effectiveness in decoding dairy cow vocalizations, providing insights into their
emotional states and welfare (Jobarteh et al., 2024).

A promising research avenue involves the development of digital twin technologies, which
are virtual representations of animals or entire farm systems continuously updated with real-time
sensor data. Building on decades of simulated-population work in animal science to study various
aspects of the production system, such as nutrient flows, herd dynamics, and disease spread
(Gouttenoire et al., 2011; Black, 2014), the new contribution of digital twins is their ability to
integrate multimodal sensor data and update system states in real-time. These Al-enabled, data-
driven twins can simulate various management scenarios, including health risks, productivity
outcomes, and environmental impacts, thereby aiding decision-making processes (Neethirajan &

Kemp, 2021). Implementing digital twins in livestock farming has the potential to improve animal
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health and welfare, optimize feed rations, and reduce operational costs when inefficiencies are
identified (Symeonaki et al., 2024). However, achieving effective digital twins requires
advancements in data integration frameworks, real-time processing capabilities, and robust

biological modeling to ensure the creation of meaningful simulations.

Edge AI and Real-Time Inference

As Al applications in livestock farming evolve, Edge Al is emerging as a promising
direction for enabling real-time decision-making on the farm. Unlike traditional cloud-based
approaches, Edge Al involves deploying models directly onto local hardware devices, so data is
processed at the source. This can address challenges such as unreliable internet connectivity,
latency, and data privacy concerns, which are common barriers in rural production settings.

Prototype systems have demonstrated how Edge Al could support on-farm monitoring of
animal health and behavior. For example, local devices that analyze data from wearable sensors or
environmental cameras may be used to flag behavioral anomalies, such as signs of aggression or
discomfort. While these applications are still in the early stages of development, they suggest the
potential for more responsive and automated interventions to improve animal welfare and
management efficiency (Arablouei et al., 2023).

To make Edge Al viable in livestock contexts, researchers are exploring lightweight model
architectures such as MobileNet and Tiny YOLO, designed to run on low-power devices.
Additional strategies, like model pruning, quantization, and other compression techniques, can
reduce computational demands without significantly compromising performance. These
developments make it more feasible to run AI models on affordable, ruggedized hardware suited

to agricultural environments (Avanija et al., 2024).
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Federated learning complements this direction by training models locally and sharing only
model updates, not raw data, with a central server. This approach preserves data privacy while
enabling collective model improvement across geographically distributed operations. In
combination with edge inference, reported benefits include greater resilience, stronger privacy
protections, and more context-relevant performance for real-time monitoring and decision support
(Dembani et al., 2025). Current livestock research combines Edge Al and federated learning in

experimental systems, and deployment at production scale remains limited.

Integration with Genomics, Nutrition, and Climate Data

Emerging research suggests that integrating genomic, nutritional, and environmental data
into Al models holds considerable promise for enhancing predictive capabilities and informing
management strategies in livestock farming. Although current Al applications often operate within
a single domain, such as health monitoring or behavioral analysis, broader integration is feasible
through multimodal data fusion strategies that combine biological measurements with production
and environmental records to produce context-aware predictions.

This approach integrates information from multiple sources, including genotypes, sensor-
based phenotypes, feed intake proxies, and climate conditions, within a unified analytical
framework. Fully integrated systems that robustly attribute performance changes to genetics, heat
stress, or nutrition are still rare, but context-aware models are feasible and have shown promise
for improved biological interpretation when genomics are modeled jointly with recorded
environmental exposures such as temperature—humidity index (THI) and nutrition-related
indicators such as mid-infrared—derived energy balance and dry matter intake estimates.

Momentum toward integrated systems is accelerating in precision livestock research, supported by
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advances in multimodal learning, interoperable farm data platforms, such as Dairy Brain, and
standardized trait ontologies, such as the Animal Trait Ontology for Livestock (ATOL) (Golik et
al., 2012; McParland et al., 2014; Garner et al., 2016; Cabrera et al., 2021; Aguilar-Lazcano et al.,
2023; Landi et al., 2023; Kaur et al., 2023; McWhorter et al., 2023; Brito et al., 2025; McFadden
et al., 2025).

Environmental and climatic variables are increasingly incorporated into Al systems due to
their strong influence on animal performance, health, and welfare. In this context, “environment”
refers to local and immediate conditions within the production system, such as temperature,
humidity, ventilation, air quality, stocking density, and housing design. In contrast, “climate”
describes broader and longer-term weather patterns, including seasonal heat trends and extreme
weather variability, which shape long-term risk exposure for livestock systems. Al tools are being
developed to integrate these environmental and climatic inputs with animal-level sensor data,
thereby improving the early detection of stress responses, such as heat stress or disease risk, and
supporting adaptive management strategies under variable climatic conditions (Reeves et al., 2015;
Derner & Augustine, 2016; Chapman et al., 2023; Rebez et al., 2024; Woodward et al., 2024;
Eckhardt et al., 2025).

Incorporating genomic data into Al models is being explored as a way to improve
predictions related to disease susceptibility and support precision breeding strategies. Machine
learning algorithms have been applied to capture nonlinear effects and complex interactions within
genomic datasets. However, results remain mixed as several comparative studies have reported
that deep learning methods do not consistently outperform linear additive models for genomic
prediction, especially when training datasets are limited. Even with these limitations, continued

research is evaluating whether integrating genomic data with phenotypic and environmental
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information through multimodal Al frameworks may yield more robust prediction accuracy for
features of the genome (Abdollahi-Arpanahi et al., 2020; Montesinos-Lopez et al., 2021; Chafai
et al., 2023; Lourencgo et al, 2024; DZermeikaité et al., 2025; Klingstrom et al., 2025).

Similarly, Al-driven nutritional models that integrate dietary inputs, nutrient digestibility,
and microbiome profiles are under development to better inform individualized feeding strategies.
These systems may contribute to optimizing feed efficiency and improving animal health;
however, most remain at a research or prototype stage, rather than undergoing widespread adoption
(Tedeschi, 2022; Pomar & Remus, 2023).

Realizing the full value of this kind of integrated approach requires overcoming key
challenges in multi-scale data harmonization, causal inference modeling, and the development of
robust datasets that link genetic, phenotypic, and environmental data. Continued interdisciplinary
research and stakeholder collaboration will be critical to making these complex systems practical

and impactful for producers.

Human-Centered Design and Participatory Al

Human-centered design (HCD), participatory design, and group model building (GMB)
are increasingly recognized as essential for improving the usability and adoption of Al
technologies in livestock systems. Historically, limited stakeholder involvement during Al system
development led to a poor fit with operational realities and lowered adoption (McGrath et al.,
2023).

Human-centered design emphasizes iterative design centered on the needs, constraints, and
workflows of end-users. In livestock contexts, this ensures Al tools are intuitive, robust, and

aligned with the daily practices of producers and veterinarians (Garard et al., 2024). Participatory
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design extends this approach through direct stakeholder involvement in co-design activities such
as workshops and prototyping. It has been used in agriculture to enhance alignment between
technology and farm-level decision-making, including integration with constraint programming to
reflect farmer priorities (Challand et al., 2025).

Building on participatory design, GMB introduces a structured, system dynamics-based
approach to collaborative modeling. GMB uses facilitated sessions to help stakeholder groups
define problems, develop shared mental models, and simulate policy or management scenarios
(Vennix, 1996; Andersen, 2007). Unlike traditional modeling that separates analysts from end-
users, GMB treats model construction as a participatory process, strengthening system
understanding and shared ownership of outcomes. As described in Andersen et al. (2007), models
built through GMB serve a dual role. They function as formal simulations of policy systems and
as boundary objects that support dialogue, surface assumptions, and structure decision-making. A
central benefit of GMB is that it creates space for experiential knowledge from producers, which
is often overlooked in datasets but is essential for understanding real production constraints and
management logic. Incorporating producer knowledge into model structure fosters trust and
increases the likelihood that resulting Al tools will be viewed as credible and relevant to on-farm
decision-making. This dual identity enhances analytical rigor and stakeholder engagement, making
GMB especially well-suited for guiding the integration of Al in complex, context-rich
environments.

Group model building has long been used in agricultural development to improve
collective understanding of complex issues like animal health, resource use, and farm economics
(Gouttenoire et al., 2013). Recently, this approach has expanded to incorporate Al models into the

collaborative process, not just as analysis tools but as active “co-modelers.” In these emerging
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hybrid formats, Al tools simulate real-time projections and surface patterns in complex datasets or
evaluate scenario trade-offs while users supply contextual knowledge and refine inputs.

Framing Al tools as collaborative modeling partners, rather than black-box decision
engines, improves interpretability and trust. Trust is strengthened when producers can see their
input reflected in model assumptions and outputs, reinforcing transparency and model legitimacy.
When users help define model logic and interrogate outputs, they are more likely to integrate the
tool into routine decision-making. Explainable Al techniques, such as SHAP and LIME, support
this approach as they clarify how input data influences recommendations (Hoxhallari et al., 2022;
Mallinger et al., 2024).

Finally, expanding educational resources (e.g., simulation-based training, intuitive mobile
interfaces, peer-led workshops) and encouraging shared learning across design traditions, as GMB
practice has done in Europe and the U.S., are critical to mainstreaming participatory Al in
agriculture to ensure Al technologies are accessible and actionable for producers at various levels
of digital literacy (Prajapati et al., 2025). The continued refinement of collaborative modeling
methods and evaluation of their effectiveness are essential for scaling inclusive Al innovation in

livestock systems (Andersen et al., 2007).

CONCLUSION AND FUTURE PERSPECTIVES
Artificial intelligence has the potential to significantly reshape livestock farming in ways
that were scarcely imagined a decade ago. From enhancing early disease detection and estrus
monitoring to optimizing feeding strategies and behavior tracking, Al-driven systems are
beginning to redefine animal care and management. These technologies hold promise not only for

improving productivity and animal welfare but also for addressing labor shortages, reducing
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environmental impacts, and strengthening the resilience of livestock systems in response to global
challenges such as climate change and food insecurity.

Nevertheless, significant barriers hinder widespread adoption. These challenges include
data availability and quality, model generalization across diverse farming contexts, technical
infrastructure constraints, ethical concerns, and socio-cultural acceptance. Limited training
datasets, fragmented and proprietary technologies, sensor reliability issues, and insufficient rural
connectivity present substantial hurdles. Additionally, issues surrounding algorithmic
transparency, explainability, data governance, and user trust have a critical impact on stakeholder
acceptance.

Addressing these challenges requires more than technical innovation alone; it requires
holistic, systems-oriented strategies that are sensitive to the biological, social, and economic
complexities of animal agriculture. Realistically, adoption depends on strengthening the broader
PLF ecosystem, which involves linking producers, vendors, connectivity, open standards, and
service capacity, so that point solutions operate as a coherent whole. Future Al developments could
benefit from creating adaptable, interpretable models tailored to diverse farm contexts and from
investments in infrastructure improvements such as robust rural connectivity and effective edge
computing solutions. Developing clear guidelines for data ownership, privacy, and transparency
will also be essential in building trust among producers and stakeholders.

Promising research directions highlighted in this review, such as multimodal sensor fusion,
digital twin technologies, edge computing, genomics and climate data integration, and human-
centered design approaches, include avenues to foster more comprehensive and responsive

livestock management systems. These advancements depend on overcoming current technical and

41

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

9z0z Aenuer g| uo 1senb Aq vi1E8E8/ L vieNs/Sel/c60L 0 L/10p/ajole-aoueApe/SEl/Ww oo dno olwapede//:sdiy woly pspeojumoq



926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

Journal of Animal Science

methodological challenges, such as data integration, real-time processing, lightweight modeling
architectures, and effective stakeholder engagement.

Interdisciplinary collaboration could significantly enhance the success of Al in livestock
farming. Policymaking supportive of open data initiatives, interdisciplinary funding opportunities,
and extensive capacity-building programs for end-users could further strengthen the adoption
ecosystem.

As Al becomes more embedded within livestock systems, the human role is likely to evolve
rather than diminish, transforming producers into informed system managers and insightful data
interpreters. Al technologies, therefore, might serve as partners, amplifying human expertise rather
than replacing it, thus fostering more sustainable, ethical, and productive animal agriculture
practices.

Although numerous challenges remain, the opportunities are substantial. Real progress
now depends on moving from pilots to validated, farm-ready systems, prioritizing interpretability
and trust, and building open, interoperable data ecosystems with clear governance. In practical
terms, the field should publish reproducible, context-aware baselines, invest in standards that allow
sensors and software to interoperate, co-design tools with producers using group model building,
and judge success by farm-relevant outcomes such as timely alerts, avoided treatments, and
reduced repeat breedings. Taken together, these steps can make Al not only possible but reliably

useful in daily production.
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Table 1. Overview of Al applications across animal farming domains.

Domain Input Modality Key Applications
Mastitis detection, lameness
Milk yield, SCC, conductivity, detection, pain/facial analysis, fever
Health Monitoring activity, thermal images, audio | detection, respiratory illness

detection

Video footage, posture,
accelerometry

Gait and body condition monitoring

Reproduction &
Estrus Detection

Video (mounting, locomotion),
thermal IR, pose estimation

Estrus prediction, reproductive cycle
monitoring

Audio recordings (vocalization)

Estrus-associated vocalization
classification

Multimodal fusion (video +
thermal + audio)

Enhanced estrus and farrowing
detection

Behavior &
Welfare
Assessment

Video, audio, accelerometers,
facial images, positioning
Sensors

Aggression detection, social network
analysis, grimace scales, emotional
state monitoring

Multimodal systems (CV +
audio + motion)

Welfare tracking and stress
monitoring

Nutrition &
Precision Feeding

RGB-D cameras, audio
(pecking/chewing), GPS, LPS,
accelerometers

Feed intake estimation, feeding
behavior classification

CV and audio combined with
growth tracking

Growth-based feed adjustment
systems

Productivity
Monitoring

RGB, 3D, or depth cameras,
body dimension extraction,
milk/egg data

Weight prediction, milk yield
anomaly detection, egg grading

Video-based monitoring systems

Egg counting, defect detection

Sensor + ML integration

Production forecasting, anomaly
detection
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Table 2. Major challenges and potential research directions for AI adoption in animal
farming systems.

Challenge Specific Description Affected Example Solution or
Area Challenge P Stakeholders | Response
Lack of large, Development of
Data quantity diverse, labeled Researchers, open-access
and qualit datasets; sensor develoners annotated datasets
q y noise; limited event p (e.g., PigLife,
variability MultiCamCows2024)
Imbalance in
datasets for Synthetic data
Rare event . . .
. detecting health/ Al developers | generation, sampling
representation .
reproduction cues methods
like disease onset
Domain shift limits
Model generalization Researchers, Transfer leamlqg,
- across breeds, . domain adaptation,
Data and | transferability . integrators .
housing, and federated learning
Model .
Challenges environments
Few standardized Community
Lack of general | tasks or datasets for | Research challenges,
benchmarks livestock Al community benchmarking
evaluation platforms
| DL models function Explainable Al (XAI)
Explainability | as black boxes, Farmers, vets, . .
and trust hindering trust in regulators techniques like
g s 1 g SHAP and LIME
alerts and decisions
.. U.SGrS cannot easily Visual analytics,
Limited user | view what Al .
. Producers, dashboards with
interfaces for | systems are .
. . o advisors transparent
interpretation seeing” or how o .
justifications
they reason
Damage or failure Rugged hardware,
Sensor due to dust,
3y ere . . Farmers automated
reliability moisture, or animal . i
diagnostics
contact
Technical Sensor Wearables dislodge Demgn
& detachment or or drift. creatin Farmers improvements,
Infrastruc calibration ’ g embedded calibration
. gaps or false data
ture issues alerts
Constraint Many rural areas .
s Connectivity | lack broadband to Small farms, Edge Al offline-
N capable tools,
limitations support cloud-based | rural users
Al LoRa/mesh networks
Edge computing | Real-time edge Farmers, Lightweight
hardware costs | devices are still integrators architectures (e.g.,
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expensive or

TinyML, model

limited in pruning)
processing power
I ibl
System ncompatible Tech Open-source APlIs,
. . software/hardware . .
integration & . providers, industry data
. o from different .
interoperability integrators standards
vendors
Transparent
.| Unclear ownership governance, data
Data ownership .
and sovernance of sensor-collected | Farmers sharing agreements,
g data; risk of misuse Ag Data Transparent
principles
Cybersecurity Farm data may be Producers, Encrypted' storage,
. vulnerable to . farm-specific access
risks ) tech providers
breaches or misuse controls
. AI.tOOIS may be Underserved . ..
Bias and trained on high- Diverse training data,
. . farm types, . o
fairness performing farms, cross-site validation
) smallholders
. not generalizable
Ethical, ;
Leoal. and Over-automation
gL Reduced risks loss of daily . Hybrid systems that
Social . . Caregivers, g
human-animal | contact important . prompt visual
Concerns . . animals . :
interaction for welfare inspection, staff alerts
monitoring
Algorithms may
Welfare trade- | prioritize Producers, Embed welfare
offs in throughput over policy thresholds in
optimization | animal comfort if advocates optimization routines
not constrained
No legally .
Lack of enforceable ethics Industry consortia,
. Government, | regulatory
regulation or | or performance . .
industry frameworks, third-
standards standards for arty audits
livestock Al party
Technological Many producers . Extension programs,
unfamiliarit lack background in | Farmers visual training tools
Y | Aldata systems g
Adoption . Black-box nature,
Perceived . .
and . unfriendly User-centered design,
. complexity of | . End-users o
Training tools interfaces mobile interfaces
Gaps discourage use
. Concern that Al Reframing Al as
Fear of job .
. may replace labor- | Farmworkers | augmentative,
displacement

intensive roles

retraining initiatives
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Cost and risk

Capital costs and
uncertainty about

Demonstration farms,

aversion return delay All producers | phased investment
. plans
adoption
Lack of Tools b.u ilt w1t1_10ut Co-design
. . farmer input fail to | Farmers, . .
participatory workshops, iterative
. meet real-world developers ;
design prototyping

needs

72

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Page 72 of 72

9z0z Aenuer g| uo 1senb Aq vi1E8E8/ L vieNs/Sel/c60L 0 L/10p/ajole-aoueApe/SEl/Ww oo dno olwapede//:sdiy woly pspeojumoq





