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14 Lay Summary

15 Livestock farmers today face multiple challenges, including maintaining animal health and well-

16 being, minimizing their environmental impact, and staying competitive in a rapidly evolving 

17 world. New Artificial Intelligence (AI)-powered technologies are being developed to help with 

18 these tasks and to enable more intelligent, rapid, and precise agricultural decision-making. This 

19 review examines how AI is changing the way animals are managed. For example, computer 

20 systems can now recognize when an animal is getting sick before visible signs appear, or when it 

21 is ready to breed, based on its movement and behavior. These capabilities depend on smart 

22 technologies such as cameras, sensors, and microphones placed in barns and fields to collect data, 

23 and on AI that transforms that data into useful information and informed decisions. These tools 

24 can save time, improve animal welfare, and increase productivity; however, unreliable internet 

25 access and the high cost of advanced equipment limit their adoption. Most AI systems also require 

26 large, well-labeled datasets and often make decisions that are hard to interpret, which can make 

27 them difficult to trust. This review also addresses essential questions, such as who owns the data 

28 collected from animals and how to ensure that technology doesn’t replace human judgment or care. 

29 The review highlights exciting developments to look forward to, such as combining multiple types 

30 of sensors, using AI that runs directly on the farm, not just in the cloud, and building virtual models 

31 of animals to test decisions. The paper emphasizes that working closely with farmers and other 

32 experts will be key to making these tools practical, fair, and effective.

33

34 Teaser Text: This review examines how artificial intelligence is reshaping livestock management 

35 through applications in health monitoring, reproduction, behavior analysis, and precision feeding. 

36 It highlights the current capabilities of AI systems, examines technical and ethical challenges, and 
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37 outlines emerging research opportunities that can advance both animal science and data-driven 

38 agriculture.

39

40 Abstract

41 Artificial intelligence (AI) can transform livestock farming as producers start using data-driven 

42 decisions in key areas, such as animal health, reproduction, behavior, nutrition, and production 

43 management. This review examines how AI technologies, like machine learning, computer vision, 

44 and sensor-based systems, help monitor and manage livestock more precisely, efficiently, and 

45 responsively. From early disease detection and estrus prediction to real-time behavior tracking and 

46 automated feeding systems, AI offers powerful tools for improving productivity, enhancing animal 

47 welfare, and supporting sustainable farm operations. Despite the promising technological 

48 advances, adopting AI in livestock systems comes with significant challenges. These include 

49 issues related to data quality and availability, model generalizability, infrastructure limitations, and 

50 ethical concerns involving data privacy and animal welfare. This review critically examines these 

51 obstacles and points out the need for robust, interpretable AI solutions that can adapt to specific 

52 farm conditions and offer meaningful explanations to end-users. Emerging trends like multimodal 

53 sensor fusion, digital twins, edge AI, and the integration of AI with genomics and climate data 

54 offer exciting possibilities for next-generation livestock management and smart farming systems. 

55 It is equally crucial to focus on human-centered design, participatory design, and group model-

56 building approaches to ensure AI tools are accessible, trusted, and address the real needs of farmers 

57 and caregivers. This paper explores AI’s potential to change livestock farming while advocating 

58 for interdisciplinary collaboration, inclusive innovation, and responsible deployment. It 

59 synthesizes current applications, challenges, and research frontiers. Ultimately, AI’s impact on 
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60 animal agriculture depends on technical advancements as well as our ability to integrate these tools 

61 into systems that are biologically sound, socially accepted, and ethically responsible.

62

63 Keywords: digital agriculture, precision livestock farming, sensor integration, smart farming.

64

65 List of Abbreviations: ADAPT = Agricultural Data Application Programming Toolkit; AI = 

66 artificial intelligence; ANN = artificial neural network; AR = augmented reality; ATOL = Animal 

67 Trait Ontology for Livestock; CAST = Council for Agricultural Science and Technology; CNN = 

68 convolutional neural network; CV = computer vision; DL = deep learning; DSS = decision support 

69 system(s); FAIR = Findable, Accessible, Interoperable, and Reusable; FCC = Federal 

70 Communications Commission; GMB = group model building; GNSS = Global Navigation 

71 Satellite System; GPS = Global Positioning System; HCD = human-centered design; HGS = Horse 

72 Grimace Scale; HIMM = hybrid intelligent mechanistic model; IoT = Internet of Things; LIME = 

73 Local Interpretable Model-agnostic Explanations; LoRaWAN = Long Range Wide Area Network; 

74 LPS = local positioning system; LSTM = long short-term memory; ML = machine learning; MPE 

75 = mean percentage error; PLF = precision livestock farming; R-CNN = region-based convolutional 

76 neural network; RFID = radio-frequency identification; RGB = red, green, blue; RGB-D = red, 

77 green, blue + depth; RNN = recurrent neural network; ROI = region of interest; SHAP = SHapley 

78 Additive exPlanations; SNA = social network analysis; THI = temperature–humidity index; XAI 

79 = explainable AI; YOLO = You Only Look Once; 5G = fifth-generation mobile network.

80

81

82
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83 INTRODUCTION

84 The global livestock industry is transforming amid increasing demands for productivity, 

85 animal welfare, environmental sustainability, and labor efficiency (Niloofar et al., 2021). 

86 Traditionally, monitoring of animal health, reproduction, and nutrition depended on human 

87 observation, manual records, and periodic interventions. However, increasing system complexity, 

88 larger operation scales, and societal expectations for transparency and animal well-being now 

89 require more precise, data-driven approaches (Thumba et al., 2020). This shift marks the 

90 emergence of precision livestock farming (PLF), which integrates real-time data and automated 

91 technologies to enhance animal management (Berckmans, 2017).

92 Among the enabling technologies in PLF, artificial intelligence (AI) stands out as a 

93 transformative tool. AI encompasses machine learning (ML), computer vision (CV), and other 

94 computational techniques that enable machines to analyze data, recognize patterns, and make 

95 informed decisions (Fuentes et al., 2022; Melak et al., 2024). In livestock systems, AI technologies 

96 are increasingly employed to identify early signs of disease from video or sound data, detect estrus 

97 from behavioral cues, estimate body weight from images, and adjust feeding strategies based on 

98 real-time intake patterns (García et al., 2020). These applications rely on the convergence of 

99 enabling technologies, including the Internet of Things (IoT), wearable and non-invasive sensors, 

100 thermal and multispectral imaging, cloud computing, and real-time analytics platforms.

101 The potential of AI in livestock systems is substantial. For instance, ML algorithms can 

102 now process thousands of data points per animal daily, providing unprecedented insights into 

103 individual and herd-level behavior (McVey et al., 2023). Many CV systems have demonstrated 

104 the capability for early disease detection, enabling proactive management and supporting earlier 

105 interventions (Okinda et al., 2019; Jorquera-Chavez et al., 2021; Parikh et al., 2024). Similarly, 
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106 audio analysis technologies effectively differentiate coughing patterns or vocalizations associated 

107 with stress or respiratory illness (Cordeiro et al., 2013; Carpentier et al., 2018; Wang et al., 2024).

108 Despite these promising developments, the implementation of AI in livestock systems 

109 continues to face significant challenges. The diversity of livestock environments, ranging from 

110 large commercial operations to smallholder farms, makes it difficult to standardize data collection 

111 and deploy robust AI systems. Additionally, ethical and legal concerns regarding data privacy, 

112 algorithmic bias, and displacement of traditional labor roles require careful consideration. 

113 Furthermore, technical challenges such as sensor reliability, data quality, and model 

114 generalizability continue to hinder the widespread adoption of these technologies (Georgopoulos 

115 et al., 2020; Kaushik et al., 2024).

116 This literature review summarizes current knowledge on the integration of AI in livestock 

117 farming systems. It examines core AI applications in the domains of health, reproduction, 

118 behavior, nutrition, and production, highlighting emerging trends in multimodal sensing, edge 

119 computing, and digital twin technologies. It also discusses persistent challenges, including limited 

120 data availability, model interpretability, infrastructure constraints, and stakeholder adoption. It 

121 then outlines future research opportunities and proposes pathways toward scalable, responsible, 

122 and inclusive implementation of AI in livestock farming.

123 The objectives of this paper are to provide background on AI technologies and their 

124 relevance to livestock farming, including a historical perspective; to explore current AI 

125 applications across key livestock management domains, with emphasis on real-world 

126 implementations and recent scientific developments; to examine significant challenges and 

127 barriers to adoption, spanning technical and operational constraints as well as ethical and social 
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128 implications; and to discuss emerging trends and innovative research directions, followed by a 

129 conclusion and future outlook.

130

131 BACKGROUND AND TECHNOLOGICAL FOUNDATIONS

132 Overview of Artificial Intelligence in Agriculture

133 Artificial intelligence refers to computational systems capable of performing tasks that 

134 typically require human intelligence, including learning from data, recognizing patterns, making 

135 predictions, and solving problems. Machine learning, a subset of AI, enables algorithms to learn 

136 from data, identify patterns, and adapt their outputs without explicit rule-based programming. This 

137 allows systems to improve performance with experience. Deep learning (DL), an advanced subset 

138 of ML, employs artificial neural networks (ANNs) to model complex, hierarchical patterns, 

139 making it well suited to image and sound recognition tasks common in agricultural monitoring 

140 (Kamilaris and Prenafeta-Boldú, 2018). Computer vision is another essential subfield of AI that 

141 enables automated interpretation of visual data, such as images or videos, to monitor livestock 

142 behavior, identify individuals, or detect signs of illness (Liu et al., 2020; McDonagh et al., 2021; 

143 Han et al., 2023; Islam et al., 2023).

144 In agricultural systems, AI processes large and heterogeneous data streams obtained from 

145 sensors, cameras, microphones, and other digital devices (Tedeschi et al., 2021). A key strength of 

146 AI is its ability to detect complex, often nonlinear relationships in large, multidimensional datasets 

147 that are invisible to human observers or traditional statistical approaches. For example, AI systems 

148 can continuously monitor herds without human intervention and flag animals that deviate from 

149 normal patterns of activity, feeding, vocalizations, and posture, for example.
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150 Many agricultural AI systems employ several learning paradigms. Supervised learning, 

151 where models are trained on labeled data, is commonly used for classification tasks such as 

152 identifying lameness or forecasting feed intake. In contrast, unsupervised learning explores 

153 unlabeled data to detect latent behavioral patterns, group animals with similar activity profiles, or 

154 flag anomalies. Although still emerging in livestock applications, reinforcement learning enables 

155 adaptive systems, such as autonomous feeders, to learn optimal strategies as they interact 

156 continuously and receive feedback.

157 The efficacy of AI systems in agriculture depends on a supporting technology ecosystem. 

158 The IoT could integrate wearable sensors, automated feeders, environmental monitors, and 

159 cameras, enabling continuous, real-time data collection and monitoring. Edge computing could 

160 enhance data processing directly on the farm or on devices, reducing latency and enabling prompt 

161 interventions. For example, low-power devices installed in poultry houses or barns could process 

162 temperature, sound, and activity data locally, triggering immediate alerts without relying on cloud 

163 connectivity. Cloud computing can complement edge solutions with scalable storage and robust 

164 analytics, enabling integration and analysis of data from multiple sources or farms. Moreover, 5G 

165 and other wireless connectivity advancements, such as LoRaWAN, could further enhance real-

166 time data transmission, which is essential for remote or extensive farming operations.

167 Together, these technologies form the infrastructure for successful AI implementation in 

168 livestock farming systems. However, reaching their full potential requires careful integration that 

169 ensures interoperability and alignment with animals’ biological and behavioral complexities, and 

170 with real-world farming challenges.

171

172 Evolution of AI in Livestock Systems
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173 The adoption of AI in livestock farming has evolved from manual observation tools to 

174 increasingly automated and intelligent systems. This trajectory helps contextualize current and 

175 emerging applications. Initial implementations of PLF technologies primarily relied on radio-

176 frequency identification (RFID) tags, automated weighing systems, and basic alert systems that 

177 flagged abnormalities such as ventilation failures or reduced water intake (Berckmans, 2006).

178 As technological capabilities advanced, real-time sensor-based systems became more 

179 common. Devices such as accelerometers, thermal cameras, global positioning system (GPS) 

180 trackers, and microphones enabled continuous, individual-level monitoring of livestock behavior 

181 and physiology. For example, accelerometers have been used to monitor feeding and locomotion 

182 in dairy cows (Vázquez Diosdado et al., 2015; Beer et al., 2016; Barker et al., 2018; Werner et al., 

183 2019; Iqbal et al., 2021; Balasso et al., 2021), while thermal imaging has enabled early detection 

184 of disease and mastitis (Schaefer et al., 2012; Zhang et al., 2020; Anagnostopoulos et al., 2021; 

185 Wang et al., 2022a; Gayathri et al., 2024).

186 By the 2010s, ML and CV began to gain traction in animal agriculture. ML algorithms 

187 demonstrated value in tasks such as predicting tail-biting outbreaks in pigs (Larsen et al., 2019; 

188 Domun et al., 2019; Ollagnier et al., 2023) and monitoring rumination patterns of cows (Hamilton 

189 et al., 2019; Ayadi et al., 2020; Abdanan Mehdizadeh et al., 2023; Li et al., 2024). Convolutional 

190 neural networks (CNNs), a class of DL models, were applied successfully to behavior recognition 

191 tasks, including detecting lying, feeding, and mounting in cattle and pigs (Li et al., 2019; Alameer 

192 et al., 2020; Chen et al., 2020a; Achour et al., 2020; Fuentes et al., 2020; Yu et al., 2022). 

193 Additionally, CV models have shown high accuracy for estimating livestock body weight, 

194 providing a non-invasive alternative to traditional weighing systems that rely on scales (Ma et al., 

195 2024a).
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196 The rise of multimodal sensing systems has further expanded AI capabilities. Researchers 

197 have reported stronger robustness and accuracy when data from multiple sources are combined, 

198 such as audio, thermal, and 3D video inputs. For example, studies have used multimodal data, 

199 including audio and images, to improve the detection of respiratory diseases in pigs (Ji et al., 2022; 

200 Chae et al., 2024). In dairy systems, multi-sensor approaches have enabled detection of metabolic 

201 disorders, oestrus, and behavior (Holman et al., 2011; Sturm et al., 2020; Tian et al., 2021; 

202 Arablouei et al., 2023).

203 Despite the growing body of evidence supporting the efficacy of AI in livestock systems, 

204 adoption remains variable across farm sizes and regions. Larger operations often possess the 

205 infrastructure and capital necessary to implement and maintain advanced technologies. At the same 

206 time, smaller farms and ranches may face barriers such as high costs, a lack of digital literacy, and 

207 limited access to data interpretation tools. Moreover, variability in environmental conditions, 

208 animal genetics, and housing systems across production sites limits the generalizability of AI 

209 models and requires site-specific calibration and validation.

210 Nonetheless, AI research in animal agriculture is expanding rapidly, with open-access 

211 datasets, advances in sensor design, and interdisciplinary collaborations accelerating progress. For 

212 instance, research increasingly focuses on making models more interpretable and accessible to 

213 producers through user-friendly interfaces and the incorporation of domain expertise into 

214 algorithm development (Sykes et al., 2022; Mallinger et al., 2024; Neethirajan et al., 2024), 

215 including the development of hybrid intelligent mechanistic models (HIMM). These models 

216 combine AI’s pattern recognition capabilities with biologically based mechanistic models to 

217 enhance explainability and robustness (Tedeschi, 2019, 2022, 2023).

218
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219 CURRENT APPLICATIONS OF AI IN ANIMAL FARMING

220 Artificial Intelligence has emerged as a transformative tool in livestock production 

221 systems. It enables real-time, non-invasive monitoring and supports data-driven decision-making. 

222 Validated AI applications now cover animal health, reproduction, behavior, feeding, identification, 

223 and integrated farm management. These systems increasingly rely on ML and DL to process 

224 complex datasets from video, audio, thermal imaging, and wearable or environmental sensors. 

225 Table 1 provides a structured overview of AI applications in key areas of animal farming.

226

227 Animal Health Monitoring

228 Animal health is foundational to sustainable and profitable livestock production, and the 

229 early identification of disease is crucial for minimizing treatment costs, preventing outbreaks, and 

230 improving animal welfare. Traditional methods, such as visual inspection or threshold alarms from 

231 isolated sensors, often detect conditions too late for optimal intervention. AI approaches provide a 

232 transformative upgrade to these systems. They integrate multimodal sensor data and automatically 

233 detect patterns or anomalies associated with health deterioration. enabling continuous, remote, and 

234 scalable health monitoring across species and housing systems.

235 A key area of research has been the detection of mastitis, a prevalent and costly disease in 

236 dairy cattle. Studies have demonstrated that ML algorithms that integrate sensor data such as milk 

237 yield, somatic cell count, electrical conductivity, and behavior metrics like rumination time 

238 outperform traditional threshold methods. For example, Tian et al. (2024) reported that combining 

239 milk production and conductivity data using supervised ML models improved early detection of 

240 clinical mastitis. Similarly, Cavero et al. (2008) used an ANN to classify mastitis presence with 
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241 promising results. A broader review by Ozella et al. (2023) noted that AI-based mastitis models 

242 are increasingly incorporated into automatic milking systems for real-time detection.

243 Lameness detection is another well-established application of AI. This condition is difficult 

244 to identify with visual observation in large or group-housed herds. Early work explored image-

245 processing methods (Song et al., 2008; Condotta et al., 2020), and later studies integrated CV-

246 based models to accelerate analysis and enable real-time use. Wu et al. (2020) applied a YOLOv3-

247 based DL model to analyze top-view video data and identify dairy cows with abnormal gait 

248 patterns in real time. In pigs, Zhenbang et al. (2024) used a 3D CNN to classify gait sequences 

249 from video footage, achieving strong agreement with expert scoring. These systems enable 

250 consistent and objective evaluation of locomotor issues, making them well-suited for integration 

251 into automated management platforms.

252 Beyond locomotion, AI has also been applied to evaluate health-related physical indicators, 

253 such as body condition and pain expression. Çevik (2020) demonstrated the use of DL to 

254 automatically classify body condition scores from images of dairy cows, offering a non-invasive 

255 and repeatable alternative to manual scoring. Additionally, facial recognition models using CNNs 

256 have been trained to detect pain in sheep based on ear posture, eye changes, and muscle tension 

257 (Noor et al., 2020). These approaches are promising for welfare monitoring but require broader 

258 validation across species and environments.

259 Audio-based disease monitoring has also been successfully implemented. Respiratory 

260 diseases often manifest through coughing or sneezing before more visible symptoms appear. Chae 

261 et al. (2024) developed a multimodal DL system using CNNs and recurrent neural networks 

262 (RNNs) to detect cough events in pigs accurately. Likewise, Schaefer et al. (2012) demonstrated 

263 that infrared thermography could detect early respiratory infections in calves and identified 
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264 increased eye and nasal temperatures as early indicators. This finding supports integration of 

265 multimodal approaches, such as combining visual and acoustic signals, into AI-based systems.

266 This integration of multimodal data, including video, audio, thermal, and motion sensor 

267 streams, is in early stages of study to further enhance the robustness of AI-based health diagnostics. 

268 For example, Dhaliwal and Neethirajan (2025) demonstrated that combining video and audio 

269 improved early lameness detection in dairy cows, with fewer false positives than unimodal models. 

270 These fusion-based approaches can offer redundancy, which in AI systems means the duplication 

271 of critical components to increase reliability, safety, and fault tolerance under noisy or incomplete 

272 conditions.

273 Additionally, wearable sensor data, such as accelerometers, rumination monitors, or 

274 temperature tags, can be used in ML models to track early physiological deviations. These models 

275 have been used for a range of applications, including the prediction of metabolic disorders, fever 

276 detection, and monitoring of stress responses in cattle, swine, and sheep (Neethirajan, 2017; Stygar 

277 et al., 2021; Jorquera-Chavez et al., 2021).

278 While these technologies advance rapidly, current systems remain under development and 

279 are often limited to pilot or semi-commercial stages. Validation in large, diverse herds and 

280 different management systems remains essential for widespread adoption.

281

282 Reproductive Monitoring and Estrus Detection

283 Efficient and timely estrus detection is essential for maximizing reproductive success in 

284 animal farming. Accurate identification of the onset of estrus enables better insemination timing, 

285 improves conception rates, reduces hormone use, and minimizes labor associated with visual 

286 monitoring. Traditional methods, such as chalking, standing heat observation, or tail painting, are 
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287 often subjective, labor intensive, and less effective in group-housed systems. Artificial 

288 intelligence, particularly systems powered by CV, acoustic analysis, and deep learning, can 

289 provide new tools for automated, continuous, and individualized estrus monitoring across species, 

290 with calibration often needed for different species and housing systems.

291 AI-driven CV technologies have been used to detect behavioral cues of estrus, including 

292 increased locomotion, standing reflex, and mounting behavior. For example, Li et al. (2019) 

293 developed a DL-based system that recognized mounting behavior in pigs using surveillance video 

294 footage. Küster et al. (2020) implemented CV to monitor changes in sow activity, showing that 

295 video-based behavior analysis can detect events related to estrus and farrowing. More recently, 

296 Lodkaew et al. (2023) introduced CowXNet, a DL framework for estrus detection in dairy cattle 

297 using visual behavior cues in group-housed systems, which effectively tracks individual cows 

298 within herd environments.

299 Thermal imaging has also been explored as a method for estrus prediction. Feng et al. 

300 (2019) demonstrated that infrared thermal cameras could detect temperature increases in sow 

301 vulvas, an indicator of estrus. They used partial least squares regression to predict rectal 

302 temperatures with an R² of 0.80. If integrated with behavioral cues and CV systems, this approach 

303 could enhance the accuracy of estrus detection.

304 Multimodal AI systems that integrate data from various sensors, such as visual, motion, 

305 thermal, and audio, are increasingly being explored to enhance the robustness of livestock behavior 

306 monitoring under commercial conditions. For instance, Cai et al. (2025) developed a multimodal 

307 feature fusion method that combines audio and thermal infrared image data to improve the 

308 accuracy and robustness of estrus monitoring in breeding pigs. Additionally, Aryawan et al. (2024) 

309 proposed a novel approach using pose estimation with a deep learning model for real-time estrus 
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310 detection in female cows. Furthermore, Arıkan et al. (2023) introduced a method that integrates 

311 estrus detection with cow identification for use with augmented reality (AR) devices, employing 

312 deep learning-based mounting detection and then the system identified the mounting region of 

313 interest (ROI) with a YOLOv5 model.

314 Acoustic signals associated with estrus, including specific vocalizations, have also been 

315 analyzed with AI. Jung et al. (2021) developed a CNN-based system to classify cattle vocalizations 

316 in real time using noise-filtered audio, achieving classification accuracy above 90%. While their 

317 system was not designed exclusively for estrus detection, similar acoustic features have been 

318 reported to correlate with estrus phases in pigs and cattle (Schön et al., 2007; Wang et al., 2022, 

319 2023) and could be combined with video or thermal inputs into multimodal monitoring tools.

320 Field-level validation of AI systems remains crucial for commercial adoption. Verhoeven 

321 et al. (2023) evaluated an AI-powered estrus detection system in sows using over 6,700 

322 reproductive cycles across three farms. The system, which used overhead cameras and a behavior 

323 recognition algorithm, significantly improved farrowing rates and reduced repeat breedings at two 

324 of the farms under routine farm conditions.

325 Finally, fuzzy logic and ML models applied to sensor data have also performed well. Zarchi 

326 et al. (2009) developed a fuzzy logic-based model for estrus detection in dairy cows, achieving 

327 85.3% sensitivity and 100% specificity using data on milk conductivity, activity, and yield. In a 

328 motion-based application, Aloo et al. (2024) trained an artificial neural network on accelerometer 

329 and temperature data to detect estrus in cattle, yielding an accuracy of 89.5%.

330

331 Behavior and Welfare Assessment
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332 Animal behavior serves as a crucial indicator of welfare status. Changes in postural 

333 activity, feeding frequency, rest patterns, and social interactions often precede overt signs of 

334 illness, pain, or stress. Traditional behavioral assessments rely heavily on human observation, 

335 which is subjective, intermittent, and impractical for large-scale or continuous monitoring. 

336 Artificial intelligence enables automated, scalable, and real-time behavioral assessments in 

337 livestock production systems when combined with sensor technologies such as video, wearables, 

338 and microphones.

339 Computer vision and DL models have been widely used to monitor behaviors such as lying, 

340 standing, walking, and feeding. Nasirahmadi et al. (2019) developed a system using image 

341 processing and machine learning to automatically classify pig postures from overhead images, 

342 enabling real-time tracking of activity in group-housed environments. Cowton et al. (2019) 

343 designed a DL pipeline capable of identifying and tracking individual pigs, extracting behavior 

344 metrics like location, movement, and feeding duration.

345 To capture temporal patterns in behavior, CNNs have been combined with long short-term 

346 memory (LSTM) architectures. Chen et al. (2020b) employed a CNN-LSTM model to analyze 

347 video footage of pigs, aiming to identify aggression episodes. Their system achieved high 

348 classification accuracy (97.2%), demonstrating how the combination of spatial and temporal 

349 features could enhance behavior detection under commercial housing conditions.

350 Advanced CV models, such as instance segmentation, enable the identification of multiple 

351 animals in the same frame, even under occlusion. Hu et al. (2021), for example, proposed a dual 

352 attention-guided feature pyramid network for segmenting and tracking pigs in dense pen 

353 environments. These methods are particularly useful in swine and poultry systems where animals 

354 often overlap in camera views.
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355 AI approaches have also been developed to monitor social behaviors and group-level 

356 dynamics. Social network analysis (SNA) can be used to quantify affiliative and aggressive 

357 behaviors in livestock through analysis of proximity, co-occurrence, and interaction patterns 

358 derived from automated monitoring systems. Agha et al. (2025) demonstrated this approach with 

359 positioning data from pigs, revealing latent social structures within pens and offering insights into 

360 social hierarchy formation and individual variability in sociality.

361 Facial recognition and expression analysis have gained traction as tools for assessing pain 

362 and emotional states in farm animals, with the goal of supporting non-invasive, real-time welfare 

363 assessment across species. These methods rely on identifying specific facial action units, such as 

364 orbital tightening, ear position, and changes in the nose or mouth, that correlate with discomfort. 

365 Noor et al. (2020) trained convolutional neural networks to detect such features in sheep, resulting 

366 in a reliable and automated sheep grimace scale. In horses, Dalla Costa et al. (2014) developed the 

367 Horse Grimace Scale (HGS) to assess pain following routine castration, focusing on facial 

368 expressions like stiffly backward ears, orbital tightening, and tension around the eye area. 

369 Similarly, Di Giminiani et al. (2016) introduced the Piglet Grimace Scale to evaluate pain in piglets 

370 undergoing tail docking and castration, identifying specific action units, such as bulging cheeks 

371 and orbital tightening.

372 In addition to pain recognition, facial analysis has also been explored to assess emotional 

373 states. The WUR Wolf platform, developed by Neethirajan (2021), applies deep learning 

374 algorithms such as YOLOv3, YOLOv4, and Faster R-CNN to monitor facial features, including 

375 ear posture and eye white visibility, in cattle and pigs. When linked with other behavioral and 

376 physiological data streams, the platform targets broader welfare monitoring goals. The system 

377 achieved a classification accuracy of around 85% and was designed for real-time monitoring.
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378 Wearable sensors, such as accelerometers, are widely used to monitor movement and 

379 activity in dairy cattle, pigs, and small ruminants. These devices can detect deviations from normal 

380 movement or lying behavior, which may indicate discomfort or illness. When paired with ML 

381 models, they enable automated behavior classification and facilitate longitudinal welfare 

382 monitoring. Fuentes et al. (2022) reviewed such systems, noting their scalability and high 

383 predictive performance in real-world applications.

384 Acoustic monitoring offers another promising avenue for assessing welfare. Animals 

385 vocalize differently in response to stress or pain, and AI models can accurately classify these 

386 vocalizations. Jung et al. (2021) developed a real-time vocal classification system for cattle using 

387 CNNs and noise-filtering preprocessing. Their system achieved classification accuracy of over 

388 90%, demonstrating the potential for sound-based welfare indicators.

389 A review by Debauche et al. (2021) highlights that many AI techniques developed for 

390 behavior monitoring in one species can be generalized to others, particularly for common 

391 behaviors like grazing, lying, and locomotion. They emphasize the benefits of combining multiple 

392 sensors, such as accelerometers, video, and microphones, to improve classification accuracy. The 

393 placement of sensors and the selection of appropriate data processing algorithms are also critical 

394 for system performance. Additionally, trends such as edge computing are enabling real-time 

395 behavior analysis directly on the farm, reducing data transmission costs and latency.

396 The integration of multimodal systems is becoming increasingly common. These systems 

397 improve detection robustness under varying environmental conditions and animal behaviors. 

398 Wang et al. (2022) and Fuentes et al. (2022) emphasize that future systems are likely to rely on 

399 DL architectures capable of processing multimodal inputs for enhanced welfare analysis.

400
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401 Precision Feeding and Nutrition

402 Feeding represents the most significant variable cost in livestock production, making feed 

403 efficiency and precision nutrition vital for economic and environmental sustainability. AI 

404 technologies have emerged as powerful tools to individualize feeding strategies based on real-time 

405 and historical data on intake behavior, growth, physiological status, and activity patterns. These 

406 approaches reduce feed waste, improve animal performance, and help minimize environmental 

407 impacts such as methane emissions from enteric fermentation.

408 AI-powered systems are used to estimate feed intake, support individualized feeding 

409 optimization, and predict feeding behavior using various sensor modalities. In dairy cattle, Bezen 

410 et al. (2020) developed a CV system utilizing RGB-D cameras and DL algorithms to estimate 

411 individual cow feed intake with high accuracy. Additionally, Bloch et al. (2021) proposed a system 

412 to measure individual cow feed intake in commercial dairies that used CV for individual cow 

413 identification. These studies exemplify AI’s ability to support site-specific feeding decisions, and 

414 they enable dynamic diet formulation for enhanced efficiency. Additionally, predictive models 

415 could incorporate factors such as milk production, body weight, lactation stage, and environmental 

416 conditions to estimate daily nutrient requirements and inform ration adjustments, which supports 

417 more responsive feeding management.

418 Multimodal systems that combine video, audio, and accelerometer data have also shown 

419 promising results. Barker et al. (2018) employed a combination of local positioning systems (LPS) 

420 and accelerometers to quantify feeding behavior in lame versus non-lame dairy cattle, which 

421 enables the early identification of animals deviating from normal feeding patterns. In extensive 

422 grazing systems, wearable GPS collars and accelerometers have been deployed to track livestock 

423 location and activity. Machine learning algorithms, particularly Random Forest classifiers, have 
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424 been used to distinguish between grazing, walking, resting, and ruminating behaviors. For 

425 example, Williams et al. (2016) employed GPS data and ML techniques to model pasture use in 

426 dairy cows, showing high predictive accuracy for spatial behavior analysis.

427 Poultry operations are starting to benefit from AI applications that monitor feed intake and 

428 assess growth. Vision systems using depth cameras and CNNs have been developed to recognize 

429 feeding behavior and estimate body size in crowded environments. For instance, Guo et al. (2022) 

430 demonstrated that video-based models can detect broiler feeding behavior with high precision, 

431 highlighting the potential of non-invasive tools for monitoring flock-level patterns. While daily 

432 tracking and individualized feed adjustments remain under development, these tools provide 

433 valuable insights that can support more responsive management strategies. In broiler systems, 

434 Aydin et al. (2015) introduced a sound-based monitoring tool capable of estimating feed intake 

435 using audio signals from pecking behaviors. The model distinguished feeding activity in real-time, 

436 offering a potentially scalable, non-invasive method to track consumption across multiple animals 

437 simultaneously.

438 In swine production, real-time growth monitoring using CV models has the potential to 

439 inform feeding interventions. Chen et al. (2020a) employed a video-based deep learning model to 

440 detect and quantify feeding time in pigs, distinguishing individual behaviors, such as feeding, 

441 drinking, and idling, from overhead video footage. Systems like those presented by Cang et al. 

442 (2019) estimate pig weight patterns without interrupting animal routines, and can enable adaptive 

443 feed delivery based on projected growth trajectories.

444 Overall, AI advances livestock feeding and enables data-driven decisions tailored to the 

445 biological needs of individual animals or groups, with potential benefits for productivity, animal 

446 welfare, and carbon-footprint reduction. AI-based precision feeding enhances feeding efficiency 
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447 and reduces nitrogen oversupply, which decreases waste and limits excess nitrogen and 

448 phosphorus excretion, which are key contributors to ammonia and nitrous oxide emissions from 

449 manure management (Pomar et al., 2021). Improved nutrient use efficiency is also linked with 

450 environmental sustainability; for example, recent lifecycle assessments have shown that precision 

451 feeding strategies can lower global warming potential as they reduce feed inputs per unit of animal 

452 product (Llorens et al., 2024). Feed-crop production (including fertilizer, land-use change, and 

453 transport) and enteric methane emissions are among the largest contributors to greenhouse-gas 

454 emissions in ruminant livestock systems (Grossi et al., 2019). As a result, even modest gains in 

455 feed conversion efficiency can reduce emission intensity.

456 Production Monitoring and Management

457 Monitoring livestock productivity is crucial to effective farm management, as it informs 

458 decisions related to nutrition, marketing, reproduction, and health. While manual assessments of 

459 growth, milk yield, or egg production remain common, they are labor-intensive and often lack 

460 precision or timeliness. AI technologies have the potential to offer scalable, non-invasive 

461 alternatives for continuous productivity monitoring. These tools support individualized 

462 management as they extract performance metrics from visual, acoustic, and environmental data 

463 streams.

464 One of the most widely studied AI applications in this domain is body weight estimation 

465 using computer vision. Accurate body weight is a critical productivity metric for beef, dairy, swine, 

466 and poultry systems; however, traditional weighing methods are time-consuming and stressful for 

467 animals. Multiple studies have demonstrated that CV-based approaches can automate weight 

468 estimation using RGB or depth images. For example, Condotta et al. (2018) predicted grow-

469 finishing pigs’ weights from depth images using ANNs with MPE as low as 3.93% (R2 between 
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470 predicted and actual weight of up to 0.99). Similarly, Cominotte et al. (2020) employed a Kinect 

471 depth camera combined with regression and neural networks to estimate body weight and average 

472 daily gain in beef cattle, achieving high predictive accuracy (R² up to 0.92). Wang et al. (2021) 

473 reviewed digital image-based ML models across species and emphasized their utility in supporting 

474 management decisions such as optimal marketing time and detecting deviations from expected 

475 growth curves.

476 Condotta et al. (2020) emphasized the importance of considering the body weight, size, 

477 and conformation of modern animals when designing facilities and equipment, showcasing the use 

478 of depth imaging techniques to acquire dimensions of interest. Similarly, recent reviews have 

479 detailed advances in animal body dimension measurement techniques. Ma et al. (2024a) and Ma 

480 et al. (2024b) investigated the application of RGB cameras, 3D laser scanning, and stereo vision 

481 systems for collecting point cloud data and extracting anatomical features, including length, height, 

482 girth, and area. These features can serve as inputs for AI-based growth models, replacing manual 

483 measurements with automated, repeatable assessments conducted without animal handling. Such 

484 systems are increasingly explored for use in both confined housing and open-grazing systems.

485 In poultry production, imaging techniques have been applied for the automated acquisition 

486 of body dimensions and weight prediction (Benicio et al., 2023). More recently, AI models enable 

487 faster acquisition of these variables for near real-time assessment. These tools provide a non-

488 invasive alternative to manual weighing and can support more frequent assessments of flock 

489 development. Lyu et al. (2023), for example, evaluated the use of ML algorithms to predict broiler 

490 body weight based on image-derived measurements collected on-farm. Their study demonstrated 

491 that these models could achieve high predictive accuracy under experimental conditions, 

492 indicating potential for further development into practical monitoring tools.
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493 Beyond body weight and size, AI tools are being integrated into milk yield and productivity 

494 monitoring platforms. These systems combine data from robotic milkers, activity monitors, 

495 environmental sensors, and feeding systems. AI models are used to detect anomalies in milk 

496 production related to health disorders (e.g., mastitis), environmental stress (e.g., heat), or 

497 nutritional imbalances. Tian et al. (2024) and Ozella et al. (2023) noted that combining multiple 

498 sensor inputs with ML algorithms improves the timeliness and accuracy of detecting production-

499 related deviations compared to traditional threshold-based alerts.

500 In egg production systems, DL models are being explored for automated egg counting, 

501 quality grading, and defect detection. These technologies aim to streamline post-laying processing 

502 and enhance product quality consistency. For instance, Yang et al. (2023) developed a computer 

503 vision-based system that achieved up to 94.8% accuracy in classifying eggs into categories such 

504 as intact, cracked, bloody, floor, and non-standard, while also predicting egg weight using a 

505 combination of convolutional neural networks and random forest algorithms. Similarly, Huang et 

506 al. (2023) proposed a video-based detection model that utilizes an improved YOLOv5 algorithm 

507 combined with ByteTrack for the real-time detection of broken unwashed eggs in dynamic scenes, 

508 achieving a detection accuracy of 96.4%. Further validation and integration into commercial 

509 operations remain necessary to realize these benefits.

510 At the broader farm level, AI technologies are increasingly being incorporated into decision 

511 support systems (DSS) that integrate health, feeding, reproduction, productivity, and 

512 environmental data to support real-time and predictive decision-making. These systems aim to 

513 streamline complex data flows into actionable insights. They use performance dashboards, alerts, 

514 and forecasting models. Distante et al. (2025) emphasized the central role of AI in enabling 

515 automated and adaptive DSS architectures, particularly through integrating machine learning 
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516 pipelines with sensor networks. Niloofar et al. (2021) further noted that data-driven DSS can 

517 improve animal health and welfare while supporting greenhouse gas mitigation strategies. Their 

518 reviews emphasize the importance of interoperable data architectures and the growing interest in 

519 multimodal, AI-powered decision frameworks to achieve productivity and sustainability goals in 

520 livestock systems.

521 AI-based anomaly detection is an emerging application in livestock production monitoring. 

522 These systems typically utilize ML algorithms trained on historical time-series data such as milk 

523 yield, growth trajectories, or feed intake to identify deviations from expected patterns. Rather than 

524 replacing existing thresholds, these models aim to provide earlier or more context-sensitive alerts 

525 that may indicate underlying issues such as illness, suboptimal nutrition, or environmental 

526 stressors. For instance, Guien et al. (2025) developed an anomaly detection algorithm using 

527 wavelet transform features to identify deviations in cow activity, enabling early detection of 

528 disease or estrus. Similarly, Michielon et al. (2024) presented an AI-enhanced monitoring 

529 framework that integrates DL models to assess animal welfare metrics, facilitating timely 

530 interventions. Most anomaly detection models remain in research or pilot stages and require 

531 validation under diverse commercial conditions before broad adoption.

532

533 KEY CHALLENGES AND LIMITATIONS

534 Despite rapid advances in technology, the widespread integration of AI in livestock 

535 production remains limited. While numerous academic studies and pilot projects have 

536 demonstrated the potential of AI systems to enhance monitoring, decision-making, and efficiency, 

537 real-world implementation across diverse farming systems continues to evolve. Key barriers 

538 include technical constraints, limited infrastructure, data and privacy concerns, cultural and 
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539 operational challenges, and the need for user-centered design. Addressing these interconnected 

540 issues will be essential to ensure that AI tools are inclusive, practical, and truly supportive of long-

541 term sustainability in animal agriculture. Table 2 summarizes the major challenges for AI adoption 

542 in animal farming systems, the affected stakeholders, and proposed mitigation strategies.

543

544 Data and Model Challenges

545 Data quantity and quality

546 The effectiveness of AI systems in livestock production critically depends on the 

547 availability of large, diverse, and well-annotated datasets, especially for supervised learning 

548 approaches. Yet, data limitations remain one of the most persistent barriers in this field. High-

549 resolution, labeled datasets are scarce, and they are often fragmented across farms and institutions 

550 and rarely standardized for sensor types, annotation protocols, or sampling frequency. Sensor data 

551 is frequently affected by environmental noise, inconsistent calibration, and animal movement. 

552 These issues further complicate model training and validation (Tedeschi et al., 2021; Stygar et al., 

553 2021).

554 Additionally, datasets often lack representation of rare but biologically significant events 

555 such as illness onset, aggressive interactions, or reproductive anomalies. These imbalances reduce 

556 model reliability and can lead to poor generalization during real-world deployment. In particular, 

557 behavior-based datasets are typically unstructured and contain few clearly labeled edge cases, 

558 which makes it challenging to extract reliable behavioral patterns (McVey et al., 2023).

559 To address these issues, several research groups have developed open, annotated datasets 

560 to support AI development in livestock contexts. For instance, the PigLife dataset offers video 

561 clips and images across various pig production phases, including breeding, gestation, farrowing, 
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562 weaning, nursery, growth, and finishing stages, with annotations for object identification, pig 

563 posture, and behavior labels (Li et al., 2024b). Similarly, MultiCamCows2024 provides a multi-

564 view image dataset comprising over 100,000 images of Holstein-Friesian cattle captured with 

565 ceiling-mounted cameras over seven days on a working dairy farm, which facilitates biometric 

566 identification and behavior analysis (Yu et al., 2024). These initiatives are essential for 

567 benchmarking AI tools, fostering algorithm development, and promoting reproducibility across 

568 research groups, and they will require broader investment and collaboration to expand across 

569 species, management systems, and production conditions.

570 Model transferability and generalization

571 A significant challenge in deploying AI systems across diverse livestock farming 

572 environments is the limited transferability of models. Models trained in data from specific breeds, 

573 housing types, or sensor systems often perform poorly when applied to different contexts. For 

574 instance, a lameness detection model developed for Holstein cows in free-stall housing may not 

575 generalize to Jersey cows in pasture-based setups because locomotion patterns, backgrounds, and 

576 data quality differ. This issue, known as domain shift, complicates scalability and reduces the 

577 reliability of AI systems outside their original training domain.

578 To address this, researchers are exploring transfer learning, domain adaptation, and 

579 federated learning, which aim to improve model robustness across different production 

580 environments. For example, unsupervised domain adaptation methods have been employed to 

581 mitigate sensor variability and interspecies heterogeneity in animal activity recognition tasks (Ahn 

582 et al., 2023). Additionally, federated learning frameworks, such as FedAAR, have been developed 

583 to enable collaborative model training across farms without sharing sensitive data, which preserves 

584 privacy and enhances model generalization (Mao et al., 2022). However, these techniques are still 
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585 largely experimental in livestock contexts, and practical implementation remains limited because 

586 of high technical complexity, computational demands, and the need for ongoing updates as farm 

587 conditions evolve.

588 Explainability and trust

589 The complexity and “black box” nature of many AI algorithms, particularly DL models, 

590 present significant barriers to adoption in livestock management (Tedeschi, 2019). Stakeholders, 

591 including farmers, veterinarians, and regulators, require clear insights into how AI systems 

592 generate specific predictions or recommendations, particularly in critical areas such as animal 

593 health, reproduction, and welfare. A lack of transparency can lead to skepticism and reluctance to 

594 rely on these tools.

595 The field of Explainable Artificial Intelligence (XAI) has emerged to address these 

596 concerns, and develops methods that make AI decision-making processes more transparent and 

597 interpretable (Hoxhallari et al., 2022). Techniques such as SHapley Additive exPlanations (SHAP) 

598 and Local Interpretable Model-Agnostic Explanations (LIME) are increasingly used to elucidate 

599 the contributions of input features to model outputs, thereby enhancing user understanding and 

600 trust (Cartolano et al., 2024).

601 In the context of PLF, integrating XAI methods can provide stakeholders with 

602 comprehensible explanations of AI-driven decisions, which can facilitate better acceptance and 

603 more effective interventions. Useful deployment also depends on interfaces that present 

604 explanations clearly to farmers and veterinarians. For instance, applying SHAP and LIME to 

605 models predicting animal health outcomes could help veterinarians and farmers understand the 

606 underlying factors influencing predictions and support more informed decision-making.
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607 However, practical implementation of XAI in livestock systems remains at an early stage. 

608 Challenges include model complexity, the need for user-friendly interfaces, and integration with 

609 existing farm management practices. Ongoing research and development are essential to tailor 

610 these explainability tools to the specific needs and capabilities of agricultural stakeholders.

611

612 Technical and Infrastructure Constraints

613 Sensor reliability and maintenance

614 Sensors are fundamental components of AI-driven livestock systems; however, their 

615 reliability often suffers under the harsh and variable conditions typical of farm environments 

616 (Tedeschi et al., 2021; Stygar et al., 2021). Factors such as dust, moisture, temperature fluctuations, 

617 animal interference, and improper equipment handling can severely degrade sensor accuracy and 

618 reduce device lifespan. Devices like wearable sensors may frequently detach or become damaged 

619 due to animal behavior, creating gaps and erroneous readings that compromise the accuracy of AI 

620 models (Stygar et al., 2021; Neethirajan, 2024). Ensuring continuous, high-quality data collection 

621 requires regular sensor calibration, maintenance, and troubleshooting. Unfortunately, producers 

622 often lack the technical expertise, resources, or motivation necessary for consistent sensor 

623 management, and this exacerbates data reliability issues (Tedeschi et al., 2021; Greig et al., 2023; 

624 Neethirajan, 2024). Efforts to improve sensor durability and robustness include ruggedized 

625 hardware and automated diagnostic systems, such as the one proposed by Schulthess et al. (2024), 

626 yet many of these options remain relatively costly or underexplored in livestock contexts (Tedeschi 

627 et al., 2021).

628 Connectivity and processing limitations
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629 Reliable internet connectivity remains a significant challenge for many livestock 

630 operations, particularly in rural areas. The Federal Communications Commission (FCC) reported 

631 that in 2019, approximately 17% of people living in rural areas in the United States lacked 

632 broadband access, compared to 1% in urban areas. This lack of connectivity limits the 

633 implementation of cloud-based AI systems that require stable internet connections for data 

634 processing and storage. Uploading high-resolution video or audio data for real-time AI processing 

635 is often impractical in regions with limited bandwidth, which limits data use and slows system 

636 response.

637 Edge computing, which processes data locally on the farm rather than sending it to 

638 centralized servers, offers a promising solution to these connectivity challenges. Edge computing 

639 enables real-time data analysis and reduces dependence on internet connectivity, which enhances 

640 the efficiency of AI-driven livestock management systems. However, deploying and maintaining 

641 edge computing infrastructure requires sophisticated hardware and stable power sources, and these 

642 requirements can pose significant technical and financial burdens for producers. Moreover, 

643 integrating locally processed data with central databases for benchmarking and long-term analytics 

644 remains a complex and challenging task.

645 Integration and interoperability

646 Livestock operations often use a mix of technologies from multiple vendors, including 

647 automated milking systems, RFID readers, climate control units, and feeding equipment. Many of 

648 these systems lack standardized communication protocols, which creates interoperability issues 

649 that complicate data integration and hinder the development of comprehensive AI-driven decision 

650 support systems. The absence of standardized data formats and communication protocols also 

651 blocks progress toward unified AI platforms and dashboards. Recent efforts, such as those 
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652 described in CAST (2025), recommend adopting frameworks such as the FAIR (Findable, 

653 Accessible, Interoperable, and Reusable) data principles and AgGateway’s ADAPT (Agricultural 

654 Data Application Programming Toolkit, 2019) to enhance interoperability and enable efficient data 

655 exchange across farm systems. Additionally, work on open-source platforms, standardized APIs, 

656 and interoperability frameworks is ongoing, yet efforts remain fragmented and thinly supported. 

657 Enhanced industry-wide cooperation and regulatory support are essential for progress in this 

658 domain (Bahlo et al., 2019; Habib et al., 2025).

659 Ethical, Legal, and Social Considerations

660 Data privacy, cybersecurity, and ownership

661 The proliferation of AI technologies in livestock farming has produced highly granular 

662 data, raising significant concerns about data privacy, ownership, and security. Farmers often face 

663 uncertainty about who holds rights to the data collected from commercial sensors, how this data 

664 can be shared or sold, and the implications for regulatory oversight or competitive advantage. 

665 Many producers fear potential data misuse by insurers, competitors, or regulators, particularly if 

666 the data reveal operational shortcomings or animal welfare issues and harm their reputation (Kaur 

667 et al., 2025).

668 The lack of clear legal frameworks defining data ownership in agriculture exacerbates these 

669 concerns. Agricultural technology providers (ATPs) often have extensive control over farm data 

670 under complex service agreements, sometimes without farmers fully understanding the 

671 implications. As a result, farmers may inadvertently relinquish control of their data, which limits 

672 their ability to manage its use and distribution (Wiseman et al., 2019; Kaur et al., 2025).

673 There is a pressing need for transparent data governance frameworks that clearly define 

674 ownership rights, usage permissions, and data anonymization practices to address these challenges. 
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675 Such frameworks would help build trust among stakeholders and facilitate the broader adoption of 

676 AI technologies in agriculture. Initiatives like the American Farm Bureau Federation’s “Privacy 

677 and Security Principles for Farm Data” (established in 2014 and updated in 2024 by the Ag Data 

678 Transparent organization) aim to establish guidelines for responsible data management, 

679 emphasizing the importance of farmer control over their data. However, these principles are 

680 voluntary and lack the enforceability of formal legislation.

681 Collaborative efforts among farmers, technology providers, policymakers, and researchers 

682 are crucial for developing and implementing robust data governance policies that protect farmers’ 

683 interests and promote innovation in AI-driven livestock management.

684 In addition to concerns about ownership and privacy, integrating AI and autonomous 

685 systems into agriculture introduces critical cybersecurity risks. The potential for cyberattacks to 

686 disrupt AI-enabled agricultural systems, including autonomous equipment and decision-support 

687 tools, is real (CAST, 2025). Threat actors could exploit software or communications infrastructure 

688 vulnerabilities, compromising operations, data integrity, and food security. Effective mitigation 

689 requires comprehensive cybersecurity strategies to safeguard the benefits of digital agriculture.

690 Bias, fairness, and animal ethics

691 While AI technologies offer significant potential for improving livestock management, 

692 they also raise important ethical and fairness considerations that require proactive attention. One 

693 concern is that models trained on data from high-performing or well-resourced farms may not 

694 generalize well to other production systems. This could inadvertently introduce or reinforce biases, 

695 leading to unequal performance across farm types and widening existing technological divides 

696 (Albergante et al., 2025). Such disparities exemplify the need for diverse, representative datasets 

697 and cross-environment validation protocols.
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698 Additionally, increasing automation of routine tasks may reduce the frequency and quality 

699 of human-animal interactions, which play a recognized role in supporting animal welfare. Studies 

700 have shown that regular positive contact improves animal behavior and productivity, while its 

701 absence may hinder early detection of welfare issues or reduce empathetic caregiving (Zulkifli, 

702 2013; Cornou, 2009). Although automation can alleviate labor burdens, systems must be designed 

703 to support, rather than replace, routine visual checks and care practices by trained staff.

704 There are also broader concerns that AI tools could contribute to intensified production 

705 systems that prioritize output over well-being when implemented without clear animal welfare 

706 guidelines. For example, optimization algorithms designed to increase throughput could 

707 unintentionally lead to conditions like overcrowding or neglect of individual health needs (Bossert, 

708 2024). However, these risks can be mitigated through animal-centric design principles into AI 

709 development. Strategies such as embedding welfare thresholds into optimization models, using 

710 sensor systems for real-time individual health monitoring, and requiring human oversight in 

711 decision loops have been proposed to balance productivity with welfare goals (Webber, 2022; 

712 Neethirajan, 2024; Rosati, 2025). Mitigation also benefits from engagement with ethicists, animal 

713 welfare experts, producers, and policymakers to ensure responsible and equitable deployment 

714 across the livestock industry.

715 Adoption resistance and training gaps

716 The integration of AI technologies into livestock systems brings significant human-

717 centered challenges. Many producers exhibit skepticism or hesitation toward adopting AI tools 

718 due to unfamiliarity, concerns about the effectiveness of technology, and fears of job displacement 

719 or erosion of traditional farming knowledge. Economic constraints, inadequate infrastructure, and 
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720 limited technological knowledge further exacerbate these barriers, particularly among small- and 

721 medium-sized farms (Dibbern et al., 2024).

722 Bridging these gaps requires comprehensive capacity-building strategies. Targeted 

723 educational programs and extension services can build technological literacy and show the 

724 practical benefits of AI applications in livestock management (Atapattu et al., 2024). Participatory 

725 design initiatives that involve farmers in the development and implementation of AI tools help 

726 tailor technologies to the specific needs and contexts of end users (Mallinger et al., 2024). 

727 Demonstration farms showcasing AI technologies can serve as tangible examples of successful 

728 integration, fostering trust and encouraging wider adoption.

729 User-centered design is particularly essential. Ensuring that AI tools are intuitive, 

730 adaptable, and compatible with existing farm management practices could lower the learning curve 

731 and increase user engagement (Ajibola & Erasmus, 2024). Such strategies would support the 

732 adoption of AI technologies and promote sustainable and efficient livestock farming practices.

733 Finally, a growing concern is that increased automation and reliance on AI could erode 

734 traditional farming skills and reduce the transfer of experiential knowledge across generations 

735 (CAST, 2025). Maintaining a balance between technological assistance and foundational 

736 knowledge is essential for long-term resilience, adaptability, and independence within the 

737 agricultural workforce (Tedeschi, 2019).

738

739 EMERGING TRENDS AND RESEARCH OPPORTUNITIES

740 As AI technologies mature and the livestock industry continues to digitize, several 

741 emerging trends are likely to significantly influence future research and development. These 

742 potential innovations reflect a shift from isolated tools to integrated, context-aware, and adaptive 
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743 systems. At the same time, researchers are increasingly exploring multisensory integration, novel 

744 computational techniques, and participatory approaches that involve producers directly in system 

745 design and deployment. This section discusses some key trends and research opportunities that 

746 might shape AI advancements in livestock farming.

747

748 Multimodal Sensor Fusion and Digital Twins

749 The increasing availability of diverse sensors in livestock farming presents opportunities 

750 for multimodal sensor fusion, which enhances the accuracy of AI predictions, reduces false alarms, 

751 and captures complex physiological states and behaviors. For instance, integrating accelerometry 

752 and Global Navigation Satellite System (GNSS) data has been shown to improve the classification 

753 of animal behaviors, such as walking and drinking, when movement patterns are combined with 

754 location information (Arablouei et al., 2023). Similarly, fusing acoustic and linguistic data has 

755 demonstrated effectiveness in decoding dairy cow vocalizations, providing insights into their 

756 emotional states and welfare (Jobarteh et al., 2024).

757 A promising research avenue involves the development of digital twin technologies, which 

758 are virtual representations of animals or entire farm systems continuously updated with real-time 

759 sensor data. Building on decades of simulated-population work in animal science to study various 

760 aspects of the production system, such as nutrient flows, herd dynamics, and disease spread 

761 (Gouttenoire et al., 2011; Black, 2014), the new contribution of digital twins is their ability to 

762 integrate multimodal sensor data and update system states in real-time. These AI-enabled, data-

763 driven twins can simulate various management scenarios, including health risks, productivity 

764 outcomes, and environmental impacts, thereby aiding decision-making processes (Neethirajan & 

765 Kemp, 2021). Implementing digital twins in livestock farming has the potential to improve animal 
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766 health and welfare, optimize feed rations, and reduce operational costs when inefficiencies are 

767 identified (Symeonaki et al., 2024). However, achieving effective digital twins requires 

768 advancements in data integration frameworks, real-time processing capabilities, and robust 

769 biological modeling to ensure the creation of meaningful simulations.

770

771 Edge AI and Real-Time Inference

772 As AI applications in livestock farming evolve, Edge AI is emerging as a promising 

773 direction for enabling real-time decision-making on the farm. Unlike traditional cloud-based 

774 approaches, Edge AI involves deploying models directly onto local hardware devices, so data is 

775 processed at the source. This can address challenges such as unreliable internet connectivity, 

776 latency, and data privacy concerns, which are common barriers in rural production settings.

777 Prototype systems have demonstrated how Edge AI could support on-farm monitoring of 

778 animal health and behavior. For example, local devices that analyze data from wearable sensors or 

779 environmental cameras may be used to flag behavioral anomalies, such as signs of aggression or 

780 discomfort. While these applications are still in the early stages of development, they suggest the 

781 potential for more responsive and automated interventions to improve animal welfare and 

782 management efficiency (Arablouei et al., 2023).

783 To make Edge AI viable in livestock contexts, researchers are exploring lightweight model 

784 architectures such as MobileNet and Tiny YOLO, designed to run on low-power devices. 

785 Additional strategies, like model pruning, quantization, and other compression techniques, can 

786 reduce computational demands without significantly compromising performance. These 

787 developments make it more feasible to run AI models on affordable, ruggedized hardware suited 

788 to agricultural environments (Avanija et al., 2024).
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789 Federated learning complements this direction by training models locally and sharing only 

790 model updates, not raw data, with a central server. This approach preserves data privacy while 

791 enabling collective model improvement across geographically distributed operations. In 

792 combination with edge inference, reported benefits include greater resilience, stronger privacy 

793 protections, and more context-relevant performance for real-time monitoring and decision support 

794 (Dembani et al., 2025). Current livestock research combines Edge AI and federated learning in 

795 experimental systems, and deployment at production scale remains limited.

796

797 Integration with Genomics, Nutrition, and Climate Data

798 Emerging research suggests that integrating genomic, nutritional, and environmental data 

799 into AI models holds considerable promise for enhancing predictive capabilities and informing 

800 management strategies in livestock farming. Although current AI applications often operate within 

801 a single domain, such as health monitoring or behavioral analysis, broader integration is feasible 

802 through multimodal data fusion strategies that combine biological measurements with production 

803 and environmental records to produce context-aware predictions.

804 This approach integrates information from multiple sources, including genotypes, sensor-

805 based phenotypes, feed intake proxies, and climate conditions, within a unified analytical 

806 framework. Fully integrated systems that robustly attribute performance changes to genetics, heat 

807 stress, or nutrition are still rare, but context-aware models are feasible and have shown promise 

808 for improved biological interpretation when genomics are modeled jointly with recorded 

809 environmental exposures such as temperature–humidity index (THI) and nutrition-related 

810 indicators such as mid-infrared–derived energy balance and dry matter intake estimates. 

811 Momentum toward integrated systems is accelerating in precision livestock research, supported by 
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812 advances in multimodal learning, interoperable farm data platforms, such as Dairy Brain, and 

813 standardized trait ontologies, such as the Animal Trait Ontology for Livestock (ATOL) (Golik et 

814 al., 2012; McParland et al., 2014; Garner et al., 2016; Cabrera et al., 2021; Aguilar-Lazcano et al., 

815 2023; Landi et al., 2023; Kaur et al., 2023; McWhorter et al., 2023; Brito et al., 2025; McFadden 

816 et al., 2025).

817 Environmental and climatic variables are increasingly incorporated into AI systems due to 

818 their strong influence on animal performance, health, and welfare. In this context, “environment” 

819 refers to local and immediate conditions within the production system, such as temperature, 

820 humidity, ventilation, air quality, stocking density, and housing design. In contrast, “climate” 

821 describes broader and longer-term weather patterns, including seasonal heat trends and extreme 

822 weather variability, which shape long-term risk exposure for livestock systems. AI tools are being 

823 developed to integrate these environmental and climatic inputs with animal-level sensor data, 

824 thereby improving the early detection of stress responses, such as heat stress or disease risk, and 

825 supporting adaptive management strategies under variable climatic conditions (Reeves et al., 2015; 

826 Derner & Augustine, 2016; Chapman et al., 2023; Rebez et al., 2024; Woodward et al., 2024; 

827 Eckhardt et al., 2025).

828 Incorporating genomic data into AI models is being explored as a way to improve 

829 predictions related to disease susceptibility and support precision breeding strategies. Machine 

830 learning algorithms have been applied to capture nonlinear effects and complex interactions within 

831 genomic datasets. However, results remain mixed as several comparative studies have reported 

832 that deep learning methods do not consistently outperform linear additive models for genomic 

833 prediction, especially when training datasets are limited. Even with these limitations, continued 

834 research is evaluating whether integrating genomic data with phenotypic and environmental 
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835 information through multimodal AI frameworks may yield more robust prediction accuracy for 

836 features of the genome (Abdollahi-Arpanahi et al., 2020; Montesinos-López et al., 2021; Chafai 

837 et al., 2023; Lourenço et al, 2024; Džermeikaitė et al., 2025; Klingström et al., 2025).

838 Similarly, AI-driven nutritional models that integrate dietary inputs, nutrient digestibility, 

839 and microbiome profiles are under development to better inform individualized feeding strategies. 

840 These systems may contribute to optimizing feed efficiency and improving animal health; 

841 however, most remain at a research or prototype stage, rather than undergoing widespread adoption 

842 (Tedeschi, 2022; Pomar & Remus, 2023).

843 Realizing the full value of this kind of integrated approach requires overcoming key 

844 challenges in multi-scale data harmonization, causal inference modeling, and the development of 

845 robust datasets that link genetic, phenotypic, and environmental data. Continued interdisciplinary 

846 research and stakeholder collaboration will be critical to making these complex systems practical 

847 and impactful for producers.

848

849 Human-Centered Design and Participatory AI

850 Human-centered design (HCD), participatory design, and group model building (GMB) 

851 are increasingly recognized as essential for improving the usability and adoption of AI 

852 technologies in livestock systems. Historically, limited stakeholder involvement during AI system 

853 development led to a poor fit with operational realities and lowered adoption (McGrath et al., 

854 2023).

855 Human-centered design emphasizes iterative design centered on the needs, constraints, and 

856 workflows of end-users. In livestock contexts, this ensures AI tools are intuitive, robust, and 

857 aligned with the daily practices of producers and veterinarians (Garard et al., 2024). Participatory 
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858 design extends this approach through direct stakeholder involvement in co-design activities such 

859 as workshops and prototyping. It has been used in agriculture to enhance alignment between 

860 technology and farm-level decision-making, including integration with constraint programming to 

861 reflect farmer priorities (Challand et al., 2025).

862 Building on participatory design, GMB introduces a structured, system dynamics-based 

863 approach to collaborative modeling. GMB uses facilitated sessions to help stakeholder groups 

864 define problems, develop shared mental models, and simulate policy or management scenarios 

865 (Vennix, 1996; Andersen, 2007). Unlike traditional modeling that separates analysts from end-

866 users, GMB treats model construction as a participatory process, strengthening system 

867 understanding and shared ownership of outcomes. As described in Andersen et al. (2007), models 

868 built through GMB serve a dual role. They function as formal simulations of policy systems and 

869 as boundary objects that support dialogue, surface assumptions, and structure decision-making. A 

870 central benefit of GMB is that it creates space for experiential knowledge from producers, which 

871 is often overlooked in datasets but is essential for understanding real production constraints and 

872 management logic. Incorporating producer knowledge into model structure fosters trust and 

873 increases the likelihood that resulting AI tools will be viewed as credible and relevant to on-farm 

874 decision-making. This dual identity enhances analytical rigor and stakeholder engagement, making 

875 GMB especially well-suited for guiding the integration of AI in complex, context-rich 

876 environments.

877 Group model building has long been used in agricultural development to improve 

878 collective understanding of complex issues like animal health, resource use, and farm economics 

879 (Gouttenoire et al., 2013). Recently, this approach has expanded to incorporate AI models into the 

880 collaborative process, not just as analysis tools but as active “co-modelers.” In these emerging 
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881 hybrid formats, AI tools simulate real-time projections and surface patterns in complex datasets or 

882 evaluate scenario trade-offs while users supply contextual knowledge and refine inputs.

883 Framing AI tools as collaborative modeling partners, rather than black-box decision 

884 engines, improves interpretability and trust. Trust is strengthened when producers can see their 

885 input reflected in model assumptions and outputs, reinforcing transparency and model legitimacy. 

886 When users help define model logic and interrogate outputs, they are more likely to integrate the 

887 tool into routine decision-making. Explainable AI techniques, such as SHAP and LIME, support 

888 this approach as they clarify how input data influences recommendations (Hoxhallari et al., 2022; 

889 Mallinger et al., 2024).

890 Finally, expanding educational resources (e.g., simulation-based training, intuitive mobile 

891 interfaces, peer-led workshops) and encouraging shared learning across design traditions, as GMB 

892 practice has done in Europe and the U.S., are critical to mainstreaming participatory AI in 

893 agriculture to ensure AI technologies are accessible and actionable for producers at various levels 

894 of digital literacy (Prajapati et al., 2025). The continued refinement of collaborative modeling 

895 methods and evaluation of their effectiveness are essential for scaling inclusive AI innovation in 

896 livestock systems (Andersen et al., 2007).

897

898 CONCLUSION AND FUTURE PERSPECTIVES

899 Artificial intelligence has the potential to significantly reshape livestock farming in ways 

900 that were scarcely imagined a decade ago. From enhancing early disease detection and estrus 

901 monitoring to optimizing feeding strategies and behavior tracking, AI-driven systems are 

902 beginning to redefine animal care and management. These technologies hold promise not only for 

903 improving productivity and animal welfare but also for addressing labor shortages, reducing 
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904 environmental impacts, and strengthening the resilience of livestock systems in response to global 

905 challenges such as climate change and food insecurity.

906 Nevertheless, significant barriers hinder widespread adoption. These challenges include 

907 data availability and quality, model generalization across diverse farming contexts, technical 

908 infrastructure constraints, ethical concerns, and socio-cultural acceptance. Limited training 

909 datasets, fragmented and proprietary technologies, sensor reliability issues, and insufficient rural 

910 connectivity present substantial hurdles. Additionally, issues surrounding algorithmic 

911 transparency, explainability, data governance, and user trust have a critical impact on stakeholder 

912 acceptance.

913 Addressing these challenges requires more than technical innovation alone; it requires 

914 holistic, systems-oriented strategies that are sensitive to the biological, social, and economic 

915 complexities of animal agriculture. Realistically, adoption depends on strengthening the broader 

916 PLF ecosystem, which involves linking producers, vendors, connectivity, open standards, and 

917 service capacity, so that point solutions operate as a coherent whole. Future AI developments could 

918 benefit from creating adaptable, interpretable models tailored to diverse farm contexts and from 

919 investments in infrastructure improvements such as robust rural connectivity and effective edge 

920 computing solutions. Developing clear guidelines for data ownership, privacy, and transparency 

921 will also be essential in building trust among producers and stakeholders.

922 Promising research directions highlighted in this review, such as multimodal sensor fusion, 

923 digital twin technologies, edge computing, genomics and climate data integration, and human-

924 centered design approaches, include avenues to foster more comprehensive and responsive 

925 livestock management systems. These advancements depend on overcoming current technical and 
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926 methodological challenges, such as data integration, real-time processing, lightweight modeling 

927 architectures, and effective stakeholder engagement.

928 Interdisciplinary collaboration could significantly enhance the success of AI in livestock 

929 farming. Policymaking supportive of open data initiatives, interdisciplinary funding opportunities, 

930 and extensive capacity-building programs for end-users could further strengthen the adoption 

931 ecosystem.

932 As AI becomes more embedded within livestock systems, the human role is likely to evolve 

933 rather than diminish, transforming producers into informed system managers and insightful data 

934 interpreters. AI technologies, therefore, might serve as partners, amplifying human expertise rather 

935 than replacing it, thus fostering more sustainable, ethical, and productive animal agriculture 

936 practices.

937 Although numerous challenges remain, the opportunities are substantial. Real progress 

938 now depends on moving from pilots to validated, farm-ready systems, prioritizing interpretability 

939 and trust, and building open, interoperable data ecosystems with clear governance. In practical 

940 terms, the field should publish reproducible, context-aware baselines, invest in standards that allow 

941 sensors and software to interoperate, co-design tools with producers using group model building, 

942 and judge success by farm-relevant outcomes such as timely alerts, avoided treatments, and 

943 reduced repeat breedings. Taken together, these steps can make AI not only possible but reliably 

944 useful in daily production.
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Table 1. Overview of AI applications across animal farming domains.
Domain Input Modality Key Applications

Milk yield, SCC, conductivity, 
activity, thermal images, audio

Mastitis detection, lameness 
detection, pain/facial analysis, fever 
detection, respiratory illness 
detectionHealth Monitoring

Video footage, posture, 
accelerometry Gait and body condition monitoring

Video (mounting, locomotion), 
thermal IR, pose estimation

Estrus prediction, reproductive cycle 
monitoring

Audio recordings (vocalization) Estrus-associated vocalization 
classification

Reproduction & 
Estrus Detection

Multimodal fusion (video + 
thermal + audio)

Enhanced estrus and farrowing 
detection

Video, audio, accelerometers, 
facial images, positioning 
sensors

Aggression detection, social network 
analysis, grimace scales, emotional 
state monitoring

Behavior & 
Welfare 

Assessment Multimodal systems (CV + 
audio + motion)

Welfare tracking and stress 
monitoring

RGB-D cameras, audio 
(pecking/chewing), GPS, LPS, 
accelerometers

Feed intake estimation, feeding 
behavior classificationNutrition & 

Precision Feeding CV and audio combined with 
growth tracking

Growth-based feed adjustment 
systems

RGB, 3D, or depth cameras, 
body dimension extraction, 
milk/egg data

Weight prediction, milk yield 
anomaly detection, egg grading

Video-based monitoring systems Egg counting, defect detection
Productivity 
Monitoring

Sensor + ML integration Production forecasting, anomaly 
detection
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Table 2. Major challenges and potential research directions for AI adoption in animal 
farming systems.

Challenge 
Area

Specific 
Challenge Description Affected 

Stakeholders
Example Solution or 
Response

Data quantity 
and quality

Lack of large, 
diverse, labeled 
datasets; sensor 
noise; limited event 
variability

Researchers, 
developers

Development of 
open-access 
annotated datasets 
(e.g., PigLife, 
MultiCamCows2024)

Rare event 
representation

Imbalance in 
datasets for 
detecting health/ 
reproduction cues 
like disease onset

AI developers
Synthetic data 
generation, sampling 
methods

Model 
transferability

Domain shift limits 
generalization 
across breeds, 
housing, and 
environments

Researchers, 
integrators

Transfer learning, 
domain adaptation, 
federated learning

Lack of general 
benchmarks

Few standardized 
tasks or datasets for 
livestock AI 
evaluation

Research 
community

Community 
challenges, 
benchmarking 
platforms

Explainability 
and trust

DL models function 
as black boxes, 
hindering trust in 
alerts and decisions

Farmers, vets, 
regulators

Explainable AI (XAI) 
techniques like 
SHAP and LIME

Data and 
Model 

Challenges

Limited user 
interfaces for 
interpretation

Users cannot easily 
view what AI 
systems are 
“seeing” or how 
they reason

Producers, 
advisors

Visual analytics, 
dashboards with 
transparent 
justifications

Sensor 
reliability

Damage or failure 
due to dust, 
moisture, or animal 
contact

Farmers
Rugged hardware, 
automated 
diagnostics

Sensor 
detachment or 

calibration 
issues

Wearables dislodge 
or drift, creating 
gaps or false data

Farmers

Design 
improvements, 
embedded calibration 
alerts

Connectivity 
limitations

Many rural areas 
lack broadband to 
support cloud-based 
AI

Small farms, 
rural users

Edge AI, offline-
capable tools, 
LoRa/mesh networks

Technical 
& 

Infrastruc
ture 

Constraint
s

Edge computing 
hardware costs

Real-time edge 
devices are still 

Farmers, 
integrators

Lightweight 
architectures (e.g., 
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expensive or 
limited in 
processing power

TinyML, model 
pruning)

System 
integration & 

interoperability

Incompatible 
software/hardware 
from different 
vendors

Tech 
providers, 
integrators

Open-source APIs, 
industry data 
standards

Data ownership 
and governance

Unclear ownership 
of sensor-collected 
data; risk of misuse

Farmers

Transparent 
governance, data 
sharing agreements, 
Ag Data Transparent 
principles

Cybersecurity 
risks

Farm data may be 
vulnerable to 
breaches or misuse

Producers, 
tech providers

Encrypted storage, 
farm-specific access 
controls

Bias and 
fairness

AI tools may be 
trained on high-
performing farms, 
not generalizable

Underserved 
farm types, 
smallholders

Diverse training data, 
cross-site validation

Reduced 
human-animal 

interaction

Over-automation 
risks loss of daily 
contact important 
for welfare 
monitoring

Caregivers, 
animals

Hybrid systems that 
prompt visual 
inspection, staff alerts

Welfare trade-
offs in 

optimization

Algorithms may 
prioritize 
throughput over 
animal comfort if 
not constrained

Producers, 
policy 
advocates

Embed welfare 
thresholds in 
optimization routines

Ethical, 
Legal, and 

Social 
Concerns

Lack of 
regulation or 

standards

No legally 
enforceable ethics 
or performance 
standards for 
livestock AI

Government, 
industry

Industry consortia, 
regulatory 
frameworks, third-
party audits

Technological 
unfamiliarity

Many producers 
lack background in 
AI/data systems

Farmers Extension programs, 
visual training tools

Perceived 
complexity of 

tools

Black-box nature, 
unfriendly 
interfaces 
discourage use

End-users User-centered design, 
mobile interfaces

Adoption 
and 

Training 
Gaps

Fear of job 
displacement

Concern that AI 
may replace labor-
intensive roles

Farmworkers
Reframing AI as 
augmentative, 
retraining initiatives
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Cost and risk 
aversion

Capital costs and 
uncertainty about 
return delay 
adoption

All producers
Demonstration farms, 
phased investment 
plans

Lack of 
participatory 

design

Tools built without 
farmer input fail to 
meet real-world 
needs

Farmers, 
developers

Co-design 
workshops, iterative 
prototyping
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