

1 **Running Title: Artificial Intelligence for Animal Farming**

2

3 **ASAS-NANP Symposium: Mathematical Modeling in Animal Nutrition:**

4 **Revolutionizing Animal Farming with Artificial Intelligence: Trends, Challenges, and**

5 **Opportunities**

6

7 Isabella C. F. S. Condotta^{*,1}, Luis O. Tedeschi[†]

8

9 ^{*} Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA

10 [†] Department of Animal Science, Texas A&M University, College Station, TX 77843, USA

11

12 ¹ Corresponding author: icfsc@illinois.edu

13

14

Lay Summary

15 Livestock farmers today face multiple challenges, including maintaining animal health and well-
16 being, minimizing their environmental impact, and staying competitive in a rapidly evolving
17 world. New Artificial Intelligence (AI)-powered technologies are being developed to help with
18 these tasks and to enable more intelligent, rapid, and precise agricultural decision-making. This
19 review examines how AI is changing the way animals are managed. For example, computer
20 systems can now recognize when an animal is getting sick before visible signs appear, or when it
21 is ready to breed, based on its movement and behavior. These capabilities depend on smart
22 technologies such as cameras, sensors, and microphones placed in barns and fields to collect data,
23 and on AI that transforms that data into useful information and informed decisions. These tools
24 can save time, improve animal welfare, and increase productivity; however, unreliable internet
25 access and the high cost of advanced equipment limit their adoption. Most AI systems also require
26 large, well-labeled datasets and often make decisions that are hard to interpret, which can make
27 them difficult to trust. This review also addresses essential questions, such as who owns the data
28 collected from animals and how to ensure that technology doesn't replace human judgment or care.
29 The review highlights exciting developments to look forward to, such as combining multiple types
30 of sensors, using AI that runs directly on the farm, not just in the cloud, and building virtual models
31 of animals to test decisions. The paper emphasizes that working closely with farmers and other
32 experts will be key to making these tools practical, fair, and effective.

33

34 **Teaser Text:** This review examines how artificial intelligence is reshaping livestock management
35 through applications in health monitoring, reproduction, behavior analysis, and precision feeding.
36 It highlights the current capabilities of AI systems, examines technical and ethical challenges, and

37 outlines emerging research opportunities that can advance both animal science and data-driven
38 agriculture.

39

40 **Abstract**

41 Artificial intelligence (AI) can transform livestock farming as producers start using data-driven
42 decisions in key areas, such as animal health, reproduction, behavior, nutrition, and production
43 management. This review examines how AI technologies, like machine learning, computer vision,
44 and sensor-based systems, help monitor and manage livestock more precisely, efficiently, and
45 responsively. From early disease detection and estrus prediction to real-time behavior tracking and
46 automated feeding systems, AI offers powerful tools for improving productivity, enhancing animal
47 welfare, and supporting sustainable farm operations. Despite the promising technological
48 advances, adopting AI in livestock systems comes with significant challenges. These include
49 issues related to data quality and availability, model generalizability, infrastructure limitations, and
50 ethical concerns involving data privacy and animal welfare. This review critically examines these
51 obstacles and points out the need for robust, interpretable AI solutions that can adapt to specific
52 farm conditions and offer meaningful explanations to end-users. Emerging trends like multimodal
53 sensor fusion, digital twins, edge AI, and the integration of AI with genomics and climate data
54 offer exciting possibilities for next-generation livestock management and smart farming systems.
55 It is equally crucial to focus on human-centered design, participatory design, and group model-
56 building approaches to ensure AI tools are accessible, trusted, and address the real needs of farmers
57 and caregivers. This paper explores AI's potential to change livestock farming while advocating
58 for interdisciplinary collaboration, inclusive innovation, and responsible deployment. It
59 synthesizes current applications, challenges, and research frontiers. Ultimately, AI's impact on

60 animal agriculture depends on technical advancements as well as our ability to integrate these tools
61 into systems that are biologically sound, socially accepted, and ethically responsible.

62

63 **Keywords:** digital agriculture, precision livestock farming, sensor integration, smart farming.

64

65 **List of Abbreviations:** ADAPT = Agricultural Data Application Programming Toolkit; AI =
66 artificial intelligence; ANN = artificial neural network; AR = augmented reality; ATOL = Animal
67 Trait Ontology for Livestock; CAST = Council for Agricultural Science and Technology; CNN =
68 convolutional neural network; CV = computer vision; DL = deep learning; DSS = decision support
69 system(s); FAIR = Findable, Accessible, Interoperable, and Reusable; FCC = Federal
70 Communications Commission; GMB = group model building; GNSS = Global Navigation
71 Satellite System; GPS = Global Positioning System; HCD = human-centered design; HGS = Horse
72 Grimace Scale; HIMM = hybrid intelligent mechanistic model; IoT = Internet of Things; LIME =
73 Local Interpretable Model-agnostic Explanations; LoRaWAN = Long Range Wide Area Network;
74 LPS = local positioning system; LSTM = long short-term memory; ML = machine learning; MPE
75 = mean percentage error; PLF = precision livestock farming; R-CNN = region-based convolutional
76 neural network; RFID = radio-frequency identification; RGB = red, green, blue; RGB-D = red,
77 green, blue + depth; RNN = recurrent neural network; ROI = region of interest; SHAP = SHapley
78 Additive exPlanations; SNA = social network analysis; THI = temperature–humidity index; XAI
79 = explainable AI; YOLO = You Only Look Once; 5G = fifth-generation mobile network.

80

81

82

83

INTRODUCTION

84 The global livestock industry is transforming amid increasing demands for productivity,
85 animal welfare, environmental sustainability, and labor efficiency (Niloofar et al., 2021).
86 Traditionally, monitoring of animal health, reproduction, and nutrition depended on human
87 observation, manual records, and periodic interventions. However, increasing system complexity,
88 larger operation scales, and societal expectations for transparency and animal well-being now
89 require more precise, data-driven approaches (Thumba et al., 2020). This shift marks the
90 emergence of precision livestock farming (**PLF**), which integrates real-time data and automated
91 technologies to enhance animal management (Berckmans, 2017).

92 Among the enabling technologies in PLF, artificial intelligence (**AI**) stands out as a
93 transformative tool. AI encompasses machine learning (**ML**), computer vision (**CV**), and other
94 computational techniques that enable machines to analyze data, recognize patterns, and make
95 informed decisions (Fuentes et al., 2022; Melak et al., 2024). In livestock systems, AI technologies
96 are increasingly employed to identify early signs of disease from video or sound data, detect estrus
97 from behavioral cues, estimate body weight from images, and adjust feeding strategies based on
98 real-time intake patterns (García et al., 2020). These applications rely on the convergence of
99 enabling technologies, including the Internet of Things (**IoT**), wearable and non-invasive sensors,
100 thermal and multispectral imaging, cloud computing, and real-time analytics platforms.

101 The potential of AI in livestock systems is substantial. For instance, ML algorithms can
102 now process thousands of data points per animal daily, providing unprecedented insights into
103 individual and herd-level behavior (McVey et al., 2023). Many CV systems have demonstrated
104 the capability for early disease detection, enabling proactive management and supporting earlier
105 interventions (Okinda et al., 2019; Jorquera-Chavez et al., 2021; Parikh et al., 2024). Similarly,

106 audio analysis technologies effectively differentiate coughing patterns or vocalizations associated
107 with stress or respiratory illness (Cordeiro et al., 2013; Carpentier et al., 2018; Wang et al., 2024).

108 Despite these promising developments, the implementation of AI in livestock systems
109 continues to face significant challenges. The diversity of livestock environments, ranging from
110 large commercial operations to smallholder farms, makes it difficult to standardize data collection
111 and deploy robust AI systems. Additionally, ethical and legal concerns regarding data privacy,
112 algorithmic bias, and displacement of traditional labor roles require careful consideration.
113 Furthermore, technical challenges such as sensor reliability, data quality, and model
114 generalizability continue to hinder the widespread adoption of these technologies (Georgopoulos
115 et al., 2020; Kaushik et al., 2024).

116 This literature review summarizes current knowledge on the integration of AI in livestock
117 farming systems. It examines core AI applications in the domains of health, reproduction,
118 behavior, nutrition, and production, highlighting emerging trends in multimodal sensing, edge
119 computing, and digital twin technologies. It also discusses persistent challenges, including limited
120 data availability, model interpretability, infrastructure constraints, and stakeholder adoption. It
121 then outlines future research opportunities and proposes pathways toward scalable, responsible,
122 and inclusive implementation of AI in livestock farming.

123 The objectives of this paper are to provide background on AI technologies and their
124 relevance to livestock farming, including a historical perspective; to explore current AI
125 applications across key livestock management domains, with emphasis on real-world
126 implementations and recent scientific developments; to examine significant challenges and
127 barriers to adoption, spanning technical and operational constraints as well as ethical and social

128 implications; and to discuss emerging trends and innovative research directions, followed by a
129 conclusion and future outlook.

130

131 BACKGROUND AND TECHNOLOGICAL FOUNDATIONS

132 Overview of Artificial Intelligence in Agriculture

133 Artificial intelligence refers to computational systems capable of performing tasks that
134 typically require human intelligence, including learning from data, recognizing patterns, making
135 predictions, and solving problems. Machine learning, a subset of AI, enables algorithms to learn
136 from data, identify patterns, and adapt their outputs without explicit rule-based programming. This
137 allows systems to improve performance with experience. Deep learning (**DL**), an advanced subset
138 of ML, employs artificial neural networks (**ANNs**) to model complex, hierarchical patterns,
139 making it well suited to image and sound recognition tasks common in agricultural monitoring
140 (Kamilaris and Prenafeta-Boldú, 2018). Computer vision is another essential subfield of AI that
141 enables automated interpretation of visual data, such as images or videos, to monitor livestock
142 behavior, identify individuals, or detect signs of illness (Liu et al., 2020; McDonagh et al., 2021;
143 Han et al., 2023; Islam et al., 2023).

144 In agricultural systems, AI processes large and heterogeneous data streams obtained from
145 sensors, cameras, microphones, and other digital devices (Tedeschi et al., 2021). A key strength of
146 AI is its ability to detect complex, often nonlinear relationships in large, multidimensional datasets
147 that are invisible to human observers or traditional statistical approaches. For example, AI systems
148 can continuously monitor herds without human intervention and flag animals that deviate from
149 normal patterns of activity, feeding, vocalizations, and posture, for example.

150 Many agricultural AI systems employ several learning paradigms. Supervised learning,
151 where models are trained on labeled data, is commonly used for classification tasks such as
152 identifying lameness or forecasting feed intake. In contrast, unsupervised learning explores
153 unlabeled data to detect latent behavioral patterns, group animals with similar activity profiles, or
154 flag anomalies. Although still emerging in livestock applications, reinforcement learning enables
155 adaptive systems, such as autonomous feeders, to learn optimal strategies as they interact
156 continuously and receive feedback.

157 The efficacy of AI systems in agriculture depends on a supporting technology ecosystem.
158 The IoT could integrate wearable sensors, automated feeders, environmental monitors, and
159 cameras, enabling continuous, real-time data collection and monitoring. Edge computing could
160 enhance data processing directly on the farm or on devices, reducing latency and enabling prompt
161 interventions. For example, low-power devices installed in poultry houses or barns could process
162 temperature, sound, and activity data locally, triggering immediate alerts without relying on cloud
163 connectivity. Cloud computing can complement edge solutions with scalable storage and robust
164 analytics, enabling integration and analysis of data from multiple sources or farms. Moreover, 5G
165 and other wireless connectivity advancements, such as LoRaWAN, could further enhance real-
166 time data transmission, which is essential for remote or extensive farming operations.

167 Together, these technologies form the infrastructure for successful AI implementation in
168 livestock farming systems. However, reaching their full potential requires careful integration that
169 ensures interoperability and alignment with animals' biological and behavioral complexities, and
170 with real-world farming challenges.

171

172 **Evolution of AI in Livestock Systems**

173 The adoption of AI in livestock farming has evolved from manual observation tools to
174 increasingly automated and intelligent systems. This trajectory helps contextualize current and
175 emerging applications. Initial implementations of PLF technologies primarily relied on radio-
176 frequency identification (**RFID**) tags, automated weighing systems, and basic alert systems that
177 flagged abnormalities such as ventilation failures or reduced water intake (Berckmans, 2006).

178 As technological capabilities advanced, real-time sensor-based systems became more
179 common. Devices such as accelerometers, thermal cameras, global positioning system (**GPS**)
180 trackers, and microphones enabled continuous, individual-level monitoring of livestock behavior
181 and physiology. For example, accelerometers have been used to monitor feeding and locomotion
182 in dairy cows (Vázquez Diosdado et al., 2015; Beer et al., 2016; Barker et al., 2018; Werner et al.,
183 2019; Iqbal et al., 2021; Balasso et al., 2021), while thermal imaging has enabled early detection
184 of disease and mastitis (Schaefer et al., 2012; Zhang et al., 2020; Anagnostopoulos et al., 2021;
185 Wang et al., 2022a; Gayathri et al., 2024).

186 By the 2010s, ML and CV began to gain traction in animal agriculture. ML algorithms
187 demonstrated value in tasks such as predicting tail-biting outbreaks in pigs (Larsen et al., 2019;
188 Domun et al., 2019; Ollagnier et al., 2023) and monitoring rumination patterns of cows (Hamilton
189 et al., 2019; Ayadi et al., 2020; Abdanan Mehdizadeh et al., 2023; Li et al., 2024). Convolutional
190 neural networks (**CNNs**), a class of DL models, were applied successfully to behavior recognition
191 tasks, including detecting lying, feeding, and mounting in cattle and pigs (Li et al., 2019; Alameer
192 et al., 2020; Chen et al., 2020a; Achour et al., 2020; Fuentes et al., 2020; Yu et al., 2022).
193 Additionally, CV models have shown high accuracy for estimating livestock body weight,
194 providing a non-invasive alternative to traditional weighing systems that rely on scales (Ma et al.,
195 2024a).

196 The rise of multimodal sensing systems has further expanded AI capabilities. Researchers
197 have reported stronger robustness and accuracy when data from multiple sources are combined,
198 such as audio, thermal, and 3D video inputs. For example, studies have used multimodal data,
199 including audio and images, to improve the detection of respiratory diseases in pigs (Ji et al., 2022;
200 Chae et al., 2024). In dairy systems, multi-sensor approaches have enabled detection of metabolic
201 disorders, oestrus, and behavior (Holman et al., 2011; Sturm et al., 2020; Tian et al., 2021;
202 Arablouei et al., 2023).

203 Despite the growing body of evidence supporting the efficacy of AI in livestock systems,
204 adoption remains variable across farm sizes and regions. Larger operations often possess the
205 infrastructure and capital necessary to implement and maintain advanced technologies. At the same
206 time, smaller farms and ranches may face barriers such as high costs, a lack of digital literacy, and
207 limited access to data interpretation tools. Moreover, variability in environmental conditions,
208 animal genetics, and housing systems across production sites limits the generalizability of AI
209 models and requires site-specific calibration and validation.

210 Nonetheless, AI research in animal agriculture is expanding rapidly, with open-access
211 datasets, advances in sensor design, and interdisciplinary collaborations accelerating progress. For
212 instance, research increasingly focuses on making models more interpretable and accessible to
213 producers through user-friendly interfaces and the incorporation of domain expertise into
214 algorithm development (Sykes et al., 2022; Mallinger et al., 2024; Neethirajan et al., 2024),
215 including the development of hybrid intelligent mechanistic models (HIMM). These models
216 combine AI's pattern recognition capabilities with biologically based mechanistic models to
217 enhance explainability and robustness (Tedeschi, 2019, 2022, 2023).

218

219

CURRENT APPLICATIONS OF AI IN ANIMAL FARMING

220

Artificial Intelligence has emerged as a transformative tool in livestock production systems. It enables real-time, non-invasive monitoring and supports data-driven decision-making. Validated AI applications now cover animal health, reproduction, behavior, feeding, identification, and integrated farm management. These systems increasingly rely on ML and DL to process complex datasets from video, audio, thermal imaging, and wearable or environmental sensors. Table 1 provides a structured overview of AI applications in key areas of animal farming.

226

227 **Animal Health Monitoring**

228

Animal health is foundational to sustainable and profitable livestock production, and the early identification of disease is crucial for minimizing treatment costs, preventing outbreaks, and improving animal welfare. Traditional methods, such as visual inspection or threshold alarms from isolated sensors, often detect conditions too late for optimal intervention. AI approaches provide a transformative upgrade to these systems. They integrate multimodal sensor data and automatically detect patterns or anomalies associated with health deterioration, enabling continuous, remote, and scalable health monitoring across species and housing systems.

235

A key area of research has been the detection of mastitis, a prevalent and costly disease in dairy cattle. Studies have demonstrated that ML algorithms that integrate sensor data such as milk yield, somatic cell count, electrical conductivity, and behavior metrics like rumination time outperform traditional threshold methods. For example, Tian et al. (2024) reported that combining milk production and conductivity data using supervised ML models improved early detection of clinical mastitis. Similarly, Cavero et al. (2008) used an ANN to classify mastitis presence with

241 promising results. A broader review by Ozella et al. (2023) noted that AI-based mastitis models
242 are increasingly incorporated into automatic milking systems for real-time detection.

243 Lameness detection is another well-established application of AI. This condition is difficult
244 to identify with visual observation in large or group-housed herds. Early work explored image-
245 processing methods (Song et al., 2008; Condotta et al., 2020), and later studies integrated CV-
246 based models to accelerate analysis and enable real-time use. Wu et al. (2020) applied a YOLOv3-
247 based DL model to analyze top-view video data and identify dairy cows with abnormal gait
248 patterns in real time. In pigs, Zhenbang et al. (2024) used a 3D CNN to classify gait sequences
249 from video footage, achieving strong agreement with expert scoring. These systems enable
250 consistent and objective evaluation of locomotor issues, making them well-suited for integration
251 into automated management platforms.

252 Beyond locomotion, AI has also been applied to evaluate health-related physical indicators,
253 such as body condition and pain expression. Çevik (2020) demonstrated the use of DL to
254 automatically classify body condition scores from images of dairy cows, offering a non-invasive
255 and repeatable alternative to manual scoring. Additionally, facial recognition models using CNNs
256 have been trained to detect pain in sheep based on ear posture, eye changes, and muscle tension
257 (Noor et al., 2020). These approaches are promising for welfare monitoring but require broader
258 validation across species and environments.

259 Audio-based disease monitoring has also been successfully implemented. Respiratory
260 diseases often manifest through coughing or sneezing before more visible symptoms appear. Chae
261 et al. (2024) developed a multimodal DL system using CNNs and recurrent neural networks
262 (RNNs) to detect cough events in pigs accurately. Likewise, Schaefer et al. (2012) demonstrated
263 that infrared thermography could detect early respiratory infections in calves and identified

264 increased eye and nasal temperatures as early indicators. This finding supports integration of
265 multimodal approaches, such as combining visual and acoustic signals, into AI-based systems.

266 This integration of multimodal data, including video, audio, thermal, and motion sensor
267 streams, is in early stages of study to further enhance the robustness of AI-based health diagnostics.
268 For example, Dhaliwal and Neethirajan (2025) demonstrated that combining video and audio
269 improved early lameness detection in dairy cows, with fewer false positives than unimodal models.
270 These fusion-based approaches can offer redundancy, which in AI systems means the duplication
271 of critical components to increase reliability, safety, and fault tolerance under noisy or incomplete
272 conditions.

273 Additionally, wearable sensor data, such as accelerometers, rumination monitors, or
274 temperature tags, can be used in ML models to track early physiological deviations. These models
275 have been used for a range of applications, including the prediction of metabolic disorders, fever
276 detection, and monitoring of stress responses in cattle, swine, and sheep (Neethirajan, 2017; Stygar
277 et al., 2021; Jorquera-Chavez et al., 2021).

278 While these technologies advance rapidly, current systems remain under development and
279 are often limited to pilot or semi-commercial stages. Validation in large, diverse herds and
280 different management systems remains essential for widespread adoption.

281

282 **Reproductive Monitoring and Estrus Detection**

283 Efficient and timely estrus detection is essential for maximizing reproductive success in
284 animal farming. Accurate identification of the onset of estrus enables better insemination timing,
285 improves conception rates, reduces hormone use, and minimizes labor associated with visual
286 monitoring. Traditional methods, such as chalking, standing heat observation, or tail painting, are

287 often subjective, labor intensive, and less effective in group-housed systems. Artificial
288 intelligence, particularly systems powered by CV, acoustic analysis, and deep learning, can
289 provide new tools for automated, continuous, and individualized estrus monitoring across species,
290 with calibration often needed for different species and housing systems.

291 AI-driven CV technologies have been used to detect behavioral cues of estrus, including
292 increased locomotion, standing reflex, and mounting behavior. For example, Li et al. (2019)
293 developed a DL-based system that recognized mounting behavior in pigs using surveillance video
294 footage. Küster et al. (2020) implemented CV to monitor changes in sow activity, showing that
295 video-based behavior analysis can detect events related to estrus and farrowing. More recently,
296 Lodkaew et al. (2023) introduced CowXNet, a DL framework for estrus detection in dairy cattle
297 using visual behavior cues in group-housed systems, which effectively tracks individual cows
298 within herd environments.

299 Thermal imaging has also been explored as a method for estrus prediction. Feng et al.
300 (2019) demonstrated that infrared thermal cameras could detect temperature increases in sow
301 vulvas, an indicator of estrus. They used partial least squares regression to predict rectal
302 temperatures with an R^2 of 0.80. If integrated with behavioral cues and CV systems, this approach
303 could enhance the accuracy of estrus detection.

304 Multimodal AI systems that integrate data from various sensors, such as visual, motion,
305 thermal, and audio, are increasingly being explored to enhance the robustness of livestock behavior
306 monitoring under commercial conditions. For instance, Cai et al. (2025) developed a multimodal
307 feature fusion method that combines audio and thermal infrared image data to improve the
308 accuracy and robustness of estrus monitoring in breeding pigs. Additionally, Aryawan et al. (2024)
309 proposed a novel approach using pose estimation with a deep learning model for real-time estrus

310 detection in female cows. Furthermore, Arıkan et al. (2023) introduced a method that integrates
311 estrus detection with cow identification for use with augmented reality (AR) devices, employing
312 deep learning-based mounting detection and then the system identified the mounting region of
313 interest (**ROI**) with a YOLOv5 model.

314 Acoustic signals associated with estrus, including specific vocalizations, have also been
315 analyzed with AI. Jung et al. (2021) developed a CNN-based system to classify cattle vocalizations
316 in real time using noise-filtered audio, achieving classification accuracy above 90%. While their
317 system was not designed exclusively for estrus detection, similar acoustic features have been
318 reported to correlate with estrus phases in pigs and cattle (Schön et al., 2007; Wang et al., 2022,
319 2023) and could be combined with video or thermal inputs into multimodal monitoring tools.

320 Field-level validation of AI systems remains crucial for commercial adoption. Verhoeven
321 et al. (2023) evaluated an AI-powered estrus detection system in sows using over 6,700
322 reproductive cycles across three farms. The system, which used overhead cameras and a behavior
323 recognition algorithm, significantly improved farrowing rates and reduced repeat breedings at two
324 of the farms under routine farm conditions.

325 Finally, fuzzy logic and ML models applied to sensor data have also performed well. Zarchi
326 et al. (2009) developed a fuzzy logic-based model for estrus detection in dairy cows, achieving
327 85.3% sensitivity and 100% specificity using data on milk conductivity, activity, and yield. In a
328 motion-based application, Aloo et al. (2024) trained an artificial neural network on accelerometer
329 and temperature data to detect estrus in cattle, yielding an accuracy of 89.5%.

330

331 **Behavior and Welfare Assessment**

332 Animal behavior serves as a crucial indicator of welfare status. Changes in postural
333 activity, feeding frequency, rest patterns, and social interactions often precede overt signs of
334 illness, pain, or stress. Traditional behavioral assessments rely heavily on human observation,
335 which is subjective, intermittent, and impractical for large-scale or continuous monitoring.
336 Artificial intelligence enables automated, scalable, and real-time behavioral assessments in
337 livestock production systems when combined with sensor technologies such as video, wearables,
338 and microphones.

339 Computer vision and DL models have been widely used to monitor behaviors such as lying,
340 standing, walking, and feeding. Nasirahmadi et al. (2019) developed a system using image
341 processing and machine learning to automatically classify pig postures from overhead images,
342 enabling real-time tracking of activity in group-housed environments. Cowton et al. (2019)
343 designed a DL pipeline capable of identifying and tracking individual pigs, extracting behavior
344 metrics like location, movement, and feeding duration.

345 To capture temporal patterns in behavior, CNNs have been combined with long short-term
346 memory (**LSTM**) architectures. Chen et al. (2020b) employed a CNN-LSTM model to analyze
347 video footage of pigs, aiming to identify aggression episodes. Their system achieved high
348 classification accuracy (97.2%), demonstrating how the combination of spatial and temporal
349 features could enhance behavior detection under commercial housing conditions.

350 Advanced CV models, such as instance segmentation, enable the identification of multiple
351 animals in the same frame, even under occlusion. Hu et al. (2021), for example, proposed a dual
352 attention-guided feature pyramid network for segmenting and tracking pigs in dense pen
353 environments. These methods are particularly useful in swine and poultry systems where animals
354 often overlap in camera views.

355 AI approaches have also been developed to monitor social behaviors and group-level
356 dynamics. Social network analysis (SNA) can be used to quantify affiliative and aggressive
357 behaviors in livestock through analysis of proximity, co-occurrence, and interaction patterns
358 derived from automated monitoring systems. Agha et al. (2025) demonstrated this approach with
359 positioning data from pigs, revealing latent social structures within pens and offering insights into
360 social hierarchy formation and individual variability in sociality.

361 Facial recognition and expression analysis have gained traction as tools for assessing pain
362 and emotional states in farm animals, with the goal of supporting non-invasive, real-time welfare
363 assessment across species. These methods rely on identifying specific facial action units, such as
364 orbital tightening, ear position, and changes in the nose or mouth, that correlate with discomfort.
365 Noor et al. (2020) trained convolutional neural networks to detect such features in sheep, resulting
366 in a reliable and automated sheep grimace scale. In horses, Dalla Costa et al. (2014) developed the
367 Horse Grimace Scale (HGS) to assess pain following routine castration, focusing on facial
368 expressions like stiffly backward ears, orbital tightening, and tension around the eye area.
369 Similarly, Di Giminiani et al. (2016) introduced the Piglet Grimace Scale to evaluate pain in piglets
370 undergoing tail docking and castration, identifying specific action units, such as bulging cheeks
371 and orbital tightening.

372 In addition to pain recognition, facial analysis has also been explored to assess emotional
373 states. The WUR Wolf platform, developed by Neethirajan (2021), applies deep learning
374 algorithms such as YOLOv3, YOLOv4, and Faster R-CNN to monitor facial features, including
375 ear posture and eye white visibility, in cattle and pigs. When linked with other behavioral and
376 physiological data streams, the platform targets broader welfare monitoring goals. The system
377 achieved a classification accuracy of around 85% and was designed for real-time monitoring.

378 Wearable sensors, such as accelerometers, are widely used to monitor movement and
379 activity in dairy cattle, pigs, and small ruminants. These devices can detect deviations from normal
380 movement or lying behavior, which may indicate discomfort or illness. When paired with ML
381 models, they enable automated behavior classification and facilitate longitudinal welfare
382 monitoring. Fuentes et al. (2022) reviewed such systems, noting their scalability and high
383 predictive performance in real-world applications.

384 Acoustic monitoring offers another promising avenue for assessing welfare. Animals
385 vocalize differently in response to stress or pain, and AI models can accurately classify these
386 vocalizations. Jung et al. (2021) developed a real-time vocal classification system for cattle using
387 CNNs and noise-filtering preprocessing. Their system achieved classification accuracy of over
388 90%, demonstrating the potential for sound-based welfare indicators.

389 A review by Debauche et al. (2021) highlights that many AI techniques developed for
390 behavior monitoring in one species can be generalized to others, particularly for common
391 behaviors like grazing, lying, and locomotion. They emphasize the benefits of combining multiple
392 sensors, such as accelerometers, video, and microphones, to improve classification accuracy. The
393 placement of sensors and the selection of appropriate data processing algorithms are also critical
394 for system performance. Additionally, trends such as edge computing are enabling real-time
395 behavior analysis directly on the farm, reducing data transmission costs and latency.

396 The integration of multimodal systems is becoming increasingly common. These systems
397 improve detection robustness under varying environmental conditions and animal behaviors.
398 Wang et al. (2022) and Fuentes et al. (2022) emphasize that future systems are likely to rely on
399 DL architectures capable of processing multimodal inputs for enhanced welfare analysis.

400

401 **Precision Feeding and Nutrition**

402 Feeding represents the most significant variable cost in livestock production, making feed
403 efficiency and precision nutrition vital for economic and environmental sustainability. AI
404 technologies have emerged as powerful tools to individualize feeding strategies based on real-time
405 and historical data on intake behavior, growth, physiological status, and activity patterns. These
406 approaches reduce feed waste, improve animal performance, and help minimize environmental
407 impacts such as methane emissions from enteric fermentation.

408 AI-powered systems are used to estimate feed intake, support individualized feeding
409 optimization, and predict feeding behavior using various sensor modalities. In dairy cattle, Bezen
410 et al. (2020) developed a CV system utilizing RGB-D cameras and DL algorithms to estimate
411 individual cow feed intake with high accuracy. Additionally, Bloch et al. (2021) proposed a system
412 to measure individual cow feed intake in commercial dairies that used CV for individual cow
413 identification. These studies exemplify AI's ability to support site-specific feeding decisions, and
414 they enable dynamic diet formulation for enhanced efficiency. Additionally, predictive models
415 could incorporate factors such as milk production, body weight, lactation stage, and environmental
416 conditions to estimate daily nutrient requirements and inform ration adjustments, which supports
417 more responsive feeding management.

418 Multimodal systems that combine video, audio, and accelerometer data have also shown
419 promising results. Barker et al. (2018) employed a combination of local positioning systems (LPS)
420 and accelerometers to quantify feeding behavior in lame versus non-lame dairy cattle, which
421 enables the early identification of animals deviating from normal feeding patterns. In extensive
422 grazing systems, wearable GPS collars and accelerometers have been deployed to track livestock
423 location and activity. Machine learning algorithms, particularly Random Forest classifiers, have

424 been used to distinguish between grazing, walking, resting, and ruminating behaviors. For
425 example, Williams et al. (2016) employed GPS data and ML techniques to model pasture use in
426 dairy cows, showing high predictive accuracy for spatial behavior analysis.

427 Poultry operations are starting to benefit from AI applications that monitor feed intake and
428 assess growth. Vision systems using depth cameras and CNNs have been developed to recognize
429 feeding behavior and estimate body size in crowded environments. For instance, Guo et al. (2022)
430 demonstrated that video-based models can detect broiler feeding behavior with high precision,
431 highlighting the potential of non-invasive tools for monitoring flock-level patterns. While daily
432 tracking and individualized feed adjustments remain under development, these tools provide
433 valuable insights that can support more responsive management strategies. In broiler systems,
434 Aydin et al. (2015) introduced a sound-based monitoring tool capable of estimating feed intake
435 using audio signals from pecking behaviors. The model distinguished feeding activity in real-time,
436 offering a potentially scalable, non-invasive method to track consumption across multiple animals
437 simultaneously.

438 In swine production, real-time growth monitoring using CV models has the potential to
439 inform feeding interventions. Chen et al. (2020a) employed a video-based deep learning model to
440 detect and quantify feeding time in pigs, distinguishing individual behaviors, such as feeding,
441 drinking, and idling, from overhead video footage. Systems like those presented by Cang et al.
442 (2019) estimate pig weight patterns without interrupting animal routines, and can enable adaptive
443 feed delivery based on projected growth trajectories.

444 Overall, AI advances livestock feeding and enables data-driven decisions tailored to the
445 biological needs of individual animals or groups, with potential benefits for productivity, animal
446 welfare, and carbon-footprint reduction. AI-based precision feeding enhances feeding efficiency

447 and reduces nitrogen oversupply, which decreases waste and limits excess nitrogen and
448 phosphorus excretion, which are key contributors to ammonia and nitrous oxide emissions from
449 manure management (Pomar et al., 2021). Improved nutrient use efficiency is also linked with
450 environmental sustainability; for example, recent lifecycle assessments have shown that precision
451 feeding strategies can lower global warming potential as they reduce feed inputs per unit of animal
452 product (Llorens et al., 2024). Feed-crop production (including fertilizer, land-use change, and
453 transport) and enteric methane emissions are among the largest contributors to greenhouse-gas
454 emissions in ruminant livestock systems (Grossi et al., 2019). As a result, even modest gains in
455 feed conversion efficiency can reduce emission intensity.

456 **Production Monitoring and Management**

457 Monitoring livestock productivity is crucial to effective farm management, as it informs
458 decisions related to nutrition, marketing, reproduction, and health. While manual assessments of
459 growth, milk yield, or egg production remain common, they are labor-intensive and often lack
460 precision or timeliness. AI technologies have the potential to offer scalable, non-invasive
461 alternatives for continuous productivity monitoring. These tools support individualized
462 management as they extract performance metrics from visual, acoustic, and environmental data
463 streams.

464 One of the most widely studied AI applications in this domain is body weight estimation
465 using computer vision. Accurate body weight is a critical productivity metric for beef, dairy, swine,
466 and poultry systems; however, traditional weighing methods are time-consuming and stressful for
467 animals. Multiple studies have demonstrated that CV-based approaches can automate weight
468 estimation using RGB or depth images. For example, Condotta et al. (2018) predicted grow-
469 finishing pigs' weights from depth images using ANNs with MPE as low as 3.93% (R^2 between

470 predicted and actual weight of up to 0.99). Similarly, Cominotte et al. (2020) employed a Kinect
471 depth camera combined with regression and neural networks to estimate body weight and average
472 daily gain in beef cattle, achieving high predictive accuracy (R^2 up to 0.92). Wang et al. (2021)
473 reviewed digital image-based ML models across species and emphasized their utility in supporting
474 management decisions such as optimal marketing time and detecting deviations from expected
475 growth curves.

476 Condotta et al. (2020) emphasized the importance of considering the body weight, size,
477 and conformation of modern animals when designing facilities and equipment, showcasing the use
478 of depth imaging techniques to acquire dimensions of interest. Similarly, recent reviews have
479 detailed advances in animal body dimension measurement techniques. Ma et al. (2024a) and Ma
480 et al. (2024b) investigated the application of RGB cameras, 3D laser scanning, and stereo vision
481 systems for collecting point cloud data and extracting anatomical features, including length, height,
482 girth, and area. These features can serve as inputs for AI-based growth models, replacing manual
483 measurements with automated, repeatable assessments conducted without animal handling. Such
484 systems are increasingly explored for use in both confined housing and open-grazing systems.

485 In poultry production, imaging techniques have been applied for the automated acquisition
486 of body dimensions and weight prediction (Benicio et al., 2023). More recently, AI models enable
487 faster acquisition of these variables for near real-time assessment. These tools provide a non-
488 invasive alternative to manual weighing and can support more frequent assessments of flock
489 development. Lyu et al. (2023), for example, evaluated the use of ML algorithms to predict broiler
490 body weight based on image-derived measurements collected on-farm. Their study demonstrated
491 that these models could achieve high predictive accuracy under experimental conditions,
492 indicating potential for further development into practical monitoring tools.

493 Beyond body weight and size, AI tools are being integrated into milk yield and productivity
494 monitoring platforms. These systems combine data from robotic milkers, activity monitors,
495 environmental sensors, and feeding systems. AI models are used to detect anomalies in milk
496 production related to health disorders (e.g., mastitis), environmental stress (e.g., heat), or
497 nutritional imbalances. Tian et al. (2024) and Ozella et al. (2023) noted that combining multiple
498 sensor inputs with ML algorithms improves the timeliness and accuracy of detecting production-
499 related deviations compared to traditional threshold-based alerts.

500 In egg production systems, DL models are being explored for automated egg counting,
501 quality grading, and defect detection. These technologies aim to streamline post-laying processing
502 and enhance product quality consistency. For instance, Yang et al. (2023) developed a computer
503 vision-based system that achieved up to 94.8% accuracy in classifying eggs into categories such
504 as intact, cracked, bloody, floor, and non-standard, while also predicting egg weight using a
505 combination of convolutional neural networks and random forest algorithms. Similarly, Huang et
506 al. (2023) proposed a video-based detection model that utilizes an improved YOLOv5 algorithm
507 combined with ByteTrack for the real-time detection of broken unwashed eggs in dynamic scenes,
508 achieving a detection accuracy of 96.4%. Further validation and integration into commercial
509 operations remain necessary to realize these benefits.

510 At the broader farm level, AI technologies are increasingly being incorporated into decision
511 support systems (DSS) that integrate health, feeding, reproduction, productivity, and
512 environmental data to support real-time and predictive decision-making. These systems aim to
513 streamline complex data flows into actionable insights. They use performance dashboards, alerts,
514 and forecasting models. Distante et al. (2025) emphasized the central role of AI in enabling
515 automated and adaptive DSS architectures, particularly through integrating machine learning

516 pipelines with sensor networks. Niloofar et al. (2021) further noted that data-driven DSS can
517 improve animal health and welfare while supporting greenhouse gas mitigation strategies. Their
518 reviews emphasize the importance of interoperable data architectures and the growing interest in
519 multimodal, AI-powered decision frameworks to achieve productivity and sustainability goals in
520 livestock systems.

521 AI-based anomaly detection is an emerging application in livestock production monitoring.
522 These systems typically utilize ML algorithms trained on historical time-series data such as milk
523 yield, growth trajectories, or feed intake to identify deviations from expected patterns. Rather than
524 replacing existing thresholds, these models aim to provide earlier or more context-sensitive alerts
525 that may indicate underlying issues such as illness, suboptimal nutrition, or environmental
526 stressors. For instance, Guien et al. (2025) developed an anomaly detection algorithm using
527 wavelet transform features to identify deviations in cow activity, enabling early detection of
528 disease or estrus. Similarly, Michielon et al. (2024) presented an AI-enhanced monitoring
529 framework that integrates DL models to assess animal welfare metrics, facilitating timely
530 interventions. Most anomaly detection models remain in research or pilot stages and require
531 validation under diverse commercial conditions before broad adoption.

532

533 **KEY CHALLENGES AND LIMITATIONS**

534 Despite rapid advances in technology, the widespread integration of AI in livestock
535 production remains limited. While numerous academic studies and pilot projects have
536 demonstrated the potential of AI systems to enhance monitoring, decision-making, and efficiency,
537 real-world implementation across diverse farming systems continues to evolve. Key barriers
538 include technical constraints, limited infrastructure, data and privacy concerns, cultural and

539 operational challenges, and the need for user-centered design. Addressing these interconnected
540 issues will be essential to ensure that AI tools are inclusive, practical, and truly supportive of long-
541 term sustainability in animal agriculture. Table 2 summarizes the major challenges for AI adoption
542 in animal farming systems, the affected stakeholders, and proposed mitigation strategies.

543

544 **Data and Model Challenges**

545 *Data quantity and quality*

546 The effectiveness of AI systems in livestock production critically depends on the
547 availability of large, diverse, and well-annotated datasets, especially for supervised learning
548 approaches. Yet, data limitations remain one of the most persistent barriers in this field. High-
549 resolution, labeled datasets are scarce, and they are often fragmented across farms and institutions
550 and rarely standardized for sensor types, annotation protocols, or sampling frequency. Sensor data
551 is frequently affected by environmental noise, inconsistent calibration, and animal movement.
552 These issues further complicate model training and validation (Tedeschi et al., 2021; Stygar et al.,
553 2021).

554 Additionally, datasets often lack representation of rare but biologically significant events
555 such as illness onset, aggressive interactions, or reproductive anomalies. These imbalances reduce
556 model reliability and can lead to poor generalization during real-world deployment. In particular,
557 behavior-based datasets are typically unstructured and contain few clearly labeled edge cases,
558 which makes it challenging to extract reliable behavioral patterns (McVey et al., 2023).

559 To address these issues, several research groups have developed open, annotated datasets
560 to support AI development in livestock contexts. For instance, the PigLife dataset offers video
561 clips and images across various pig production phases, including breeding, gestation, farrowing,

562 weaning, nursery, growth, and finishing stages, with annotations for object identification, pig
563 posture, and behavior labels (Li et al., 2024b). Similarly, MultiCamCows2024 provides a multi-
564 view image dataset comprising over 100,000 images of Holstein-Friesian cattle captured with
565 ceiling-mounted cameras over seven days on a working dairy farm, which facilitates biometric
566 identification and behavior analysis (Yu et al., 2024). These initiatives are essential for
567 benchmarking AI tools, fostering algorithm development, and promoting reproducibility across
568 research groups, and they will require broader investment and collaboration to expand across
569 species, management systems, and production conditions.

570 ***Model transferability and generalization***

571 A significant challenge in deploying AI systems across diverse livestock farming
572 environments is the limited transferability of models. Models trained in data from specific breeds,
573 housing types, or sensor systems often perform poorly when applied to different contexts. For
574 instance, a lameness detection model developed for Holstein cows in free-stall housing may not
575 generalize to Jersey cows in pasture-based setups because locomotion patterns, backgrounds, and
576 data quality differ. This issue, known as domain shift, complicates scalability and reduces the
577 reliability of AI systems outside their original training domain.

578 To address this, researchers are exploring transfer learning, domain adaptation, and
579 federated learning, which aim to improve model robustness across different production
580 environments. For example, unsupervised domain adaptation methods have been employed to
581 mitigate sensor variability and interspecies heterogeneity in animal activity recognition tasks (Ahn
582 et al., 2023). Additionally, federated learning frameworks, such as FedAAR, have been developed
583 to enable collaborative model training across farms without sharing sensitive data, which preserves
584 privacy and enhances model generalization (Mao et al., 2022). However, these techniques are still

585 largely experimental in livestock contexts, and practical implementation remains limited because
586 of high technical complexity, computational demands, and the need for ongoing updates as farm
587 conditions evolve.

588 ***Explainability and trust***

589 The complexity and “black box” nature of many AI algorithms, particularly DL models,
590 present significant barriers to adoption in livestock management (Tedeschi, 2019). Stakeholders,
591 including farmers, veterinarians, and regulators, require clear insights into how AI systems
592 generate specific predictions or recommendations, particularly in critical areas such as animal
593 health, reproduction, and welfare. A lack of transparency can lead to skepticism and reluctance to
594 rely on these tools.

595 The field of Explainable Artificial Intelligence (XAI) has emerged to address these
596 concerns, and develops methods that make AI decision-making processes more transparent and
597 interpretable (Hoxhallari et al., 2022). Techniques such as SHapley Additive exPlanations (**SHAP**)
598 and Local Interpretable Model-Agnostic Explanations (**LIME**) are increasingly used to elucidate
599 the contributions of input features to model outputs, thereby enhancing user understanding and
600 trust (Cartolano et al., 2024).

601 In the context of PLF, integrating XAI methods can provide stakeholders with
602 comprehensible explanations of AI-driven decisions, which can facilitate better acceptance and
603 more effective interventions. Useful deployment also depends on interfaces that present
604 explanations clearly to farmers and veterinarians. For instance, applying SHAP and LIME to
605 models predicting animal health outcomes could help veterinarians and farmers understand the
606 underlying factors influencing predictions and support more informed decision-making.

607 However, practical implementation of XAI in livestock systems remains at an early stage.
608 Challenges include model complexity, the need for user-friendly interfaces, and integration with
609 existing farm management practices. Ongoing research and development are essential to tailor
610 these explainability tools to the specific needs and capabilities of agricultural stakeholders.

611

612 **Technical and Infrastructure Constraints**

613 *Sensor reliability and maintenance*

614 Sensors are fundamental components of AI-driven livestock systems; however, their
615 reliability often suffers under the harsh and variable conditions typical of farm environments
616 (Tedeschi et al., 2021; Stygar et al., 2021). Factors such as dust, moisture, temperature fluctuations,
617 animal interference, and improper equipment handling can severely degrade sensor accuracy and
618 reduce device lifespan. Devices like wearable sensors may frequently detach or become damaged
619 due to animal behavior, creating gaps and erroneous readings that compromise the accuracy of AI
620 models (Stygar et al., 2021; Neethirajan, 2024). Ensuring continuous, high-quality data collection
621 requires regular sensor calibration, maintenance, and troubleshooting. Unfortunately, producers
622 often lack the technical expertise, resources, or motivation necessary for consistent sensor
623 management, and this exacerbates data reliability issues (Tedeschi et al., 2021; Greig et al., 2023;
624 Neethirajan, 2024). Efforts to improve sensor durability and robustness include ruggedized
625 hardware and automated diagnostic systems, such as the one proposed by Schulthess et al. (2024),
626 yet many of these options remain relatively costly or underexplored in livestock contexts (Tedeschi
627 et al., 2021).

628 *Connectivity and processing limitations*

629 Reliable internet connectivity remains a significant challenge for many livestock
630 operations, particularly in rural areas. The Federal Communications Commission (FCC) reported
631 that in 2019, approximately 17% of people living in rural areas in the United States lacked
632 broadband access, compared to 1% in urban areas. This lack of connectivity limits the
633 implementation of cloud-based AI systems that require stable internet connections for data
634 processing and storage. Uploading high-resolution video or audio data for real-time AI processing
635 is often impractical in regions with limited bandwidth, which limits data use and slows system
636 response.

637 Edge computing, which processes data locally on the farm rather than sending it to
638 centralized servers, offers a promising solution to these connectivity challenges. Edge computing
639 enables real-time data analysis and reduces dependence on internet connectivity, which enhances
640 the efficiency of AI-driven livestock management systems. However, deploying and maintaining
641 edge computing infrastructure requires sophisticated hardware and stable power sources, and these
642 requirements can pose significant technical and financial burdens for producers. Moreover,
643 integrating locally processed data with central databases for benchmarking and long-term analytics
644 remains a complex and challenging task.

645 ***Integration and interoperability***

646 Livestock operations often use a mix of technologies from multiple vendors, including
647 automated milking systems, RFID readers, climate control units, and feeding equipment. Many of
648 these systems lack standardized communication protocols, which creates interoperability issues
649 that complicate data integration and hinder the development of comprehensive AI-driven decision
650 support systems. The absence of standardized data formats and communication protocols also
651 blocks progress toward unified AI platforms and dashboards. Recent efforts, such as those

652 described in CAST (2025), recommend adopting frameworks such as the FAIR (Findable,
653 Accessible, Interoperable, and Reusable) data principles and AgGateway's ADAPT (Agricultural
654 Data Application Programming Toolkit, 2019) to enhance interoperability and enable efficient data
655 exchange across farm systems. Additionally, work on open-source platforms, standardized APIs,
656 and interoperability frameworks is ongoing, yet efforts remain fragmented and thinly supported.
657 Enhanced industry-wide cooperation and regulatory support are essential for progress in this
658 domain (Bahlo et al., 2019; Habib et al., 2025).

659 **Ethical, Legal, and Social Considerations**

660 ***Data privacy, cybersecurity, and ownership***

661 The proliferation of AI technologies in livestock farming has produced highly granular
662 data, raising significant concerns about data privacy, ownership, and security. Farmers often face
663 uncertainty about who holds rights to the data collected from commercial sensors, how this data
664 can be shared or sold, and the implications for regulatory oversight or competitive advantage.
665 Many producers fear potential data misuse by insurers, competitors, or regulators, particularly if
666 the data reveal operational shortcomings or animal welfare issues and harm their reputation (Kaur
667 et al., 2025).

668 The lack of clear legal frameworks defining data ownership in agriculture exacerbates these
669 concerns. Agricultural technology providers (**ATPs**) often have extensive control over farm data
670 under complex service agreements, sometimes without farmers fully understanding the
671 implications. As a result, farmers may inadvertently relinquish control of their data, which limits
672 their ability to manage its use and distribution (Wiseman et al., 2019; Kaur et al., 2025).

673 There is a pressing need for transparent data governance frameworks that clearly define
674 ownership rights, usage permissions, and data anonymization practices to address these challenges.

675 Such frameworks would help build trust among stakeholders and facilitate the broader adoption of
676 AI technologies in agriculture. Initiatives like the American Farm Bureau Federation's "Privacy
677 and Security Principles for Farm Data" (established in 2014 and updated in 2024 by the Ag Data
678 Transparent organization) aim to establish guidelines for responsible data management,
679 emphasizing the importance of farmer control over their data. However, these principles are
680 voluntary and lack the enforceability of formal legislation.

681 Collaborative efforts among farmers, technology providers, policymakers, and researchers
682 are crucial for developing and implementing robust data governance policies that protect farmers'
683 interests and promote innovation in AI-driven livestock management.

684 In addition to concerns about ownership and privacy, integrating AI and autonomous
685 systems into agriculture introduces critical cybersecurity risks. The potential for cyberattacks to
686 disrupt AI-enabled agricultural systems, including autonomous equipment and decision-support
687 tools, is real (CAST, 2025). Threat actors could exploit software or communications infrastructure
688 vulnerabilities, compromising operations, data integrity, and food security. Effective mitigation
689 requires comprehensive cybersecurity strategies to safeguard the benefits of digital agriculture.

690 ***Bias, fairness, and animal ethics***

691 While AI technologies offer significant potential for improving livestock management,
692 they also raise important ethical and fairness considerations that require proactive attention. One
693 concern is that models trained on data from high-performing or well-resourced farms may not
694 generalize well to other production systems. This could inadvertently introduce or reinforce biases,
695 leading to unequal performance across farm types and widening existing technological divides
696 (Albergante et al., 2025). Such disparities exemplify the need for diverse, representative datasets
697 and cross-environment validation protocols.

698 Additionally, increasing automation of routine tasks may reduce the frequency and quality
699 of human-animal interactions, which play a recognized role in supporting animal welfare. Studies
700 have shown that regular positive contact improves animal behavior and productivity, while its
701 absence may hinder early detection of welfare issues or reduce empathetic caregiving (Zulkifli,
702 2013; Cornou, 2009). Although automation can alleviate labor burdens, systems must be designed
703 to support, rather than replace, routine visual checks and care practices by trained staff.

704 There are also broader concerns that AI tools could contribute to intensified production
705 systems that prioritize output over well-being when implemented without clear animal welfare
706 guidelines. For example, optimization algorithms designed to increase throughput could
707 unintentionally lead to conditions like overcrowding or neglect of individual health needs (Bossert,
708 2024). However, these risks can be mitigated through animal-centric design principles into AI
709 development. Strategies such as embedding welfare thresholds into optimization models, using
710 sensor systems for real-time individual health monitoring, and requiring human oversight in
711 decision loops have been proposed to balance productivity with welfare goals (Webber, 2022;
712 Neethirajan, 2024; Rosati, 2025). Mitigation also benefits from engagement with ethicists, animal
713 welfare experts, producers, and policymakers to ensure responsible and equitable deployment
714 across the livestock industry.

715 ***Adoption resistance and training gaps***

716 The integration of AI technologies into livestock systems brings significant human-
717 centered challenges. Many producers exhibit skepticism or hesitation toward adopting AI tools
718 due to unfamiliarity, concerns about the effectiveness of technology, and fears of job displacement
719 or erosion of traditional farming knowledge. Economic constraints, inadequate infrastructure, and

720 limited technological knowledge further exacerbate these barriers, particularly among small- and
721 medium-sized farms (Dibbern et al., 2024).

722 Bridging these gaps requires comprehensive capacity-building strategies. Targeted
723 educational programs and extension services can build technological literacy and show the
724 practical benefits of AI applications in livestock management (Atapattu et al., 2024). Participatory
725 design initiatives that involve farmers in the development and implementation of AI tools help
726 tailor technologies to the specific needs and contexts of end users (Mallinger et al., 2024).
727 Demonstration farms showcasing AI technologies can serve as tangible examples of successful
728 integration, fostering trust and encouraging wider adoption.

729 User-centered design is particularly essential. Ensuring that AI tools are intuitive,
730 adaptable, and compatible with existing farm management practices could lower the learning curve
731 and increase user engagement (Ajibola & Erasmus, 2024). Such strategies would support the
732 adoption of AI technologies and promote sustainable and efficient livestock farming practices.

733 Finally, a growing concern is that increased automation and reliance on AI could erode
734 traditional farming skills and reduce the transfer of experiential knowledge across generations
735 (CAST, 2025). Maintaining a balance between technological assistance and foundational
736 knowledge is essential for long-term resilience, adaptability, and independence within the
737 agricultural workforce (Tedeschi, 2019).

738

739 **EMERGING TRENDS AND RESEARCH OPPORTUNITIES**

740 As AI technologies mature and the livestock industry continues to digitize, several
741 emerging trends are likely to significantly influence future research and development. These
742 potential innovations reflect a shift from isolated tools to integrated, context-aware, and adaptive

743 systems. At the same time, researchers are increasingly exploring multisensory integration, novel
744 computational techniques, and participatory approaches that involve producers directly in system
745 design and deployment. This section discusses some key trends and research opportunities that
746 might shape AI advancements in livestock farming.

747

748 **Multimodal Sensor Fusion and Digital Twins**

749 The increasing availability of diverse sensors in livestock farming presents opportunities
750 for multimodal sensor fusion, which enhances the accuracy of AI predictions, reduces false alarms,
751 and captures complex physiological states and behaviors. For instance, integrating accelerometry
752 and Global Navigation Satellite System (**GNSS**) data has been shown to improve the classification
753 of animal behaviors, such as walking and drinking, when movement patterns are combined with
754 location information (Arablouei et al., 2023). Similarly, fusing acoustic and linguistic data has
755 demonstrated effectiveness in decoding dairy cow vocalizations, providing insights into their
756 emotional states and welfare (Jobarteh et al., 2024).

757 A promising research avenue involves the development of digital twin technologies, which
758 are virtual representations of animals or entire farm systems continuously updated with real-time
759 sensor data. Building on decades of simulated-population work in animal science to study various
760 aspects of the production system, such as nutrient flows, herd dynamics, and disease spread
761 (Gouttenoire et al., 2011; Black, 2014), the new contribution of digital twins is their ability to
762 integrate multimodal sensor data and update system states in real-time. These AI-enabled, data-
763 driven twins can simulate various management scenarios, including health risks, productivity
764 outcomes, and environmental impacts, thereby aiding decision-making processes (Neethirajan &
765 Kemp, 2021). Implementing digital twins in livestock farming has the potential to improve animal

766 health and welfare, optimize feed rations, and reduce operational costs when inefficiencies are
767 identified (Symeonaki et al., 2024). However, achieving effective digital twins requires
768 advancements in data integration frameworks, real-time processing capabilities, and robust
769 biological modeling to ensure the creation of meaningful simulations.

770

771 **Edge AI and Real-Time Inference**

772 As AI applications in livestock farming evolve, Edge AI is emerging as a promising
773 direction for enabling real-time decision-making on the farm. Unlike traditional cloud-based
774 approaches, Edge AI involves deploying models directly onto local hardware devices, so data is
775 processed at the source. This can address challenges such as unreliable internet connectivity,
776 latency, and data privacy concerns, which are common barriers in rural production settings.

777 Prototype systems have demonstrated how Edge AI could support on-farm monitoring of
778 animal health and behavior. For example, local devices that analyze data from wearable sensors or
779 environmental cameras may be used to flag behavioral anomalies, such as signs of aggression or
780 discomfort. While these applications are still in the early stages of development, they suggest the
781 potential for more responsive and automated interventions to improve animal welfare and
782 management efficiency (Arablouei et al., 2023).

783 To make Edge AI viable in livestock contexts, researchers are exploring lightweight model
784 architectures such as MobileNet and Tiny YOLO, designed to run on low-power devices.
785 Additional strategies, like model pruning, quantization, and other compression techniques, can
786 reduce computational demands without significantly compromising performance. These
787 developments make it more feasible to run AI models on affordable, ruggedized hardware suited
788 to agricultural environments (Avanija et al., 2024).

789 Federated learning complements this direction by training models locally and sharing only
790 model updates, not raw data, with a central server. This approach preserves data privacy while
791 enabling collective model improvement across geographically distributed operations. In
792 combination with edge inference, reported benefits include greater resilience, stronger privacy
793 protections, and more context-relevant performance for real-time monitoring and decision support
794 (Dembani et al., 2025). Current livestock research combines Edge AI and federated learning in
795 experimental systems, and deployment at production scale remains limited.

796

797 **Integration with Genomics, Nutrition, and Climate Data**

798 Emerging research suggests that integrating genomic, nutritional, and environmental data
799 into AI models holds considerable promise for enhancing predictive capabilities and informing
800 management strategies in livestock farming. Although current AI applications often operate within
801 a single domain, such as health monitoring or behavioral analysis, broader integration is feasible
802 through multimodal data fusion strategies that combine biological measurements with production
803 and environmental records to produce context-aware predictions.

804 This approach integrates information from multiple sources, including genotypes, sensor-
805 based phenotypes, feed intake proxies, and climate conditions, within a unified analytical
806 framework. Fully integrated systems that robustly attribute performance changes to genetics, heat
807 stress, or nutrition are still rare, but context-aware models are feasible and have shown promise
808 for improved biological interpretation when genomics are modeled jointly with recorded
809 environmental exposures such as temperature–humidity index (THI) and nutrition-related
810 indicators such as mid-infrared–derived energy balance and dry matter intake estimates.
811 Momentum toward integrated systems is accelerating in precision livestock research, supported by

812 advances in multimodal learning, interoperable farm data platforms, such as Dairy Brain, and
813 standardized trait ontologies, such as the Animal Trait Ontology for Livestock (ATOL) (Golik et
814 al., 2012; McParland et al., 2014; Garner et al., 2016; Cabrera et al., 2021; Aguilar-Lazcano et al.,
815 2023; Landi et al., 2023; Kaur et al., 2023; McWhorter et al., 2023; Brito et al., 2025; McFadden
816 et al., 2025).

817 Environmental and climatic variables are increasingly incorporated into AI systems due to
818 their strong influence on animal performance, health, and welfare. In this context, “environment”
819 refers to local and immediate conditions within the production system, such as temperature,
820 humidity, ventilation, air quality, stocking density, and housing design. In contrast, “climate”
821 describes broader and longer-term weather patterns, including seasonal heat trends and extreme
822 weather variability, which shape long-term risk exposure for livestock systems. AI tools are being
823 developed to integrate these environmental and climatic inputs with animal-level sensor data,
824 thereby improving the early detection of stress responses, such as heat stress or disease risk, and
825 supporting adaptive management strategies under variable climatic conditions (Reeves et al., 2015;
826 Derner & Augustine, 2016; Chapman et al., 2023; Rebez et al., 2024; Woodward et al., 2024;
827 Eckhardt et al., 2025).

828 Incorporating genomic data into AI models is being explored as a way to improve
829 predictions related to disease susceptibility and support precision breeding strategies. Machine
830 learning algorithms have been applied to capture nonlinear effects and complex interactions within
831 genomic datasets. However, results remain mixed as several comparative studies have reported
832 that deep learning methods do not consistently outperform linear additive models for genomic
833 prediction, especially when training datasets are limited. Even with these limitations, continued
834 research is evaluating whether integrating genomic data with phenotypic and environmental

835 information through multimodal AI frameworks may yield more robust prediction accuracy for
836 features of the genome (Abdollahi-Arpanahi et al., 2020; Montesinos-López et al., 2021; Chafai
837 et al., 2023; Lourenço et al., 2024; Džermeikaitė et al., 2025; Klingström et al., 2025).

838 Similarly, AI-driven nutritional models that integrate dietary inputs, nutrient digestibility,
839 and microbiome profiles are under development to better inform individualized feeding strategies.
840 These systems may contribute to optimizing feed efficiency and improving animal health;
841 however, most remain at a research or prototype stage, rather than undergoing widespread adoption
842 (Tedeschi, 2022; Pomar & Remus, 2023).

843 Realizing the full value of this kind of integrated approach requires overcoming key
844 challenges in multi-scale data harmonization, causal inference modeling, and the development of
845 robust datasets that link genetic, phenotypic, and environmental data. Continued interdisciplinary
846 research and stakeholder collaboration will be critical to making these complex systems practical
847 and impactful for producers.

848

849 **Human-Centered Design and Participatory AI**

850 Human-centered design (**HCD**), participatory design, and group model building (**GMB**)
851 are increasingly recognized as essential for improving the usability and adoption of AI
852 technologies in livestock systems. Historically, limited stakeholder involvement during AI system
853 development led to a poor fit with operational realities and lowered adoption (McGrath et al.,
854 2023).

855 Human-centered design emphasizes iterative design centered on the needs, constraints, and
856 workflows of end-users. In livestock contexts, this ensures AI tools are intuitive, robust, and
857 aligned with the daily practices of producers and veterinarians (Garard et al., 2024). Participatory

858 design extends this approach through direct stakeholder involvement in co-design activities such
859 as workshops and prototyping. It has been used in agriculture to enhance alignment between
860 technology and farm-level decision-making, including integration with constraint programming to
861 reflect farmer priorities (Challand et al., 2025).

862 Building on participatory design, GMB introduces a structured, system dynamics-based
863 approach to collaborative modeling. GMB uses facilitated sessions to help stakeholder groups
864 define problems, develop shared mental models, and simulate policy or management scenarios
865 (Vennix, 1996; Andersen, 2007). Unlike traditional modeling that separates analysts from end-
866 users, GMB treats model construction as a participatory process, strengthening system
867 understanding and shared ownership of outcomes. As described in Andersen et al. (2007), models
868 built through GMB serve a dual role. They function as formal simulations of policy systems and
869 as boundary objects that support dialogue, surface assumptions, and structure decision-making. A
870 central benefit of GMB is that it creates space for experiential knowledge from producers, which
871 is often overlooked in datasets but is essential for understanding real production constraints and
872 management logic. Incorporating producer knowledge into model structure fosters trust and
873 increases the likelihood that resulting AI tools will be viewed as credible and relevant to on-farm
874 decision-making. This dual identity enhances analytical rigor and stakeholder engagement, making
875 GMB especially well-suited for guiding the integration of AI in complex, context-rich
876 environments.

877 Group model building has long been used in agricultural development to improve
878 collective understanding of complex issues like animal health, resource use, and farm economics
879 (Gouttenoire et al., 2013). Recently, this approach has expanded to incorporate AI models into the
880 collaborative process, not just as analysis tools but as active “co-modelers.” In these emerging

881 hybrid formats, AI tools simulate real-time projections and surface patterns in complex datasets or
882 evaluate scenario trade-offs while users supply contextual knowledge and refine inputs.

883 Framing AI tools as collaborative modeling partners, rather than black-box decision
884 engines, improves interpretability and trust. Trust is strengthened when producers can see their
885 input reflected in model assumptions and outputs, reinforcing transparency and model legitimacy.
886 When users help define model logic and interrogate outputs, they are more likely to integrate the
887 tool into routine decision-making. Explainable AI techniques, such as SHAP and LIME, support
888 this approach as they clarify how input data influences recommendations (Hoxhallari et al., 2022;
889 Mallinger et al., 2024).

890 Finally, expanding educational resources (e.g., simulation-based training, intuitive mobile
891 interfaces, peer-led workshops) and encouraging shared learning across design traditions, as GMB
892 practice has done in Europe and the U.S., are critical to mainstreaming participatory AI in
893 agriculture to ensure AI technologies are accessible and actionable for producers at various levels
894 of digital literacy (Prajapati et al., 2025). The continued refinement of collaborative modeling
895 methods and evaluation of their effectiveness are essential for scaling inclusive AI innovation in
896 livestock systems (Andersen et al., 2007).

897

898 CONCLUSION AND FUTURE PERSPECTIVES

899 Artificial intelligence has the potential to significantly reshape livestock farming in ways
900 that were scarcely imagined a decade ago. From enhancing early disease detection and estrus
901 monitoring to optimizing feeding strategies and behavior tracking, AI-driven systems are
902 beginning to redefine animal care and management. These technologies hold promise not only for
903 improving productivity and animal welfare but also for addressing labor shortages, reducing

904 environmental impacts, and strengthening the resilience of livestock systems in response to global
905 challenges such as climate change and food insecurity.

906 Nevertheless, significant barriers hinder widespread adoption. These challenges include
907 data availability and quality, model generalization across diverse farming contexts, technical
908 infrastructure constraints, ethical concerns, and socio-cultural acceptance. Limited training
909 datasets, fragmented and proprietary technologies, sensor reliability issues, and insufficient rural
910 connectivity present substantial hurdles. Additionally, issues surrounding algorithmic
911 transparency, explainability, data governance, and user trust have a critical impact on stakeholder
912 acceptance.

913 Addressing these challenges requires more than technical innovation alone; it requires
914 holistic, systems-oriented strategies that are sensitive to the biological, social, and economic
915 complexities of animal agriculture. Realistically, adoption depends on strengthening the broader
916 PLF ecosystem, which involves linking producers, vendors, connectivity, open standards, and
917 service capacity, so that point solutions operate as a coherent whole. Future AI developments could
918 benefit from creating adaptable, interpretable models tailored to diverse farm contexts and from
919 investments in infrastructure improvements such as robust rural connectivity and effective edge
920 computing solutions. Developing clear guidelines for data ownership, privacy, and transparency
921 will also be essential in building trust among producers and stakeholders.

922 Promising research directions highlighted in this review, such as multimodal sensor fusion,
923 digital twin technologies, edge computing, genomics and climate data integration, and human-
924 centered design approaches, include avenues to foster more comprehensive and responsive
925 livestock management systems. These advancements depend on overcoming current technical and

926 methodological challenges, such as data integration, real-time processing, lightweight modeling
927 architectures, and effective stakeholder engagement.

928 Interdisciplinary collaboration could significantly enhance the success of AI in livestock
929 farming. Policymaking supportive of open data initiatives, interdisciplinary funding opportunities,
930 and extensive capacity-building programs for end-users could further strengthen the adoption
931 ecosystem.

932 As AI becomes more embedded within livestock systems, the human role is likely to evolve
933 rather than diminish, transforming producers into informed system managers and insightful data
934 interpreters. AI technologies, therefore, might serve as partners, amplifying human expertise rather
935 than replacing it, thus fostering more sustainable, ethical, and productive animal agriculture
936 practices.

937 Although numerous challenges remain, the opportunities are substantial. Real progress
938 now depends on moving from pilots to validated, farm-ready systems, prioritizing interpretability
939 and trust, and building open, interoperable data ecosystems with clear governance. In practical
940 terms, the field should publish reproducible, context-aware baselines, invest in standards that allow
941 sensors and software to interoperate, co-design tools with producers using group model building,
942 and judge success by farm-relevant outcomes such as timely alerts, avoided treatments, and
943 reduced repeat breedings. Taken together, these steps can make AI not only possible but reliably
944 useful in daily production.

945

946 **Conflict of Interest Statement.** The authors have no conflicts of interest to declare.

947

948 ACKNOWLEDGMENTS

949 This work was partially funded by the National Research Support Project #9 (NRSP) from
950 the National Animal Nutrition Program (NANP) (<https://animalnutrition.org>) and the A1231
951 Animal Nutrition, Growth, and Lactation, project award no. 2024-67015-41758, “Mathematical
952 Modeling and Predictive Data Analysis in Animal Nutrition,” from the U.S. Department of
953 Agriculture’s National Institute of Food and Agriculture (USDA-NIFA). This work was presented
954 at the ASAS-NANP Symposium “Mathematical Modeling in Animal Nutrition: Training the
955 Future Generation in Data and Predictive Analytics for a Sustainable Development” at the 2024
956 Annual Meeting of the American Society of Animal Science held in Calgary, Alberta, Canada, on
957 July 21-25, 2024, with publications sponsored by the Journal of Animal Science, the American
958 Society of Animal Science, and the NANP.

959

960

LITERATURE CITED

961 Abdanan Mehdizadeh, S., M. Sari, H. Orak, D. F. Pereira, and I. D. Nääs. 2023. Classifying
962 chewing and rumination in dairy cows using sound signals and machine learning.
963 *Animals* 13(18):2874. doi:10.3390/ani13182874

964 Abdollahi-Arpanahi, R., D. Gianola, and F. Peñagaricano. 2020. Deep learning versus parametric
965 and ensemble methods for genomic prediction of complex phenotypes. *Genet. Sel. Evol.*
966 52:12. doi:10.1186/s12711-020-00531-z

967 Achour, B., M. Belkadi, I. Filali, M. Laghrouche, and M. Lahdir. 2020. Image analysis for
968 individual identification and feeding behaviour monitoring of dairy cows based on
969 convolutional neural networks (CNN). *Biosyst. Eng.* 198:31–49.
970 doi:10.1016/j.biosystemseng.2020.07.019

971 Adachi, Y., and K. Makita. 2015. Real time detection of farm-level swine mycobacteriosis
972 outbreak using time series modeling of the number of condemned intestines in abattoirs.
973 *J. Vet. Med. Sci.* 77(9):1129–1136. doi:10.1292/jvms.14-0675

974 Ag Data Transparent. 2024. Privacy and security principles for farm data. Available at:
975 <https://www.agdatatransparent.com/principles>. (Accessed Apr. 11, 2025).

976 AgGateway. 2019. AgGateway case studies: Central Farm Service uses ADAPT to streamline
977 processes in agronomy and operations. Available at:
978 <https://aggateway.org/Portals/1010/WebSite/About%20Us/CASE%20STUDY%20->
979 <https://aggateway.org/Portals/1010/WebSite/About%20Us/CASE%20STUDY%20->
980 %20Central%20Farm%20Services.pdf (Accessed Oct. 24, 2025).

981 Agha, S., E. Psota, S. P. Turner, C. R. Lewis, and J. P. Steibel. 2025. Revealing the hidden social
982 structure of pigs with AI-assisted automated monitoring data and social network analysis.
983 *Animals* 15(7):996. doi:10.3390/ani15070996

984 Aguilar-Lazcano, C. A., I. E. Espinosa-Curiel, J. A. Ríos-Martínez, F. A. Madera-Ramírez, and
985 H. Pérez-Espinosa. 2023. Machine learning-based sensor data fusion for animal
986 monitoring: Scoping review. *Sensors* 23:5732. doi:10.3390/s23125732

987 Ahn, S., S. Kim, and D. Jeong. 2023. Unsupervised domain adaptation for mitigating sensor
988 variability and interspecies heterogeneity in animal activity recognition. *Animals*
989 13(20):3276. doi:10.3390/ani13203276

990 Ajibola, G., and M. A. Erasmus. 2024. A peep into the future: Artificial intelligence for on-farm
991 poultry welfare monitoring. *Anim. Front.* 14(6):72–75. doi:10.1093/af/vfae031

992 Alameer, A., I. Kyriazakis, H. A. Dalton, A. L. Miller, and J. Bacardit. 2020. Automatic
993 recognition of feeding and foraging behaviour in pigs using deep learning. *Biosyst. Eng.*
197:91–104. doi:10.1016/j.biosystemseng.2020.06.013

994 Albergante, L., O'Flynn, C., & De Meyer, G. (2025). Artificial intelligence is beginning to create
995 value for selected small animal veterinary applications while remaining immature for
996 others. *Journal of the American Veterinary Medical Association*, 263(3), 388-394.
997 Retrieved Apr 14, 2025, from doi:10.2460/javma.24.09.0617

998 Aloo, P. O., E. W. Murimi, J. M. Mutua, J. M. Kagira, and M. N. Kyalo. 2024. Prediction of
999 oestrus cycle in cattle using machine learning in Kenya. *SAIEE Afr. Res. J.* 115:128–141.

1000 Anagnostopoulos, A., M. Barden, J. Tulloch, K. Williams, B. Griffiths, C. Bedford, M. Rudd, A.
1001 Psifidi, G. Banos, and G. Oikonomou. 2021. A study on the use of thermal imaging as a
1002 diagnostic tool for the detection of digital dermatitis in dairy cattle. *J. Dairy Sci.*
1003 104(9):10194–10202. doi:10.3168/jds.2021-20178

1004 Arablouei, R., Z. Wang, G. J. Bishop-Hurley, and J. Liu. 2023. Multimodal sensor data fusion
1005 for in-situ classification of animal behavior using accelerometry and GNSS data. *Smart
1006 Agric. Technol.* 4:100163. doi:10.1016/j.atech.2022.100163

1007 Arıkan, İ., T. Ayav, A. Ç. Seçkin, and F. Soygazi. 2023. Estrus detection and dairy cow
1008 identification with cascade deep learning for augmented reality-ready livestock farming.
1009 *Sensors* 23(24):9795. doi:10.3390/s23249795

1010 Arruda, A. G., C. Vilalta, P. Puig, A. Perez, and A. Alba. 2018. Time-series analysis for porcine
1011 reproductive and respiratory syndrome in the United States. *PLoS One* 13(4):e0195282.
1012 doi:10.1371/journal.pone.0195282

1013 Aryawan, P. O. W., I. D. G. W. Prabaswara, A. Husain, I. Akbar, N. Jannah, S. Supriyanto, and
1014 M. F. Ulum. 2024. Real-time estrus detection in cattle using deep learning-based pose
1015 estimation. *BIO Web Conf.* 123:04009. doi:10.1051/bioconf/202412304009

1016 Atapattu, A. J., L. K. Perera, T. D. Nuwarapaksha, S. S. Udumann, and N. S. Dissanayaka. 2024.

1017 Challenges in achieving artificial intelligence in agriculture. In: Chouhan, S. S., A.

1018 Saxena, U. P. Singh, and S. Jain (Eds.), *Artif. Intell. Tech. Smart Agric.* Springer,

1019 Singapore. doi:10.1007/978-981-97-5878-4_2

1020 Ayadi, S., A. Ben Said, R. Jabbar, C. Aloulou, A. Chabbouh, and A. B. Achballah. 2020. Dairy

1021 cow rumination detection: A deep learning approach. In: Jemili, I., and M. Mosbah (eds.)

1022 *Distrib. Comput. Emerg. Smart Netw. (DiCES-N 2020), Commun. Comput. Inf. Sci.* Vol.

1023 1348. Springer, Cham. doi:10.1007/978-3-030-65810-6_7

1024 Aydin, A., C. Bahr, and D. Berckmans. 2015. A real-time monitoring tool to automatically

1025 measure the feed intakes of multiple broiler chickens by sound analysis. *Comput.*

1026 *Electron. Agric.* 114:1–6. doi:10.1016/j.compag.2015.03.010

1027 Bahlo, C., P. Dahlhaus, H. Thompson, and M. Trotter. 2019. The role of interoperable data

1028 standards in precision livestock farming in extensive livestock systems: A review.

1029 *Comput. Electron. Agric.* 156:459–466. doi:10.1016/j.compag.2018.12.007

1030 Balasso, P., G. Marchesini, N. Ughelini, L. Serva, and I. Andriguetto. 2021. Machine learning to

1031 detect posture and behavior in dairy cows: Information from an accelerometer on the

1032 animal's left flank. *Animals* 11(10):2972. doi:10.3390/ani11102972

1033 Barker, Z. E., J. A. Vázquez Diosdado, E. A. Codling, N. J. Bell, H. R. Hodges, D. P. Croft, and

1034 J. R. Amory. 2018. Use of novel sensors combining local positioning and acceleration to

1035 measure feeding behavior differences associated with lameness in dairy cattle. *J. Dairy*

1036 *Sci.* 101(7):6310–6321. doi:10.3168/jds.2016-12172

1037 Beer, G., M. Alsaad, A. Starke, G. Schuepbach-Regula, H. Müller, P. Kohler, and A. Steiner.

1038 2016. Use of extended characteristics of locomotion and feeding behavior for automated

1039 identification of lame dairy cows. *PLoS One* 11(5):e0155796.

1040 doi:10.1371/journal.pone.0155796

1041 Benicio, L. M., K. O. Silva-Miranda, T. M. Brown-Brandl, J. L. Purswell, S. R. Sharma, and I.

1042 C. F. S. Condotta. 2021. Broilers' weight estimation through depth image analysis. *In:*

1043 *Proc. 2021 ASABE Annu. Int. Virtual Mtg. Am. Soc. Agric. Biol. Eng.*, p. 1.

1044 Berckmans, D. 2006. Automatic on-line monitoring of animals by precision livestock farming.

1045 *Livest. Prod. Soc.* p. 287–294. doi:10.3920/9789086865673_023

1046 Berckmans, D. 2017. General introduction to precision livestock farming. *Anim. Front.* 7(1):6–

1047 11. doi:10.2527/af.2017.0102

1048 Bezen, R., Y. Edan, and I. Halachmi. 2020. Computer vision system for measuring individual

1049 cow feed intake using RGB-D camera and deep learning algorithms. *Comput. Electron.*

1050 *Agric.* 172:105345. doi:10.1016/j.compag.2020.105345

1051 Black, J. L. 2014. Brief history and future of animal simulation models for science and

1052 application. *Anim. Prod. Sci.* 54:1883–1895. doi:10.1071/AN14650

1053 Bloch, V., H. Levit, and I. Halachmi. 2021. Design a system for measuring individual cow feed

1054 intake in commercial dairies. *Animal* 15(7):100277. doi:10.1016/j.animal.2021.100277

1055 Bossert, L. N., and M. Coeckelbergh. 2024. From MilkingBots to RoboDolphins: How AI

1056 changes human-animal relations and enables alienation towards animals. *Humanit. Soc.*

1057 *Sci. Commun.* 11(1):1–7. doi:10.1057/s41599-024-03441-3

1058 Brito, L. F., B. Heringstad, I. C. Klaas, K. Schodl, V. E. Cabrera, A. Stygar, M. Iwersen, M. J.

1059 Haskell, K. F. Stock, N. Gengler, J. Bewley, M. Hostens, E. Vasseur, and C. Egger-

1060 Danner. 2025. Invited review: Using data from sensors and other precision farming

1061 technologies to enhance the sustainability of dairy cattle breeding programs. *J. Dairy Sci.*
1062 108:10447–10474. doi:10.3168/jds.2025-26554

1063 Cabrera, V. E., and L. Fadul-Pacheco. 2021. Future of dairy farming from the Dairy Brain
1064 perspective: Data integration, analytics, and applications. *Int. Dairy J.* 121:105069.
1065 doi:10.1016/j.idairyj.2021.105069

1066 Cai, J., W. Liu, T. Liu, F. Wang, Z. Li, X. Wang, and H. Li. 2025. APO-CViT: A non-
1067 destructive estrus detection method for breeding pigs based on multimodal feature fusion.
1068 *Animals* 15(7):1067. doi:10.3390/ani15071067

1069 Cang, Y., H. He, and Y. Qiao. 2019. An intelligent pig weights estimate method based on deep
1070 learning in sow stall environments. *IEEE Access* 7:164867–164875.
1071 doi:10.1109/ACCESS.2019.2953099

1072 Carpentier, L., D. Berckmans, A. Youssef, D. Berckmans, T. van Waterschoot, D. Johnston, N.
1073 Ferguson, et al. 2018. Automatic cough detection for bovine respiratory disease in a calf
1074 house. *Biosyst. Eng.* 173:45–56. doi:10.1016/j.biosystemseng.2018.06.018

1075 Cavero, D., K. Tölle, C. Henze, C. Buxadé, and J. Krieter. “Mastitis Detection in Dairy Cows by
1076 Application of Neural Networks.” *Livestock Science* 114, no. 2-3 (2008): 280-286.
1077 Accessed April 4, 2025. doi:10.1016/j.livsci.2007.05.012

1078 Çevik, K. K. 2020. Deep learning based real-time body condition score classification system.
1079 *IEEE Access* 8:213950–213957. doi:10.1109/ACCESS.2020.3040805

1080 Chae, H., J. Lee, J. Kim, S. Lee, J. Lee, Y. Chung, and D. Park. 2024. Novel method for
1081 detecting coughing pigs with audio-visual multimodality for smart agriculture
1082 monitoring. *Sensors* 24(22):7232. doi:10.3390/s24227232

1083 Chafai, N., I. Hayah, I. Houaga, and B. Badaoui. 2023. A review of machine learning models
1084 applied to genomic prediction in animal breeding. *Front. Genet.* 14:1150596.
1085 doi:10.3389/fgene.2023.1150596

1086 Challand, M., P. Vismara, and S. De Tourdonnet. 2025. Combining constraint programming and
1087 a participatory approach to design agroecological cropping systems. *Agric. Syst.*
1088 222:104154. doi:10.1016/j.agrsy.2024.104154

1089 Chapman, N. H., A. Chlingaryan, P. C. Thomson, S. Lomax, M. A. Islam, A. K. Doughty, and C.
1090 E. Clark. 2023. A deep learning model to forecast cattle heat stress. *Comput. Electron.*
1091 *Agric.* 211:107932. doi:10.1016/j.compag.2023.107932

1092 Chen, C., W. Zhu, J. Steibel, J. Siegfried, J. Han, and T. Norton. 2020a. Recognition of feeding
1093 behaviour of pigs and determination of feeding time of each pig by a video-based deep
1094 learning method. *Comput. Electron. Agric.* 176:105642.
1095 doi:10.1016/j.compag.2020.105642

1096 Chen, C., W. Zhu, J. Steibel, J. Siegfried, K. Wurtz, J. Han, and T. Norton. 2020b. Recognition of
1097 aggressive episodes of pigs based on convolutional neural network and long short-term
1098 memory. *Comput. Electron. Agric.* 169:105166. doi:10.1016/j.compag.2019.105166

1099 Cominotte, A., A. F. A. Fernandes, J. R. R. Dorea, G. J. M. Rosa, M. M. Ladeira, E. H. C. B.
1100 Van Cleef, G. L. Pereira, W. A. Baldassini, and O. R. Machado Neto. 2020. Automated
1101 computer vision system to predict body weight and average daily gain in beef cattle
1102 during growing and finishing phases. *Livest. Sci.* 232:103904.
1103 doi:10.1016/j.livsci.2019.103904

1104 Condotta, I. C., T. M. Brown-Brandl, G. A. Rohrer, and K. O. Silva-Miranda. 2020.
1105 Development of method for lameness detection based on depth image analysis. *In: Proc.*

1106 2020 *ASABE Annu. Int. Virtual Mtg. Am. Soc. Agric. Biol. Eng.*, p. 1.

1107 doi:10.13031/aim.202001082

1108 Condotta, I. C. F. S., T. M. Brown-Brandl, J. P. Stinn, G. A. Rohrer, J. D. Davis, and K. O.

1109 Silva-Miranda. 2018. Dimensions of the modern pig. *Trans. ASABE* 61:1729–1739.

1110 Condotta, I. C. F. S., T. Brown-Brandl, R. V. Sousa, and K. Silva-Miranda. 2018. Using an

1111 artificial neural network to predict pig mass from depth images. In: *American Society of*

1112 *Agricultural and Biological Engineers. Proceedings of the 10th International Livestock*

1113 *Environment Symposium and the 1st Precision Livestock Farming Symposium*; September

1114 25 to 27, 2018; Omaha, NE.

1115 Cordeiro, A. F. da S., I. de A. Nääs, S. R. M. Oliveira, F. Violaro, A. C. M. de Almeida, and D.

1116 P. Neves. 2013. Understanding vocalization might help to assess stressful conditions in

1117 piglets. *Animals* 3(3):923–934. doi:10.3390/ani3030923

1118 Cornou, C. 2009. Automation systems for farm animals: Potential impacts on the human–animal

1119 relationship and on animal welfare. *Anthrozoös* 22(3):213–220.

1120 doi:10.2752/175303709X457568

1121 Council for Agricultural Science and Technology (CAST). 2025. *AI in agriculture:*

1122 *Opportunities, challenges, and recommendations*. CAST, Ames, Iowa. 11 p. Available at:

1123 <https://cast-science.org/publication/ai-in-agriculture-opportunities-challenges-and-recommendations/>. Accessed Apr. 15, 2025.

1124 Cowton, J., I. Kyriazakis, and J. Bacardit. 2019. Automated individual pig localisation, tracking

1125 and behaviour metric extraction using deep learning. *IEEE Access* 7:108049–108060.

1126 doi:10.1109/ACCESS.2019.2933060

1128 Dalla Costa, E., Minero, M., Lebelt, D., Stucke, D., Canali, E., & Leach, M. C. (2014).

1129 Development of the Horse Grimace Scale (HGS) as a pain assessment tool in horses
1130 undergoing routine castration. *PLoS ONE*, 9(3), e92281.

1131 doi:10.1371/journal.pone.0092281

1132 Debauche, O., M. Elmoulat, S. Mahmoudi, J. Bindelle, and F. Lebeau. 2021. Farm animals'
1133 behaviors and welfare analysis with AI algorithms: A review. *Rev. Intell. Artif.* 35(3).
1134 doi:10.18280/ria.350308

1135 Dembani, R., I. Karvelas, N. A. Akbar, S. Rizou, D. Tegolo, and S. Fountas. 2025. Agricultural
1136 data privacy and federated learning: A review of challenges and opportunities. *Comput.*
1137 *Electron. Agric.* 232:110048. doi:10.1016/j.compag.2025.110048

1138 Derner, J. D., and D. J. Augustine. 2016. Adaptive management for drought on rangelands.
1139 *Rangelands* 38(4):211–215. doi:10.1016/j.rala.2016.05.002

1140 Dhaliwal, Y., H. Bi, and S. Neethirajan. 2025. Bimodal data analysis for early detection of
1141 lameness in dairy cows using artificial intelligence. *J. Agric. Food Res.* 21:101837.
1142 doi:10.1016/j.jafr.2025.101837

1143 Di Giminiani, P., Brierley, V. L., Scollo, A., Gottardo, F., Malcolm, E. M., Edwards, S. A., &
1144 Leach, M. C. (2016). The assessment of facial expressions in piglets undergoing tail
1145 docking and castration: Toward the development of the Piglet Grimace Scale. *Frontiers*
1146 *in Veterinary Science*, 3, 100. doi:10.3389/fvets.2016.00100

1147 Dibbern, T., L. A. S. Romani, and S. M. F. S. Massruhá. 2024. Main drivers and barriers to the
1148 adoption of digital agriculture technologies. *Smart Agric. Technol.* 8:100459.
1149 doi:10.1016/j.atech.2024.100459

1150 Distante, Damiano, Chiara Albanello, Hira Zaffar, Stefano Faralli, and Domenico Amalfitano.

1151 "Artificial Intelligence Applied to Precision Livestock Farming: A Tertiary Study."

1152 *Smart Agricultural Technology* 11, (2025): 100889. Accessed April 11, 2025.

1153 doi:10.1016/j.atech.2025.100889.

1154 Domun, Y., L. J. Pedersen, D. White, O. Adeyemi, and T. Norton. 2019. Learning patterns from

1155 time-series data to discriminate predictions of tail-biting, fouling and diarrhoea in pigs.

1156 *Comput. Electron. Agric.* 163:104878. doi:10.1016/j.compag.2019.104878

1157 Džermeikaitė, K., M. Šidlauskaitė, R. Antanaitis, and L. Anskienė. 2025. Enhancing genomic

1158 selection in dairy cattle through artificial intelligence: Integrating advanced phenotyping

1159 and predictive models to advance health, climate resilience, and sustainability. *Dairy*

1160 6:50. doi:10.3390/dairy6050050

1161 Eckhardt, R., R. Arablouei, K. McCosker, G. Bishop-Hurley, N. Bagnall, B. Hayes, A. Reverter,

1162 A. Ingham, and H. Bernhardt. 2025. Insights into thermal stress effects on performance

1163 and behavior of grazing cattle via multimodal sensor monitoring. *Sci. Rep.* 15:27941.

1164 doi:10.1038/s41598-025-13264-0

1165 Federal Communications Commission (FCC). 2021. Fourteenth broadband deployment report.

1166 FCC 21-18. January 19, 2021. Available at: <https://www.fcc.gov/reports-research/reports/broadband-progress-reports/fourteenth-broadband-deployment-report>

1168 Feng, Y. Z., H. T. Zhao, G. F. Jia, et al. 2019. Establishment of validated models for non-

1169 invasive prediction of rectal temperature of sows using infrared thermography and

1170 chemometrics. *Int. J. Biometeorol.* 63:1405–1415. doi:10.1007/s00484-019-01758-2

1171 Fuentes, A., S. Yoon, J. Park, and D. S. Park. 2020. Deep learning-based hierarchical cattle
1172 behavior recognition with spatio-temporal information. *Comput. Electron. Agric.*
1173 177:105627. doi:10.1016/j.compag.2020.105627

1174 Fuentes, S., C. Gonzalez Viejo, E. Tongson, and F. R. Dunshea. 2022. The livestock farming
1175 digital transformation: Implementation of new and emerging technologies using artificial
1176 intelligence. *Anim. Health Res. Rev.* 23(1):59–71. doi:10.1017/S1466252321000177

1177 Garard, J., A. Cohen, E. Habanabakize, E. Gleeson, M. Teng, G. M. Caron, D. Piracha, R. L.
1178 Savanna, K. Rayburn, M. Rosa, K. Kundert, and E. Ubalijoro. 2024. Human-centered AI
1179 for sustainability and agriculture. In: *Human-Centered AI*. 1st ed. Chapman and
1180 Hall/CRC. p. 116–128. doi:10.1201/9781003320791-14

1181 García, R., J. Aguilar, M. Toro, A. Pinto, and P. Rodríguez. 2020. A systematic literature review
1182 on the use of machine learning in precision livestock farming. *Comput. Electron. Agric.*
1183 179:105826. doi:10.1016/j.compag.2020.105826

1184 Garner, J. B., M. L. Douglas, S. R. Williams, W. J. Wales, L. C. Marett, T. T. Nguyen, C. M.
1185 Reich, and B. J. Hayes. 2016. Genomic selection improves heat tolerance in dairy cattle.
1186 *Sci. Rep.* 6:34114. doi:10.1038/srep34114

1187 Gayathri, S. L., M. Bhakat, and T. K. Mohanty. 2024. Seasonal mastitis assessment in Holstein
1188 Friesian crossbred cows using infrared thermography. *Ital. J. Anim. Sci.* 23(1):1574–
1189 1591. doi:10.1080/1828051X.2024.2416065

1190 Georgopoulos, V. P., D. C. Gkikas, and J. A. Theodorou. 2023. Factors influencing the adoption
1191 of artificial intelligence technologies in agriculture, livestock farming, and aquaculture: A
1192 systematic literature review using PRISMA 2020. *Sustainability* 15(23):16385.
1193 doi:10.3390/su152316385

1194 Golik, W., O. Dameron, J. Bugeon, A. Fatet, I. Hue, C. Hurtaud, M. Reichstadt, M. C. Salaün, J.
1195 Vernet, L. Joret, and F. Papazian. 2012. ATOL: The multi-species livestock trait
1196 ontology. In: *Proc. Res. Conf. Metadata Semant. Res.* Springer Berlin Heidelberg, Berlin,
1197 Heidelberg. p. 289–300. doi:10.1007/978-3-642-35233-1_28

1198 Gouttenoire, L., S. Cournut, and S. Ingrand. 2011. Modelling as a tool to redesign livestock
1199 farming systems: A literature review. *Anim.* 5:1957–1971.
1200 doi:10.1017/S175173111100111X

1201 Gouttenoire, L., S. Cournut, and S. Ingrand. 2013. Participatory modelling with farmer groups to
1202 help them redesign their livestock farming systems. *Agron. Sustain. Dev.* 33:413–424.
1203 doi:10.1007/s13593-012-0112-y

1204 Greig, J., K. Cavasos, C. Boyer, and S. Schexnayder. 2023. Diffusion of innovation, internet
1205 access, and adoption barriers for precision livestock farming among beef producers. *Adv.*
1206 *Agric. Dev.* 4(3):103–116. doi:10.37433/aad.v4i3.329

1207 Grossi, G., P. Goglio, A. Vitali, and A. G. Williams. 2019. Livestock and climate change: Impact
1208 of livestock on climate and mitigation strategies. *Anim. Front.* 9:69–76.
1209 doi:10.1093/af/vfy034

1210 Guien, V., V. Antoine, R. Lardy, I. Veissier, and L. E. Rocha. 2025. Detection of anomalies in
1211 cow activity using wavelet transform based features. *arXiv* preprint arXiv:2502.21051.
1212 doi:10.48550/arXiv.2502.21051

1213 Guo, Y., S. E. Aggrey, P. Wang, A. Oladeinde, and L. Chai. 2022. Monitoring behaviors of
1214 broiler chickens at different ages with deep learning. *Animals* 12(23):3390.
1215 doi:10.3390/ani12233390

1216 Habib, M., M. A. Kabir, and L. Zheng. 2025. LEISA: A scalable microservice-based system for
1217 efficient livestock data sharing. *arXiv* preprint arXiv:2501.14781.
1218 doi:10.48550/arXiv.2501.14781

1219 Hamilton, A. W., C. Davison, C. Tachtatzis, I. Andonovic, C. Michie, H. J. Ferguson, L.
1220 Somerville, and N. N. Jonsson. 2019. Identification of the rumination in cattle using
1221 support vector machines with motion-sensitive bolus sensors. *Sensors* 19(5):1165.
1222 doi:10.3390/s19051165

1223 Han, J., J. Siegfried, D. Colbry, R. Lesiyon, A. Bosgraaf, C. Chen, T. Norton, and J. P. Steibel.
1224 2023. Evaluation of computer vision for detecting agonistic behavior of pigs in a single-
1225 space feeding stall through blocked cross-validation strategies. *Comput. Electron. Agric.*
1226 204:107520. doi:10.1016/j.compag.2022.107520

1227 Holman, A., J. Thompson, J. E. Routly, J. Cameron, D. N. Jones, D. Grove-White, R. F. Smith,
1228 and H. Dobson. 2011. Comparison of oestrus detection methods in dairy cattle. *Vet. Rec.*
1229 169(2):47. doi:10.1136/vr.d2344

1230 Hoxhallari, K., W. Purcell, and T. Neubauer. 2022. The potential of explainable artificial
1231 intelligence in precision livestock farming. In: Berckmans, D., M. Oczak, M. Iwersen,
1232 and K. Wagener (Eds.), *Prec. Livest. Farm. 2022: Proc. 10th Eur. Conf. Prec. Livest.*
1233 *Farm.*, Univ. Vet. Med. Vienna. p. 710–717. doi:10.34726/4701

1234 Hu, Z., H. Yang, and T. Lou. 2021. Dual attention-guided feature pyramid network for instance
1235 segmentation of group pigs. *Comput. Electron. Agric.* 186:106140.
1236 doi:10.1016/j.compag.2021.106140

1237 Huang, Y., Y. Luo, Y. Cao, X. Lin, H. Wei, M. Wu, X. Yang, and Z. Zhao. 2023. Damage
1238 detection of unwashed eggs through video and deep learning. *Foods* 12(11):2179.
1239 doi:10.3390/foods12112179

1240 Iqbal, M. W., I. Draganova, P. C. Morel, and S. T. Morris. 2021. Validation of an accelerometer
1241 sensor-based collar for monitoring grazing and rumination behaviours in grazing dairy
1242 cows. *Animals* 11(9):2724. doi:10.3390/ani11092724

1243 Islam, M. N., J. Yoder, A. Nasiri, R. T. Burns, and H. Gan. 2023. Analysis of the drinking
1244 behavior of beef cattle using computer vision. *Animals* 13(18):2984.
1245 doi:10.3390/ani13182984

1246 Ji, N., W. Shen, Y. Yin, J. Bao, B. Dai, H. Hou, S. Kou, and Y. Zhao. 2022. Investigation of
1247 acoustic and visual features for pig cough classification. *Biosyst. Eng.* 219:281–293.
1248 doi:10.1016/j.biosystemseng.2022.05.010

1249 Jobarteh, B., M. Mincu, D. Gavojdian, and S. Neethirajan. 2024. Multi modal information fusion
1250 of acoustic and linguistic data for decoding dairy cow vocalizations in animal welfare
1251 assessment. *arXiv* preprint arXiv:2411.00477. doi:10.48550/arXiv.2411.00477

1252 Jorquera-Chavez, M., S. Fuentes, F. R. Dunshea, R. D. Warner, T. Poblete, R. R. Unnithan, R. S.
1253 Morrison, and E. C. Jongman. 2021. Using imagery and computer vision as remote
1254 monitoring methods for early detection of respiratory disease in pigs. *Comput. Electron.
1255 Agric.* 187:106283. doi:10.1016/j.compag.2021.106283

1256 Jung, D.-H., N. Y. Kim, S. H. Moon, C. Jhin, H.-J. Kim, J.-S. Yang, H. S. Kim, T. S. Lee, J. Y.
1257 Lee, and S. H. Park. 2021. Deep learning-based cattle vocal classification model and real-
1258 time livestock monitoring system with noise filtering. *Animals* 11(2):357.
1259 doi:10.3390/ani11020357

1260 Kamaris, A., and F. X. Prenafeta-Boldú. 2018. Deep learning in agriculture: A survey. *Comput. Electron. Agric.* 147:70–90. doi:10.1016/j.compag.2018.02.016

1261 Kaur, J., S. M. Hazrati Fard, and R. Dara. 2022. Protecting farmers' data privacy and

1262 confidentiality: Recommendations and considerations. *Front. Sustain. Food Syst.*

1263 6:903230. doi:10.3389/fsufs.2022.903230

1264 Kaur, U., V. M. R. Malacco, H. Bai, T. P. Price, A. Datta, L. Xin, S. Sen, R. A. Nawrocki, G.

1265 Chiu, S. Sundaram, C. Min, K. M. Daniels, R. R. White, S. S. Donkin, L. F. Brito, and R.

1266 M. Voyles. 2023. Invited review: Integration of technologies and systems for precision

1267 animal agriculture—A case study on precision dairy farming. *J. Anim. Sci.* 101:skad206.

1268 doi: 10.1093/jas/skad206

1269 Kaushik, H., R. Rajwanshi, and A. Bhaduria. 2024. Modeling the challenges of technology

1270 adoption in dairy farming. *J. Sci. Technol. Policy Manag.* 15(6):1455–1480.

1271 doi:10.1108/JSTPM-09-2022-0163

1272 Klingström, T., E. Zonabend König, and A. A. Zwane. 2025. Beyond the hype: Using AI, big

1273 data, wearable devices, and the Internet of Things for high-throughput livestock

1274 phenotyping. *Brief. Funct. Genomics* 24. doi:10.1093/bfgp/elae032

1275 Küster, S., M. Kardel, S. Ammer, J. Brünger, R. Koch, and I. Traulsen. 2020. Usage of computer

1276 vision analysis for automatic detection of activity changes in sows during final gestation.

1277 *Comput. Electron. Agric.* 169:105177. doi:10.1016/j.compag.2019.105177

1278 Landi, V., A. Maggiolino, A. Cecchinato, L. F. M. Mota, U. Bernabucci, A. Rossoni, and P. De

1279 Palo. 2023. Genotype by environment interaction due to heat stress in Brown Swiss

1280 cattle. *J. Dairy Sci.* 106:1889–1909. doi:10.3168/jds.2021-21551

1281

1282 Lardy, R., Q. Ruin, and I. Veissier. 2023. Discriminating pathological, reproductive or stress
1283 conditions in cows using machine learning on sensor-based activity data. *Comput.*
1284 *Electron. Agric.* 204:107556. doi:10.1016/j.compag.2022.107556

1285 Larsen, M. L., L. J. Pedersen, and D. B. Jensen. 2019. Prediction of tail biting events in finisher
1286 pigs from automatically recorded sensor data. *Animals* 9(7):458. doi:10.3390/ani9070458

1287 Li, D., Y. Chen, K. Zhang, and Z. Li. 2019. Mounting behaviour recognition for pigs based on
1288 deep learning. *Sensors* 19(22):4924. doi:10.3390/s19224924

1289 Li, J., X. Hu, A. Lucic, Y. Wu, I. C. Condotta, R. N. Dilger, N. Ahuja, and A. R. Green-Miller.
1290 2024b. Promote computer vision applications in pig farming scenarios: High-quality
1291 dataset, fundamental models, and comparable performance. *J. Integr. Agric.*
1292 doi:10.1016/j.jia.2024.08.014

1293 Li, J., Y. Liu, W. Zheng, X. Chen, Y. Ma, and L. Guo. 2024a. Monitoring cattle ruminating
1294 behavior based on an improved keypoint detection model. *Animals* 14(12):1791.
1295 doi:10.3390/ani14121791

1296 Liu, D., M. Oczak, K. Maschat, J. Baumgartner, B. Pletzer, D. He, and T. Norton. 2020. A
1297 computer vision-based method for spatial-temporal action recognition of tail-biting
1298 behaviour in group-housed pigs. *Biosyst. Eng.* 195:27–41.
1299 doi:10.1016/j.biosystemseng.2020.04.007

1300 Llorens, B., C. Pomar, B. Goyette, R. Rajagopal, I. Andretta, M. A. Latorre, and A. Remus.
1301 2024. Precision feeding as a tool to reduce the environmental footprint of pig production
1302 systems: a life-cycle assessment. *J. Anim. Sci.* 102:skae225. doi: 10.1093/jas/skae225.

1303 Lodkaew, T., K. Pasupa, and C. K. Loo. 2023. CowXNet: An automated cow estrus detection
1304 system. *Expert Syst. Appl.* 211:118550. doi:10.1016/j.eswa.2022.118550

1305 Lourenço, V. M., J. O. Ongutu, R. A. Rodrigues, A. Posekany, and H. P. Piepho. 2024. Genomic
1306 prediction using machine learning: A comparison of the performance of regularized
1307 regression, ensemble, instance-based and deep learning methods on synthetic and
1308 empirical data. *BMC Genomics* 25:152. doi: 10.1186/s12864-023-09933-x

1309 Lyu, P., J. Min, and J. Song. 2023. Application of machine learning algorithms for on-farm
1310 monitoring and prediction of broilers' live weight: A quantitative study based on body
1311 weight data. *Agriculture* 13(12):2193. doi:10.3390/agriculture13122193

1312 Ma, W., X. Qi, Y. Sun, R. Gao, L. Ding, R. Wang, C. Peng, et al. 2024a. Computer vision-based
1313 measurement techniques for livestock body dimension and weight: A review. *Agriculture*
1314 14(2):306. doi:10.3390/agriculture14020306

1315 Ma, W., Y. Sun, X. Qi, X. Xue, K. Chang, Z. Xu, M. Li, R. Wang, R. Meng, and Q. Li. 2024b.
1316 Computer-vision-based sensing technologies for livestock body dimension measurement:
1317 A survey. *Sensors* 24(5):1504. doi:10.3390/s24051504

1318 Mallinger, K., L. Corpaci, T. Neubauer, I. E. Tikász, G. Goldenits, and T. Banhazi. 2024.
1319 Breaking the barriers of technology adoption: Explainable AI for requirement analysis
1320 and technology design in smart farming. *Smart Agric. Technol.* 9:100658.
1321 doi:10.1016/j.atech.2024.100658

1322 Mao, A., E. Huang, H. Gan, and K. Liu. 2022. FedAAR: A novel federated learning framework
1323 for animal activity recognition with wearable sensors. *Animals* 12(16):2142.
1324 doi:10.3390/ani12162142

1325 McDonagh, J., G. Tzimiropoulos, K. R. Slinger, Z. J. Huggett, P. M. Down, and M. J. Bell.
1326 2021. Detecting dairy cow behavior using vision technology. *Agriculture* 11(7):675.
1327 doi:10.3390/agriculture11070675

1328 McFadden, L. J., K. A. Ehlert, J. R. Brennan, I. L. Parsons, and K. Olson. 2025. Integrating
1329 multiple precision livestock technologies to advance rangeland grazing management.
1330 *Front. Vet. Sci.* 12:1625448. doi:10.3389/fvets.2025.1625448

1331 McGrath, K., Á. Regan, and T. Russell. 2024. A user-centred future for agricultural digital
1332 innovation: Demonstrating the value of design thinking in an animal health context. *J.*
1333 *Agric. Educ. Ext.* 1–19. doi:10.1080/1389224X.2024.2397968

1334 McParland, S., E. Lewis, E. Kennedy, S. G. Moore, B. McCarthy, M. O'Donovan, S. T. Butler,
1335 J. E. Pryce, and D. P. Berry. 2014. Mid-infrared spectrometry of milk as a predictor of
1336 energy intake and efficiency in lactating dairy cows. *J. Dairy Sci.* 97:5863–5871.
1337 doi:10.3168/jds.2014-8214

1338 McVey, C., F. Hsieh, D. Manriquez, P. Pinedo, and K. Horback. 2023. Invited review:
1339 Applications of unsupervised machine learning in livestock behavior: Case studies in
1340 recovering unanticipated behavioral patterns from precision livestock farming data
1341 streams. *Appl. Anim. Sci.* 39(2):99–116. doi:10.15232/aas.2022-02335

1342 McWhorter, T., M. Sargolzaei, C. Sattler, M. Utt, S. Tsuruta, I. Misztal, and D. Lourenco. 2023.
1343 Single-step genomic predictions for heat tolerance of production yields in US Holsteins
1344 and Jerseys. *J. Dairy Sci.* 106:7861–7879. doi:10.3168/jds.2022-23144

1345 Melak, A., T. Asegued, and T. Shitaw. 2024. The influence of artificial intelligence technology on
1346 the management of livestock farms. *Int. J. Distrib. Sens. Netw.* 2024(1):8929748.
1347 doi:10.1155/2024/8929748

1348 Michielon, A., P. Litta, F. Bonelli, G. Don, S. Farisè, D. Giannuzzi, M. Milanesi, et al. 2024.
1349 Mind the step: An artificial intelligence-based monitoring platform for animal welfare.
1350 *Sensors* 24(24):8042. doi:10.3390/s24248042

1351 Montesinos-López, O. A., A. Montesinos-López, P. Pérez-Rodríguez, J. A. Barrón-López, J. W.
1352 Martini, S. B. Fajardo-Flores, L. S. Gaytan-Lugo, P. C. Santana-Mancilla, and J. Crossa.
1353 2021. A review of deep learning applications for genomic selection. *BMC Genomics*
1354 22:19. doi:10.1186/s12864-020-07319-x

1355 Nasirahmadi, A., B. Sturm, S. Edwards, K. Jeppsson, A. Olsson, S. Müller, and O. Hensel. 2019.
1356 Deep learning and machine vision approaches for posture detection of individual pigs.
1357 *Sensors* 19(17):3738. doi:10.3390/s19173738

1358 Neethirajan, S. 2017. Recent advances in wearable sensors for animal health management. *Sens.*
1359 *Bio-Sens. Res.* 12:15–29. doi:10.1016/j.sbsr.2016.11.004

1360 Neethirajan, S. 2021. Happy cow or thinking pig? WUR Wolf—Facial coding platform for
1361 measuring emotions in farm animals. *AI* 2(3):342–354. doi:10.3390/ai2030021

1362 Neethirajan, S. 2024. Artificial intelligence and sensor innovations: Enhancing livestock welfare
1363 with a human-centric approach. *Hum.-Cent. Intell. Syst.* 4:77–92. doi:10.1007/s44230-
1364 023-00050-2

1365 Neethirajan, S. 2024. Artificial intelligence and sensor innovations: Enhancing livestock welfare
1366 with a human-centric approach. *Hum.-Cent. Intell. Syst.* 4:77–92. doi:10.1007/s44230-
1367 023-00050-2

1368 Neethirajan, S., and B. Kemp. 2021. Digital twins in livestock farming. *Animals* 11(4):1008.
1369 doi:10.3390/ani11041008

1370 Niloofar, P., D. P. Francis, S. Lazarova-Molnar, A. Vulpe, M. Vochin, G. Suciu, M. Balanescu,
1371 V. Anestis, and T. Bartzanas. 2021. Data-driven decision support in livestock farming for
1372 improved animal health, welfare and greenhouse gas emissions: Overview and
1373 challenges. *Comput. Electron. Agric.* 190:106406. doi:10.1016/j.compag.2021.106406

1374 Noor, A., Y. Zhao, A. Koubâa, L. Wu, R. Khan, and F. Y. Abdalla. 2020. Automated sheep
1375 facial expression classification using deep transfer learning. *Comput. Electron. Agric.*
1376 175:105528. doi:10.1016/j.compag.2020.105528

1377 Okinda, C., M. Lu, L. Liu, I. Nyalala, C. Muneri, J. Wang, H. Zhang, and M. Shen. 2019. A
1378 machine vision system for early detection and prediction of sick birds: A broiler chicken
1379 model. *Biosyst. Eng.* 188:229–242. doi:10.1016/j.biosystemseng.2019.09.015

1380 Ollagnier, C., C. Kasper, A. Wallenbeck, L. Keeling, G. Bee, and S. A. Bigdeli. 2023. Machine
1381 learning algorithms can predict tail biting outbreaks in pigs using feeding behaviour
1382 records. *PLoS One* 18(1):e0252002. doi:10.1371/journal.pone.0252002

1383 Ozella, L., K. B. Reboli, C. Forte, and M. Giacobini. 2023. A literature review of modeling
1384 approaches applied to data collected in automatic milking systems. *Animals* 13(12):1916.
1385 doi:10.3390/ani13121916

1386 Parikh, V., M. Oswal, and N. Pise. 2024. Early detection of sickness in cows using machine
1387 learning and deep learning. *Proc. 8th Int. Conf. Comput., Commun., Control Autom.*
1388 (*ICCUBE A*), Pune, India. p. 1–7. doi:10.1109/ICCUBE A61740.2024.10774850

1389 Pomar, C., and A. Remus. 2023. Review: Fundamentals, limitations and pitfalls on the
1390 development and application of precision nutrition techniques for precision livestock
1391 farming. *Anim.* 17:100763. doi:10.1016/j.animal.2023.100763

1392 Pomar, C., I. Andretta, and A. Remus. 2021. Feeding strategies to reduce nutrient losses and
1393 improve the sustainability of growing pigs. *Front. Vet. Sci.* 8:742220.
1394 doi:10.3389/fvets.2021.742220

1395 Prajapati, C. S., N. K. Priya, S. Bishnoi, S. K. Vishwakarma, K. Buvaneswari, S. Shastri, S.
1396 Tripathi, and A. Jadhav. 2025. The role of participatory approaches in modern

1397 agricultural extension: Bridging knowledge gaps for sustainable farming practices. *J.*
1398 *Exp. Agric. Int.* 47(2):204–222. doi:10.9734/jeai/2025/v47i23281

1399 Rebez, E. B., V. Sejian, M. V. Silpa, G. Kalaignazhal, D. Thirunavukkarasu, C. Devaraj, K. T.
1400 Nikhil, J. Ninan, A. Sahoo, N. Lacetera, and F. R. Dunshea. 2024. Applications of
1401 artificial intelligence for heat stress management in ruminant livestock. *Sensors* 24:5890.
1402 doi:10.3390/s24185890

1403 Reeves, J. L., J. D. Derner, M. A. Sanderson, S. L. Kronberg, J. R. Hendrickson, L. T. Vermeire,
1404 M. K. Petersen, and J. G. Irisarri. 2015. Seasonal weather-related decision making for
1405 cattle production in the Northern Great Plains. *Rangelands* 37(3):119–124.
1406 doi:10.1016/j.rala.2015.03.003

1407 Rosati, A. 2025. Guiding principles of AI: Application in animal husbandry and other
1408 considerations. *Anim. Front.* 14(6):3. doi:10.1093/af/vfae045

1409 Schaefer, A. L., N. J. Cook, C. Bench, J. B. Chabot, J. Colyn, T. Liu, E. K. Okine, M. Stewart,
1410 and J. R. Webster. 2012. The non-invasive and automated detection of bovine respiratory
1411 disease onset in receiver calves using infrared thermography. *Res. Vet. Sci.* 93(2):928–
1412 935. doi:10.1016/j.rvsc.2011.09.021

1413 Schön, P. C., K. Hämel, B. Puppe, A. Tuchscherer, W. Kanitz, and G. Manteuffel. 2007. Altered
1414 vocalization rate during the estrous cycle in dairy cattle. *J. Dairy Sci.* 90:202–206. doi:
1415 10.3168/jds.S0022-0302(07)72621-8.

1416 Schulthess, L., F. Longchamp, C. Vogt, and M. Magno. 2024. A LoRa-based and maintenance-
1417 free cattle monitoring system for alpine pastures and remote locations. *arXiv* preprint
1418 arXiv:2406.06245. doi:10.48550/arXiv.2406.06245

1419 Sharifuzzaman, M., H.-S. Mun, K. M. B. Ampode, E. B. Lagua, H.-R. Park, Y.-H. Kim, M. K.
1420 Hasan, and C.-J. Yang. 2024. Technological tools and artificial intelligence in estrus
1421 detection of sows—A comprehensive review. *Animals* 14(3):471.
1422 doi:10.3390/ani14030471

1423 Shirmohammadi-Khorram, N., L. Tapak, O. Hamidi, and Z. Maryanaji. 2019. A comparison of
1424 three data mining time series models in prediction of monthly brucellosis surveillance
1425 data. *Zoonoses Public Health* 66(7):759–772. doi:10.1111/zph.12622

1426 Sturm, V., D. Efrosinin, M. Öhlschuster, E. Gusterer, M. Drillich, and M. Iwersen. 2020.
1427 Combination of sensor data and health monitoring for early detection of subclinical
1428 ketosis in dairy cows. *Sensors* 20(5):1484. doi:10.3390/s20051484

1429 Stygar, A. H., Y. Gómez, G. V. Berteselli, E. Dalla Costa, E. Canali, J. K. Niemi, P. Llonch, and
1430 M. Pastell. 2021. A systematic review on commercially available and validated sensor
1431 technologies for welfare assessment of dairy cattle. *Front. Vet. Sci.* 8:634338.
1432 doi:10.3389/fvets.2021.634338

1433 Sykes, A. L., G. S. Silva, D. J. Holtkamp, B. W. Mauch, O. Osemeke, C. L. Linhares, and G.
1434 Machado. 2022. Interpretable machine learning applied to on-farm biosecurity and
1435 porcine reproductive and respiratory syndrome virus. *Transbound. Emerg. Dis.*
1436 69(4):e916–e930. doi:10.1111/tbed.14369

1437 Symeonaki, E., C. Maraveas, and K. G. Arvanitis. 2024. Recent advances in digital twins for
1438 Agriculture 5.0: Applications and open issues in livestock production systems. *Appl. Sci.*
1439 14(2):686. doi:10.3390/app14020686

1440 Tedeschi, L. O. 2019. ASN-ASAS Symposium: Future of data analytics in nutrition:
1441 Mathematical modeling in ruminant nutrition: Approaches and paradigms, extant models,

1442 and thoughts for upcoming predictive analytics. *J. Anim. Sci.* 97(5):1921–1944.

1443 doi:10.1093/jas/skz092

1444 Tedeschi, L. O. 2022. ASAS-NANP Symposium: Mathematical modeling in animal nutrition:

1445 The progression of data analytics and artificial intelligence in support of sustainable

1446 development in animal science. *J. Anim. Sci.* 100(6):1–11. doi:10.1093/jas/skac111

1447 Tedeschi, L. O. 2023. Review: The prevailing mathematical modelling classifications and

1448 paradigms to support the advancement of sustainable animal production. *Anim.*

1449 17:100813. doi:10.1016/j.animal.2023.100813

1450 Tedeschi, L. O., P. L. Greenwood, and I. Halachmi. 2021. Advancements in sensor technology

1451 and decision support intelligent tools to assist smart livestock farming. *J. Anim. Sci.*

1452 99(2):skab038. doi:10.1093/jas/skab038

1453 Thumba, D. A., S. Lazarova-Molnar, and P. Niloofar. 2020. Data-driven decision support tools

1454 for reducing GHG emissions from livestock production systems: Overview and

1455 challenges. *Proc. 7th Int. Conf. Internet Things: Syst., Manag. Secur.*, Paris, France. p. 1–

1456 8. doi:10.1109/IOTSMS52051.2020.9340217

1457 Tian, F., J. Wang, B. Xiong, L. Jiang, Z. Song, and F. Li. 2021. Real-time behavioral recognition

1458 in dairy cows based on geomagnetism and acceleration information. *IEEE Access*

1459 9:109497–109509. doi:10.1109/ACCESS.2021.3099212

1460 Tian, H., X. Zhou, H. Wang, C. Xu, Z. Zhao, W. Xu, and Z. Deng. 2024. The prediction of

1461 clinical mastitis in dairy cows based on milk yield, rumination time, and milk electrical

1462 conductivity using machine learning algorithms. *Animals* 14(3):427.

1463 doi:10.3390/ani14030427

1464 Vázquez Diosdado, J. A., Z. E. Barker, H. R. Hodges, J. R. Amory, D. P. Croft, N. J. Bell, and E. A. Codling. 2015. Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system. *Anim. Biotelem.* 3:1–14.
1465
1466
1467 doi:10.1186/s40317-015-0045-8

1468 Verhoeven, S., I. Chantziaras, E. Bernaerd, M. Loicq, L. Verhoeven, and D. Maes. 2023. The
1469 evaluation of an artificial intelligence system for estrus detection in sows. *Porc. Health
1470 Manag.* 9:9. doi:10.1186/s40813-023-00303-3

1471 Wang, J., H. Chen, J. Wang, K. Zhao, X. Li, B. Liu, and Y. Zhou. 2023. Identification of oestrus
1472 cows based on vocalisation characteristics and machine learning technique using a dual-
1473 channel-equipped acoustic tag. *Anim.* 17:100811. doi: 10.1016/j.animal.2023.100811

1474 Wang, S., H. Jiang, Y. Qiao, S. Jiang, H. Lin, and Q. Sun. 2022b. The research progress of
1475 vision-based artificial intelligence in smart pig farming. *Sensors* 22(17):6541.
1476 doi:10.3390/s22176541

1477 Wang, X., Y. Yin, X. Dai, W. Shen, S. Kou, and B. Dai. 2024. Automatic detection of
1478 continuous pig cough in a complex piggery environment. *Biosyst. Eng.* 238:78–88.
1479 doi:10.1016/j.biosystemseng.2024.01.002

1480 Wang, Y., S. Li, H. Zhang, and T. Liu. 2022. A lightweight CNN-based model for early warning
1481 in sow oestrus sound monitoring. *Ecol. Inform.* 72:101863.
1482 doi:10.1016/j.ecoinf.2022.101863

1483 Wang, Y., X. Kang, Z. He, Y. Feng, and G. Liu. 2022a. Accurate detection of dairy cow mastitis
1484 with deep learning technology: A new and comprehensive detection method based on
1485 infrared thermal images. *Anim.* 16(10):100646. doi:10.1016/j.animal.2022.100646

1486 Wang, Z., S. Shadpour, E. Chan, V. Rotondo, K. M. Wood, and D. Tulpan. 2021. ASAS-NANP
1487 symposium: Applications of machine learning for livestock body weight prediction from
1488 digital images. *J. Anim. Sci.* 99(2):skab022. doi:10.1093/jas/skab022

1489 Webber, S., M. L. Cobb, and J. Coe. 2022. Welfare through competence: A framework for
1490 animal-centric technology design. *Front. Vet. Sci.* 9:885973.
1491 doi:10.3389/fvets.2022.885973

1492 Werner, J., C. Umstatter, L. Leso, et al. 2019. Evaluation and application potential of an
1493 accelerometer-based collar device for measuring grazing behavior of dairy cows. *Anim.*
1494 13(9):2070–2079. doi:10.1017/S1751731118003658

1495 Williams, M. L., N. Mac Parthaláin, P. Brewer, W. P. J. James, and M. T. Rose. 2016. A novel
1496 behavioral model of the pasture-based dairy cow from GPS data using data mining and
1497 machine learning techniques. *J. Dairy Sci.* 99(3):2063–2075. doi:10.3168/jds.2015-10254

1498 Wiseman, L., J. Sanderson, A. Zhang, and E. Jakku. 2019. Farmers and their data: An
1499 examination of farmers' reluctance to share their data through the lens of the laws
1500 impacting smart farming. *NJAS Wageningen J. Life Sci.* 90–91:100301.
1501 doi:10.1016/j.njas.2019.04.007

1502 Woodward, S., J. Edwards, K. Verhoek, and J. Jago. 2024. Identifying and predicting heat stress
1503 events for grazing dairy cows using rumen temperature boluses. *JDS Commun.* 5:431–
1504 435. doi:10.3168/jdsc.2023-0482

1505 Wu, D., Q. Wu, X. Yin, B. Jiang, H. Wang, D. He, and H. Song. 2020. Lameness detection of
1506 dairy cows based on the YOLOv3 deep learning algorithm and a relative step size
1507 characteristic vector. *Biosyst. Eng.* 189:150–163.
1508 doi:10.1016/j.biosystemseng.2019.11.017

1509 Yang, X., R. B. Bist, S. Subedi, and L. Chai. 2023. A computer vision-based automatic system
1510 for egg grading and defect detection. *Animals* 13(14):2354. doi:10.3390/ani13142354

1511 Yu, P., T. Burghardt, A. W. Dowsey, and N. W. Campbell. 2024. Holstein-Friesian re-
1512 identification using multiple cameras and self-supervision on a working farm. *arXiv*
1513 preprint arXiv:2410.12695

1514 Yu, Z., Y. Liu, S. Yu, R. Wang, Z. Song, Y. Yan, F. Li, Z. Wang, and F. Tian. 2022. Automatic
1515 detection method of dairy cow feeding behaviour based on YOLO improved model and
1516 edge computing. *Sensors* 22(9):3271. doi:10.3390/s22093271

1517 Zarchi, Hossein Abootorabi, Ragnar Ingi Jónsson, and Mogens Blanke. "Improving oestrus
1518 detection in dairy cows by combining statistical detection with fuzzy logic classification."
1519 In *Advanced Control and Diagnosis*. 2009.

1520 Zhang, X., K. Xi, N. Feng, and G. Liu. 2020. Automatic recognition of dairy cow mastitis from
1521 thermal images by a deep learning detector. *Comput. Electron. Agric.* 178:105754.
1522 doi:10.1016/j.compag.2020.105754

1523 Zhenbang, W. U., C. H. E. N. Zekai, T. I. A. N. Xuhong, Y. A. N. G. Jie, Y. I. N. Ling, and Z. H.
1524 A. N. G. Sumin. 2024. A method for pig gait scoring based on 3D convolution video
1525 analysis. *J. South China Agric. Univ.* 45(5):743–753. doi:10.7671/j.issn.1001-
1526 411X.202311019

1527 Zulkifli, I. 2013. Review of human-animal interactions and their impact on animal productivity
1528 and welfare. *J. Anim. Sci. Biotechnol.* 4:25. doi:10.1186/2049-1891-4-25

1529

Table 1. Overview of AI applications across animal farming domains.

Domain	Input Modality	Key Applications
Health Monitoring	Milk yield, SCC, conductivity, activity, thermal images, audio	Mastitis detection, lameness detection, pain/facial analysis, fever detection, respiratory illness detection
	Video footage, posture, accelerometry	Gait and body condition monitoring
Reproduction & Estrus Detection	Video (mounting, locomotion), thermal IR, pose estimation	Estrus prediction, reproductive cycle monitoring
	Audio recordings (vocalization)	Estrus-associated vocalization classification
	Multimodal fusion (video + thermal + audio)	Enhanced estrus and farrowing detection
Behavior & Welfare Assessment	Video, audio, accelerometers, facial images, positioning sensors	Aggression detection, social network analysis, grimace scales, emotional state monitoring
	Multimodal systems (CV + audio + motion)	Welfare tracking and stress monitoring
Nutrition & Precision Feeding	RGB-D cameras, audio (pecking/chewing), GPS, LPS, accelerometers	Feed intake estimation, feeding behavior classification
	CV and audio combined with growth tracking	Growth-based feed adjustment systems
Productivity Monitoring	RGB, 3D, or depth cameras, body dimension extraction, milk/egg data	Weight prediction, milk yield anomaly detection, egg grading
	Video-based monitoring systems	Egg counting, defect detection
	Sensor + ML integration	Production forecasting, anomaly detection

Table 2. Major challenges and potential research directions for AI adoption in animal farming systems.

Challenge Area	Specific Challenge	Description	Affected Stakeholders	Example Solution or Response
Data and Model Challenges	Data quantity and quality	Lack of large, diverse, labeled datasets; sensor noise; limited event variability	Researchers, developers	Development of open-access annotated datasets (e.g., PigLife, MultiCamCows2024)
	Rare event representation	Imbalance in datasets for detecting health/reproduction cues like disease onset	AI developers	Synthetic data generation, sampling methods
	Model transferability	Domain shift limits generalization across breeds, housing, and environments	Researchers, integrators	Transfer learning, domain adaptation, federated learning
	Lack of general benchmarks	Few standardized tasks or datasets for livestock AI evaluation	Research community	Community challenges, benchmarking platforms
	Explainability and trust	DL models function as black boxes, hindering trust in alerts and decisions	Farmers, vets, regulators	Explainable AI (XAI) techniques like SHAP and LIME
	Limited user interfaces for interpretation	Users cannot easily view what AI systems are “seeing” or how they reason	Producers, advisors	Visual analytics, dashboards with transparent justifications
Technical & Infrastructure Constraints	Sensor reliability	Damage or failure due to dust, moisture, or animal contact	Farmers	Rugged hardware, automated diagnostics
	Sensor detachment or calibration issues	Wearables dislodge or drift, creating gaps or false data	Farmers	Design improvements, embedded calibration alerts
	Connectivity limitations	Many rural areas lack broadband to support cloud-based AI	Small farms, rural users	Edge AI, offline-capable tools, LoRa/mesh networks
	Edge computing hardware costs	Real-time edge devices are still	Farmers, integrators	Lightweight architectures (e.g.,

		expensive or limited in processing power		TinyML, model pruning)
	System integration & interoperability	Incompatible software/hardware from different vendors	Tech providers, integrators	Open-source APIs, industry data standards
Ethical, Legal, and Social Concerns	Data ownership and governance	Unclear ownership of sensor-collected data; risk of misuse	Farmers	Transparent governance, data sharing agreements, Ag Data Transparent principles
	Cybersecurity risks	Farm data may be vulnerable to breaches or misuse	Producers, tech providers	Encrypted storage, farm-specific access controls
	Bias and fairness	AI tools may be trained on high-performing farms, not generalizable	Underserved farm types, smallholders	Diverse training data, cross-site validation
	Reduced human-animal interaction	Over-automation risks loss of daily contact important for welfare monitoring	Caregivers, animals	Hybrid systems that prompt visual inspection, staff alerts
	Welfare trade-offs in optimization	Algorithms may prioritize throughput over animal comfort if not constrained	Producers, policy advocates	Embed welfare thresholds in optimization routines
	Lack of regulation or standards	No legally enforceable ethics or performance standards for livestock AI	Government, industry	Industry consortia, regulatory frameworks, third-party audits
Adoption and Training Gaps	Technological unfamiliarity	Many producers lack background in AI/data systems	Farmers	Extension programs, visual training tools
	Perceived complexity of tools	Black-box nature, unfriendly interfaces discourage use	End-users	User-centered design, mobile interfaces
	Fear of job displacement	Concern that AI may replace labor-intensive roles	Farmworkers	Reframing AI as augmentative, retraining initiatives

	Cost and risk aversion	Capital costs and uncertainty about return delay adoption	All producers	Demonstration farms, phased investment plans
	Lack of participatory design	Tools built without farmer input fail to meet real-world needs	Farmers, developers	Co-design workshops, iterative prototyping